@inproceedings{yang-etal-2025-magic,
title = "{MAGIC}-{VQA}: Multimodal And Grounded Inference with Commonsense Knowledge for Visual Question Answering",
author = "Yang, Shuo and
Han, Caren and
Luo, Siwen and
Hovy, Eduard",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.872/",
doi = "10.18653/v1/2025.findings-acl.872",
pages = "16967--16986",
ISBN = "979-8-89176-256-5",
abstract = "Visual Question Answering (VQA) necessitates models to reason effectively across visual and textual modalities. However, existing Large Vision-Language Models (LVLMs) often fall short in achieving human-like reasoning due to a lack of integrated commonsense knowledge, limiting their robustness and accuracy in real-world scenarios where both explicit facts and implicit understanding are crucial. To address this challenge, we present MAGIC-VQA: Multimodal And Grounded Inference with Commonsense Knowledge, a novel framework designed to enhance multimodal inference by integrating commonsense reasoning. MAGIC-VQA introduces a three-stage process: (1) Explicit Commonsense Knowledge Retrieval from external knowledge graphs, (2) By-Type Commonsense Knowledge Post-Processing to refine contextual relevance, and (3) Implicit Commonsense Knowledge Augmentation using a heterogeneous graph processed by a Graph Neural Network (GNN). These stages collectively enable nuanced, context-aware reasoning without extensive pre-training or intricate prompt tuning.Our MAGIC-VQA significantly improves comprehensive benchmark datasets, surpassing existing models in tasks requiring advanced commonsense reasoning. MAGIC-VQA establishes a robust pathway for integrating commonsense knowledge into VQA, bridging the gap between vision-language inputs and high-level reasoning for improved reliability and contextual accuracy."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2025-magic">
<titleInfo>
<title>MAGIC-VQA: Multimodal And Grounded Inference with Commonsense Knowledge for Visual Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuo</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Caren</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siwen</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Visual Question Answering (VQA) necessitates models to reason effectively across visual and textual modalities. However, existing Large Vision-Language Models (LVLMs) often fall short in achieving human-like reasoning due to a lack of integrated commonsense knowledge, limiting their robustness and accuracy in real-world scenarios where both explicit facts and implicit understanding are crucial. To address this challenge, we present MAGIC-VQA: Multimodal And Grounded Inference with Commonsense Knowledge, a novel framework designed to enhance multimodal inference by integrating commonsense reasoning. MAGIC-VQA introduces a three-stage process: (1) Explicit Commonsense Knowledge Retrieval from external knowledge graphs, (2) By-Type Commonsense Knowledge Post-Processing to refine contextual relevance, and (3) Implicit Commonsense Knowledge Augmentation using a heterogeneous graph processed by a Graph Neural Network (GNN). These stages collectively enable nuanced, context-aware reasoning without extensive pre-training or intricate prompt tuning.Our MAGIC-VQA significantly improves comprehensive benchmark datasets, surpassing existing models in tasks requiring advanced commonsense reasoning. MAGIC-VQA establishes a robust pathway for integrating commonsense knowledge into VQA, bridging the gap between vision-language inputs and high-level reasoning for improved reliability and contextual accuracy.</abstract>
<identifier type="citekey">yang-etal-2025-magic</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.872</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.872/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>16967</start>
<end>16986</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MAGIC-VQA: Multimodal And Grounded Inference with Commonsense Knowledge for Visual Question Answering
%A Yang, Shuo
%A Han, Caren
%A Luo, Siwen
%A Hovy, Eduard
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F yang-etal-2025-magic
%X Visual Question Answering (VQA) necessitates models to reason effectively across visual and textual modalities. However, existing Large Vision-Language Models (LVLMs) often fall short in achieving human-like reasoning due to a lack of integrated commonsense knowledge, limiting their robustness and accuracy in real-world scenarios where both explicit facts and implicit understanding are crucial. To address this challenge, we present MAGIC-VQA: Multimodal And Grounded Inference with Commonsense Knowledge, a novel framework designed to enhance multimodal inference by integrating commonsense reasoning. MAGIC-VQA introduces a three-stage process: (1) Explicit Commonsense Knowledge Retrieval from external knowledge graphs, (2) By-Type Commonsense Knowledge Post-Processing to refine contextual relevance, and (3) Implicit Commonsense Knowledge Augmentation using a heterogeneous graph processed by a Graph Neural Network (GNN). These stages collectively enable nuanced, context-aware reasoning without extensive pre-training or intricate prompt tuning.Our MAGIC-VQA significantly improves comprehensive benchmark datasets, surpassing existing models in tasks requiring advanced commonsense reasoning. MAGIC-VQA establishes a robust pathway for integrating commonsense knowledge into VQA, bridging the gap between vision-language inputs and high-level reasoning for improved reliability and contextual accuracy.
%R 10.18653/v1/2025.findings-acl.872
%U https://aclanthology.org/2025.findings-acl.872/
%U https://doi.org/10.18653/v1/2025.findings-acl.872
%P 16967-16986
Markdown (Informal)
[MAGIC-VQA: Multimodal And Grounded Inference with Commonsense Knowledge for Visual Question Answering](https://aclanthology.org/2025.findings-acl.872/) (Yang et al., Findings 2025)
ACL