@inproceedings{huang-etal-2025-low,
title = "Low-Entropy Watermark Detection via {B}ayes' Rule Derived Detector",
author = "Huang, Beining and
Su, Du and
Sun, Fei and
Cao, Qi and
Shen, Huawei and
Cheng, Xueqi",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.739/",
doi = "10.18653/v1/2025.findings-acl.739",
pages = "14330--14344",
ISBN = "979-8-89176-256-5",
abstract = "Text watermarking, which modify tokens to embed watermark, has proven effective in detecting machine-generated texts. Yet its application to low-entropy texts like code and mathematics presents significant challenges. A fair number of tokens in these texts are hardly modifiable without changing the intended meaning, causing statistical measures to falsely indicate the absence of a watermark. Existing research addresses this issue by rely mainly on a limited number of high-entropy tokens, which are considered flexible for modification, and accurately reflecting watermarks. However, their detection accuracy remains suboptimal, as they neglect strong watermark evidences embedded in low entropy tokens modified through watermarking. To overcome this limitation, we introduce Bayes' Rule derived Watermark Detector (BRWD), which exploit watermark information from every token, by leveraging the posterior probability of watermark{'}s presence. We theoretically prove the optimality of our method in terms of detection accuracy, and demonstrate its superiority across various datasets, models, and watermark injection strategies. Notably, our method achieves up to 50{\%} and 70{\%} relative improvements in detection accuracy over the best baselines in code generation and math problem-solving tasks, respectively. Our code is available at https://github.com/cczslp/BRWD."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2025-low">
<titleInfo>
<title>Low-Entropy Watermark Detection via Bayes’ Rule Derived Detector</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beining</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Du</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huawei</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xueqi</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Text watermarking, which modify tokens to embed watermark, has proven effective in detecting machine-generated texts. Yet its application to low-entropy texts like code and mathematics presents significant challenges. A fair number of tokens in these texts are hardly modifiable without changing the intended meaning, causing statistical measures to falsely indicate the absence of a watermark. Existing research addresses this issue by rely mainly on a limited number of high-entropy tokens, which are considered flexible for modification, and accurately reflecting watermarks. However, their detection accuracy remains suboptimal, as they neglect strong watermark evidences embedded in low entropy tokens modified through watermarking. To overcome this limitation, we introduce Bayes’ Rule derived Watermark Detector (BRWD), which exploit watermark information from every token, by leveraging the posterior probability of watermark’s presence. We theoretically prove the optimality of our method in terms of detection accuracy, and demonstrate its superiority across various datasets, models, and watermark injection strategies. Notably, our method achieves up to 50% and 70% relative improvements in detection accuracy over the best baselines in code generation and math problem-solving tasks, respectively. Our code is available at https://github.com/cczslp/BRWD.</abstract>
<identifier type="citekey">huang-etal-2025-low</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.739</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.739/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>14330</start>
<end>14344</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Low-Entropy Watermark Detection via Bayes’ Rule Derived Detector
%A Huang, Beining
%A Su, Du
%A Sun, Fei
%A Cao, Qi
%A Shen, Huawei
%A Cheng, Xueqi
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F huang-etal-2025-low
%X Text watermarking, which modify tokens to embed watermark, has proven effective in detecting machine-generated texts. Yet its application to low-entropy texts like code and mathematics presents significant challenges. A fair number of tokens in these texts are hardly modifiable without changing the intended meaning, causing statistical measures to falsely indicate the absence of a watermark. Existing research addresses this issue by rely mainly on a limited number of high-entropy tokens, which are considered flexible for modification, and accurately reflecting watermarks. However, their detection accuracy remains suboptimal, as they neglect strong watermark evidences embedded in low entropy tokens modified through watermarking. To overcome this limitation, we introduce Bayes’ Rule derived Watermark Detector (BRWD), which exploit watermark information from every token, by leveraging the posterior probability of watermark’s presence. We theoretically prove the optimality of our method in terms of detection accuracy, and demonstrate its superiority across various datasets, models, and watermark injection strategies. Notably, our method achieves up to 50% and 70% relative improvements in detection accuracy over the best baselines in code generation and math problem-solving tasks, respectively. Our code is available at https://github.com/cczslp/BRWD.
%R 10.18653/v1/2025.findings-acl.739
%U https://aclanthology.org/2025.findings-acl.739/
%U https://doi.org/10.18653/v1/2025.findings-acl.739
%P 14330-14344
Markdown (Informal)
[Low-Entropy Watermark Detection via Bayes’ Rule Derived Detector](https://aclanthology.org/2025.findings-acl.739/) (Huang et al., Findings 2025)
ACL