@inproceedings{cui-etal-2025-enhancing-tool,
title = "Enhancing Tool Learning in Large Language Models with Hierarchical Error Checklists",
author = "Cui, Yue and
Yao, Liuyi and
Tao, Shuchang and
Shi, Weijie and
Li, Yaliang and
Ding, Bolin and
Zhou, Xiaofang",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.841/",
doi = "10.18653/v1/2025.findings-acl.841",
pages = "16357--16375",
ISBN = "979-8-89176-256-5",
abstract = "Large language models (LLMs) have significantly advanced natural language processing, particularly through the integration of external tools and APIs. However, their effectiveness is frequently hampered by parameter mis-filling during tool calling. In this paper, we propose the Hierarchical Tool Error Checklist (HiTEC) framework to systematically diagnose and mitigate tool-calling errors without relying on extensive real-world interactions. HiTEC introduces a two-tiered approach: a global error checklist that identifies common, cross-tool issues, and a local error checklist that targets tool-specific and contextual failures. Building on this structure, we propose two deployments: HiTEC-In Context Learning (HiTEC-ICL) and HiTEC-Kahneman-Tversky Optimization (HiTEC-KTO). HiTEC-ICL embeds the global checklist in the initial prompts and leverages a two-round conversational interaction to dynamically refine parameter handling, while HiTEC-KTO generates high-quality negative examples to drive fine-tuning via preference-based optimization. Extensive experiments across five public datasets demonstrate that our framework significantly improves parameter-filling accuracy and tool-calling success rates compared to baseline methods."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cui-etal-2025-enhancing-tool">
<titleInfo>
<title>Enhancing Tool Learning in Large Language Models with Hierarchical Error Checklists</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liuyi</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuchang</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weijie</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaliang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bolin</namePart>
<namePart type="family">Ding</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaofang</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Large language models (LLMs) have significantly advanced natural language processing, particularly through the integration of external tools and APIs. However, their effectiveness is frequently hampered by parameter mis-filling during tool calling. In this paper, we propose the Hierarchical Tool Error Checklist (HiTEC) framework to systematically diagnose and mitigate tool-calling errors without relying on extensive real-world interactions. HiTEC introduces a two-tiered approach: a global error checklist that identifies common, cross-tool issues, and a local error checklist that targets tool-specific and contextual failures. Building on this structure, we propose two deployments: HiTEC-In Context Learning (HiTEC-ICL) and HiTEC-Kahneman-Tversky Optimization (HiTEC-KTO). HiTEC-ICL embeds the global checklist in the initial prompts and leverages a two-round conversational interaction to dynamically refine parameter handling, while HiTEC-KTO generates high-quality negative examples to drive fine-tuning via preference-based optimization. Extensive experiments across five public datasets demonstrate that our framework significantly improves parameter-filling accuracy and tool-calling success rates compared to baseline methods.</abstract>
<identifier type="citekey">cui-etal-2025-enhancing-tool</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.841</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.841/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>16357</start>
<end>16375</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Tool Learning in Large Language Models with Hierarchical Error Checklists
%A Cui, Yue
%A Yao, Liuyi
%A Tao, Shuchang
%A Shi, Weijie
%A Li, Yaliang
%A Ding, Bolin
%A Zhou, Xiaofang
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F cui-etal-2025-enhancing-tool
%X Large language models (LLMs) have significantly advanced natural language processing, particularly through the integration of external tools and APIs. However, their effectiveness is frequently hampered by parameter mis-filling during tool calling. In this paper, we propose the Hierarchical Tool Error Checklist (HiTEC) framework to systematically diagnose and mitigate tool-calling errors without relying on extensive real-world interactions. HiTEC introduces a two-tiered approach: a global error checklist that identifies common, cross-tool issues, and a local error checklist that targets tool-specific and contextual failures. Building on this structure, we propose two deployments: HiTEC-In Context Learning (HiTEC-ICL) and HiTEC-Kahneman-Tversky Optimization (HiTEC-KTO). HiTEC-ICL embeds the global checklist in the initial prompts and leverages a two-round conversational interaction to dynamically refine parameter handling, while HiTEC-KTO generates high-quality negative examples to drive fine-tuning via preference-based optimization. Extensive experiments across five public datasets demonstrate that our framework significantly improves parameter-filling accuracy and tool-calling success rates compared to baseline methods.
%R 10.18653/v1/2025.findings-acl.841
%U https://aclanthology.org/2025.findings-acl.841/
%U https://doi.org/10.18653/v1/2025.findings-acl.841
%P 16357-16375
Markdown (Informal)
[Enhancing Tool Learning in Large Language Models with Hierarchical Error Checklists](https://aclanthology.org/2025.findings-acl.841/) (Cui et al., Findings 2025)
ACL