@inproceedings{murakami-etal-2025-adparaphrase-v2,
title = "{A}d{P}araphrase v2.0: Generating Attractive Ad Texts Using a Preference-Annotated Paraphrase Dataset",
author = "Murakami, Soichiro and
Zhang, Peinan and
Kamigaito, Hidetaka and
Takamura, Hiroya and
Okumura, Manabu",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.788/",
doi = "10.18653/v1/2025.findings-acl.788",
pages = "15212--15230",
ISBN = "979-8-89176-256-5",
abstract = "Identifying factors that make ad text attractive is essential for advertising success. This study proposes AdParaphrase v2.0, a dataset for ad text paraphrasing, containing human preference data, to enable the analysis of the linguistic factors and to support the development of methods for generating attractive ad texts. Compared with v1.0, this dataset is 20 times larger, comprising 16,460 ad text paraphrase pairs, each annotated with preference data from ten evaluators, thereby enabling a more comprehensive and reliable analysis. Through the experiments, we identified multiple linguistic features of engaging ad texts that were not observed in v1.0 and explored various methods for generating attractive ad texts. Furthermore, our analysis demonstrated the relationships between human preference and ad performance, and highlighted the potential of reference-free metrics based on large language models for evaluating ad text attractiveness.The dataset is publicly available at: https://github.com/CyberAgentAILab/AdParaphrase-v2.0."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="murakami-etal-2025-adparaphrase-v2">
<titleInfo>
<title>AdParaphrase v2.0: Generating Attractive Ad Texts Using a Preference-Annotated Paraphrase Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Soichiro</namePart>
<namePart type="family">Murakami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peinan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hidetaka</namePart>
<namePart type="family">Kamigaito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manabu</namePart>
<namePart type="family">Okumura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Identifying factors that make ad text attractive is essential for advertising success. This study proposes AdParaphrase v2.0, a dataset for ad text paraphrasing, containing human preference data, to enable the analysis of the linguistic factors and to support the development of methods for generating attractive ad texts. Compared with v1.0, this dataset is 20 times larger, comprising 16,460 ad text paraphrase pairs, each annotated with preference data from ten evaluators, thereby enabling a more comprehensive and reliable analysis. Through the experiments, we identified multiple linguistic features of engaging ad texts that were not observed in v1.0 and explored various methods for generating attractive ad texts. Furthermore, our analysis demonstrated the relationships between human preference and ad performance, and highlighted the potential of reference-free metrics based on large language models for evaluating ad text attractiveness.The dataset is publicly available at: https://github.com/CyberAgentAILab/AdParaphrase-v2.0.</abstract>
<identifier type="citekey">murakami-etal-2025-adparaphrase-v2</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.788</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.788/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>15212</start>
<end>15230</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AdParaphrase v2.0: Generating Attractive Ad Texts Using a Preference-Annotated Paraphrase Dataset
%A Murakami, Soichiro
%A Zhang, Peinan
%A Kamigaito, Hidetaka
%A Takamura, Hiroya
%A Okumura, Manabu
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F murakami-etal-2025-adparaphrase-v2
%X Identifying factors that make ad text attractive is essential for advertising success. This study proposes AdParaphrase v2.0, a dataset for ad text paraphrasing, containing human preference data, to enable the analysis of the linguistic factors and to support the development of methods for generating attractive ad texts. Compared with v1.0, this dataset is 20 times larger, comprising 16,460 ad text paraphrase pairs, each annotated with preference data from ten evaluators, thereby enabling a more comprehensive and reliable analysis. Through the experiments, we identified multiple linguistic features of engaging ad texts that were not observed in v1.0 and explored various methods for generating attractive ad texts. Furthermore, our analysis demonstrated the relationships between human preference and ad performance, and highlighted the potential of reference-free metrics based on large language models for evaluating ad text attractiveness.The dataset is publicly available at: https://github.com/CyberAgentAILab/AdParaphrase-v2.0.
%R 10.18653/v1/2025.findings-acl.788
%U https://aclanthology.org/2025.findings-acl.788/
%U https://doi.org/10.18653/v1/2025.findings-acl.788
%P 15212-15230
Markdown (Informal)
[AdParaphrase v2.0: Generating Attractive Ad Texts Using a Preference-Annotated Paraphrase Dataset](https://aclanthology.org/2025.findings-acl.788/) (Murakami et al., Findings 2025)
ACL