@inproceedings{zhang-etal-2025-libra,
title = "Libra: Leveraging Temporal Images for Biomedical Radiology Analysis",
author = "Zhang, Xi and
Meng, Zaiqiao and
Lever, Jake and
Ho, Edmond S. L.",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.888/",
doi = "10.18653/v1/2025.findings-acl.888",
pages = "17275--17303",
ISBN = "979-8-89176-256-5",
abstract = "Radiology report generation (RRG) requires advanced medical image analysis, effective temporal reasoning, and accurate text generation. While multimodal large language models (MLLMs) align with pre-trained vision encoders to enhance visual-language understanding, most existing methods rely on single-image analysis or rule-based heuristics to process multiple images, failing to fully leverage temporal information in multi-modal medical datasets. In this paper, we introduce **Libra**, a temporal-aware MLLM tailored for chest X-ray report generation. Libra combines a radiology-specific image encoder with a novel Temporal Alignment Connector (**TAC**), designed to accurately capture and integrate temporal differences between paired current and prior images. Extensive experiments on the MIMIC-CXR dataset demonstrate that Libra establishes a new state-of-the-art benchmark among similarly scaled MLLMs, setting new standards in both clinical relevance and lexical accuracy. All source code and data are publicly available at: https://github.com/X-iZhang/Libra."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2025-libra">
<titleInfo>
<title>Libra: Leveraging Temporal Images for Biomedical Radiology Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zaiqiao</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jake</namePart>
<namePart type="family">Lever</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edmond</namePart>
<namePart type="given">S</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Ho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>Radiology report generation (RRG) requires advanced medical image analysis, effective temporal reasoning, and accurate text generation. While multimodal large language models (MLLMs) align with pre-trained vision encoders to enhance visual-language understanding, most existing methods rely on single-image analysis or rule-based heuristics to process multiple images, failing to fully leverage temporal information in multi-modal medical datasets. In this paper, we introduce **Libra**, a temporal-aware MLLM tailored for chest X-ray report generation. Libra combines a radiology-specific image encoder with a novel Temporal Alignment Connector (**TAC**), designed to accurately capture and integrate temporal differences between paired current and prior images. Extensive experiments on the MIMIC-CXR dataset demonstrate that Libra establishes a new state-of-the-art benchmark among similarly scaled MLLMs, setting new standards in both clinical relevance and lexical accuracy. All source code and data are publicly available at: https://github.com/X-iZhang/Libra.</abstract>
<identifier type="citekey">zhang-etal-2025-libra</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.888</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.888/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>17275</start>
<end>17303</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Libra: Leveraging Temporal Images for Biomedical Radiology Analysis
%A Zhang, Xi
%A Meng, Zaiqiao
%A Lever, Jake
%A Ho, Edmond S. L.
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F zhang-etal-2025-libra
%X Radiology report generation (RRG) requires advanced medical image analysis, effective temporal reasoning, and accurate text generation. While multimodal large language models (MLLMs) align with pre-trained vision encoders to enhance visual-language understanding, most existing methods rely on single-image analysis or rule-based heuristics to process multiple images, failing to fully leverage temporal information in multi-modal medical datasets. In this paper, we introduce **Libra**, a temporal-aware MLLM tailored for chest X-ray report generation. Libra combines a radiology-specific image encoder with a novel Temporal Alignment Connector (**TAC**), designed to accurately capture and integrate temporal differences between paired current and prior images. Extensive experiments on the MIMIC-CXR dataset demonstrate that Libra establishes a new state-of-the-art benchmark among similarly scaled MLLMs, setting new standards in both clinical relevance and lexical accuracy. All source code and data are publicly available at: https://github.com/X-iZhang/Libra.
%R 10.18653/v1/2025.findings-acl.888
%U https://aclanthology.org/2025.findings-acl.888/
%U https://doi.org/10.18653/v1/2025.findings-acl.888
%P 17275-17303
Markdown (Informal)
[Libra: Leveraging Temporal Images for Biomedical Radiology Analysis](https://aclanthology.org/2025.findings-acl.888/) (Zhang et al., Findings 2025)
ACL