@inproceedings{lei-etal-2025-harnessing,
title = "Harnessing Large Language Models for Disaster Management: A Survey",
author = "Lei, Zhenyu and
Dong, Yushun and
Li, Weiyu and
Ding, Rong and
Wang, Qi R. and
Li, Jundong",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.750/",
doi = "10.18653/v1/2025.findings-acl.750",
pages = "14528--14551",
ISBN = "979-8-89176-256-5",
abstract = "Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, including their emerging role in mitigating threats to human life, infrastructure, and the environment during natural disasters. Despite increasing research on disaster-focused LLMs, there remains a lack of systematic reviews and in-depth analyses of their applications in natural disaster management. To address this gap, this paper presents a comprehensive survey of LLMs in disaster response, introducing a taxonomy that categorizes existing works based on disaster phases and application scenarios. By compiling public datasets and identifying key challenges and opportunities, this study aims to provide valuable insights for the research community and practitioners in developing advanced LLM-driven solutions to enhance resilience against natural disasters."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lei-etal-2025-harnessing">
<titleInfo>
<title>Harnessing Large Language Models for Disaster Management: A Survey</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhenyu</namePart>
<namePart type="family">Lei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yushun</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiyu</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rong</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jundong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, including their emerging role in mitigating threats to human life, infrastructure, and the environment during natural disasters. Despite increasing research on disaster-focused LLMs, there remains a lack of systematic reviews and in-depth analyses of their applications in natural disaster management. To address this gap, this paper presents a comprehensive survey of LLMs in disaster response, introducing a taxonomy that categorizes existing works based on disaster phases and application scenarios. By compiling public datasets and identifying key challenges and opportunities, this study aims to provide valuable insights for the research community and practitioners in developing advanced LLM-driven solutions to enhance resilience against natural disasters.</abstract>
<identifier type="citekey">lei-etal-2025-harnessing</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.750</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.750/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>14528</start>
<end>14551</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Harnessing Large Language Models for Disaster Management: A Survey
%A Lei, Zhenyu
%A Dong, Yushun
%A Li, Weiyu
%A Ding, Rong
%A Wang, Qi R.
%A Li, Jundong
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F lei-etal-2025-harnessing
%X Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, including their emerging role in mitigating threats to human life, infrastructure, and the environment during natural disasters. Despite increasing research on disaster-focused LLMs, there remains a lack of systematic reviews and in-depth analyses of their applications in natural disaster management. To address this gap, this paper presents a comprehensive survey of LLMs in disaster response, introducing a taxonomy that categorizes existing works based on disaster phases and application scenarios. By compiling public datasets and identifying key challenges and opportunities, this study aims to provide valuable insights for the research community and practitioners in developing advanced LLM-driven solutions to enhance resilience against natural disasters.
%R 10.18653/v1/2025.findings-acl.750
%U https://aclanthology.org/2025.findings-acl.750/
%U https://doi.org/10.18653/v1/2025.findings-acl.750
%P 14528-14551
Markdown (Informal)
[Harnessing Large Language Models for Disaster Management: A Survey](https://aclanthology.org/2025.findings-acl.750/) (Lei et al., Findings 2025)
ACL