@inproceedings{qiu-etal-2025-mstyledistance,
title = "m{S}tyle{D}istance: Multilingual Style Embeddings and their Evaluation",
author = "Qiu, Justin and
Zhu, Jiacheng and
Patel, Ajay and
Apidianaki, Marianna and
Callison-Burch, Chris",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.869/",
doi = "10.18653/v1/2025.findings-acl.869",
pages = "16917--16931",
ISBN = "979-8-89176-256-5",
abstract = "Style embeddings are useful for stylistic analysis and style transfer, yet they only exist for English. We introduce Multilingual StyleDistance (mStyleDistance), a method that can generate style embeddings in new languages using synthetic data and a contrastive loss. We create style embeddings in nine languages and a multilingual STEL-or-Content benchmark (Wegmann et al., 2022) that serves to assess their quality. We also employ our embeddings in an authorship verification task involving different languages. Our results show that mStyleDistance embeddings outperform existing style embeddings on these benchmarks and generalize well to unseen features and languages. We make our models and datasets publicly available."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qiu-etal-2025-mstyledistance">
<titleInfo>
<title>mStyleDistance: Multilingual Style Embeddings and their Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Justin</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiacheng</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ajay</namePart>
<namePart type="family">Patel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Callison-Burch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Style embeddings are useful for stylistic analysis and style transfer, yet they only exist for English. We introduce Multilingual StyleDistance (mStyleDistance), a method that can generate style embeddings in new languages using synthetic data and a contrastive loss. We create style embeddings in nine languages and a multilingual STEL-or-Content benchmark (Wegmann et al., 2022) that serves to assess their quality. We also employ our embeddings in an authorship verification task involving different languages. Our results show that mStyleDistance embeddings outperform existing style embeddings on these benchmarks and generalize well to unseen features and languages. We make our models and datasets publicly available.</abstract>
<identifier type="citekey">qiu-etal-2025-mstyledistance</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.869</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.869/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>16917</start>
<end>16931</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T mStyleDistance: Multilingual Style Embeddings and their Evaluation
%A Qiu, Justin
%A Zhu, Jiacheng
%A Patel, Ajay
%A Apidianaki, Marianna
%A Callison-Burch, Chris
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F qiu-etal-2025-mstyledistance
%X Style embeddings are useful for stylistic analysis and style transfer, yet they only exist for English. We introduce Multilingual StyleDistance (mStyleDistance), a method that can generate style embeddings in new languages using synthetic data and a contrastive loss. We create style embeddings in nine languages and a multilingual STEL-or-Content benchmark (Wegmann et al., 2022) that serves to assess their quality. We also employ our embeddings in an authorship verification task involving different languages. Our results show that mStyleDistance embeddings outperform existing style embeddings on these benchmarks and generalize well to unseen features and languages. We make our models and datasets publicly available.
%R 10.18653/v1/2025.findings-acl.869
%U https://aclanthology.org/2025.findings-acl.869/
%U https://doi.org/10.18653/v1/2025.findings-acl.869
%P 16917-16931
Markdown (Informal)
[mStyleDistance: Multilingual Style Embeddings and their Evaluation](https://aclanthology.org/2025.findings-acl.869/) (Qiu et al., Findings 2025)
ACL