@inproceedings{liu-etal-2025-survey,
title = "A Survey on Proactive Defense Strategies Against Misinformation in Large Language Models",
author = "Liu, Shuliang and
Liu, Hongyi and
Liu, Aiwei and
Bingchen, Duan and
Qi, Zheng and
Yan, Yibo and
Geng, He and
Jiang, Peijie and
Liu, Jia and
Hu, Xuming",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.933/",
doi = "10.18653/v1/2025.findings-acl.933",
pages = "18144--18155",
ISBN = "979-8-89176-256-5",
abstract = "The widespread deployment of large language models (LLMs) across critical domains has amplified the societal risks posed by algorithmically generated misinformation. Unlike traditional false content, LLM-generated misinformation can be self-reinforcing, highly plausible, and capable of rapid propagation across multiple languages, which traditional detection methods fail to mitigate effectively. This paper introduces a proactive defense paradigm, shifting from passive post hoc detection to anticipatory mitigation strategies. We propose a Three Pillars framework: (1) Knowledge Credibility, fortifying the integrity of training and deployed data; (2) Inference Reliability, embedding self-corrective mechanisms during reasoning; and (3) Input Robustness, enhancing the resilience of model interfaces against adversarial attacks. Through a comprehensive survey of existing techniques and a comparative meta-analysis, we demonstrate that proactive defense strategies offer up to 63{\%} improvement over conventional methods in misinformation prevention, despite non-trivial computational overhead and generalization challenges. We argue that future research should focus on co-designing robust knowledge foundations, reasoning certification, and attack-resistant interfaces to ensure LLMs can effectively counter misinformation across varied domains."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2025-survey">
<titleInfo>
<title>A Survey on Proactive Defense Strategies Against Misinformation in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shuliang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aiwei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Duan</namePart>
<namePart type="family">Bingchen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Qi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yibo</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">Geng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peijie</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jia</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuming</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Nabende</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-256-5</identifier>
</relatedItem>
<abstract>The widespread deployment of large language models (LLMs) across critical domains has amplified the societal risks posed by algorithmically generated misinformation. Unlike traditional false content, LLM-generated misinformation can be self-reinforcing, highly plausible, and capable of rapid propagation across multiple languages, which traditional detection methods fail to mitigate effectively. This paper introduces a proactive defense paradigm, shifting from passive post hoc detection to anticipatory mitigation strategies. We propose a Three Pillars framework: (1) Knowledge Credibility, fortifying the integrity of training and deployed data; (2) Inference Reliability, embedding self-corrective mechanisms during reasoning; and (3) Input Robustness, enhancing the resilience of model interfaces against adversarial attacks. Through a comprehensive survey of existing techniques and a comparative meta-analysis, we demonstrate that proactive defense strategies offer up to 63% improvement over conventional methods in misinformation prevention, despite non-trivial computational overhead and generalization challenges. We argue that future research should focus on co-designing robust knowledge foundations, reasoning certification, and attack-resistant interfaces to ensure LLMs can effectively counter misinformation across varied domains.</abstract>
<identifier type="citekey">liu-etal-2025-survey</identifier>
<identifier type="doi">10.18653/v1/2025.findings-acl.933</identifier>
<location>
<url>https://aclanthology.org/2025.findings-acl.933/</url>
</location>
<part>
<date>2025-07</date>
<extent unit="page">
<start>18144</start>
<end>18155</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Survey on Proactive Defense Strategies Against Misinformation in Large Language Models
%A Liu, Shuliang
%A Liu, Hongyi
%A Liu, Aiwei
%A Bingchen, Duan
%A Qi, Zheng
%A Yan, Yibo
%A Geng, He
%A Jiang, Peijie
%A Liu, Jia
%A Hu, Xuming
%Y Che, Wanxiang
%Y Nabende, Joyce
%Y Shutova, Ekaterina
%Y Pilehvar, Mohammad Taher
%S Findings of the Association for Computational Linguistics: ACL 2025
%D 2025
%8 July
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-256-5
%F liu-etal-2025-survey
%X The widespread deployment of large language models (LLMs) across critical domains has amplified the societal risks posed by algorithmically generated misinformation. Unlike traditional false content, LLM-generated misinformation can be self-reinforcing, highly plausible, and capable of rapid propagation across multiple languages, which traditional detection methods fail to mitigate effectively. This paper introduces a proactive defense paradigm, shifting from passive post hoc detection to anticipatory mitigation strategies. We propose a Three Pillars framework: (1) Knowledge Credibility, fortifying the integrity of training and deployed data; (2) Inference Reliability, embedding self-corrective mechanisms during reasoning; and (3) Input Robustness, enhancing the resilience of model interfaces against adversarial attacks. Through a comprehensive survey of existing techniques and a comparative meta-analysis, we demonstrate that proactive defense strategies offer up to 63% improvement over conventional methods in misinformation prevention, despite non-trivial computational overhead and generalization challenges. We argue that future research should focus on co-designing robust knowledge foundations, reasoning certification, and attack-resistant interfaces to ensure LLMs can effectively counter misinformation across varied domains.
%R 10.18653/v1/2025.findings-acl.933
%U https://aclanthology.org/2025.findings-acl.933/
%U https://doi.org/10.18653/v1/2025.findings-acl.933
%P 18144-18155
Markdown (Informal)
[A Survey on Proactive Defense Strategies Against Misinformation in Large Language Models](https://aclanthology.org/2025.findings-acl.933/) (Liu et al., Findings 2025)
ACL
- Shuliang Liu, Hongyi Liu, Aiwei Liu, Duan Bingchen, Zheng Qi, Yibo Yan, He Geng, Peijie Jiang, Jia Liu, and Xuming Hu. 2025. A Survey on Proactive Defense Strategies Against Misinformation in Large Language Models. In Findings of the Association for Computational Linguistics: ACL 2025, pages 18144–18155, Vienna, Austria. Association for Computational Linguistics.