@inproceedings{jhamtani-etal-2025-llm,
title = "{LLM} Agents for Coordinating Multi-User Information Gathering",
author = "Jhamtani, Harsh and
Andreas, Jacob and
Van Durme, Benjamin",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.916/",
doi = "10.18653/v1/2025.findings-acl.916",
pages = "17800--17826",
ISBN = "979-8-89176-256-5",
abstract = "This paper introduces PeopleJoin, a benchmark for evaluating LM-mediated collaborative problem solving. Given a user request, PeopleJoin agents must identify teammates who might be able to assist, converse with these teammates to gather information, and finally compile a useful answer or summary for the original user. PeopleJoin comprises two evaluation domains: PeopleJoin-QA, focused on questions about tabular data, and PeopleJoin-DocCreation, focused on document creation tasks. The two domains are adapted from existing NLP benchmarks for database question answering and multi-document summarization; here, however, the information needed to complete these tasks is distributed across synthetic ``organizations'' of 2{--}20 users, simulating natural multi-user collaboration scenarios. We implemented several popular LM agent architectures, evaluating their accuracy and efficiency at completing tasks, and highlight new research questions that can be studied using PeopleJoin."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jhamtani-etal-2025-llm">
<titleInfo>
<title>LLM Agents for Coordinating Multi-User Information Gathering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Harsh</namePart>
<namePart type="family">Jhamtani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacob</namePart>
<namePart type="family">Andreas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>This paper introduces PeopleJoin, a benchmark for evaluating LM-mediated collaborative problem solving. Given a user request, PeopleJoin agents must identify teammates who might be able to assist, converse with these teammates to gather information, and finally compile a useful answer or summary for the original user. PeopleJoin comprises two evaluation domains: PeopleJoin-QA, focused on questions about tabular data, and PeopleJoin-DocCreation, focused on document creation tasks. The two domains are adapted from existing NLP benchmarks for database question answering and multi-document summarization; here, however, the information needed to complete these tasks is distributed across synthetic “organizations” of 2–20 users, simulating natural multi-user collaboration scenarios. We implemented several popular LM agent architectures, evaluating their accuracy and efficiency at completing tasks, and highlight new research questions that can be studied using PeopleJoin.</abstract>
<identifier type="citekey">jhamtani-etal-2025-llm</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.916</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.916/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>17800</start>
<end>17826</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLM Agents for Coordinating Multi-User Information Gathering
%A Jhamtani, Harsh
%A Andreas, Jacob
%A Van Durme, Benjamin
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F jhamtani-etal-2025-llm
%X This paper introduces PeopleJoin, a benchmark for evaluating LM-mediated collaborative problem solving. Given a user request, PeopleJoin agents must identify teammates who might be able to assist, converse with these teammates to gather information, and finally compile a useful answer or summary for the original user. PeopleJoin comprises two evaluation domains: PeopleJoin-QA, focused on questions about tabular data, and PeopleJoin-DocCreation, focused on document creation tasks. The two domains are adapted from existing NLP benchmarks for database question answering and multi-document summarization; here, however, the information needed to complete these tasks is distributed across synthetic “organizations” of 2–20 users, simulating natural multi-user collaboration scenarios. We implemented several popular LM agent architectures, evaluating their accuracy and efficiency at completing tasks, and highlight new research questions that can be studied using PeopleJoin.
%R 10.18653/v1/2025.findings-acl.916
%U https://aclanthology.org/2025.findings-acl.916/
%U https://doi.org/10.18653/v1/2025.findings-acl.916
%P 17800-17826
Markdown (Informal)
[LLM Agents for Coordinating Multi-User Information Gathering](https://aclanthology.org/2025.findings-acl.916/) (Jhamtani et al., Findings 2025)
ACL