@inproceedings{fan-strube-2025-consistent,
title = "Consistent Discourse-level Temporal Relation Extraction Using Large Language Models",
author = "Fan, Yi and
Strube, Michael",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.1010/",
pages = "18605--18622",
ISBN = "979-8-89176-335-7",
abstract = "Understanding temporal relations between events in a text is essential for determining its temporal structure. Recent advancements in large language models (LLMs) have spurred research on temporal relation extraction. However, LLMs perform poorly in zero-shot and few-shot settings, often underperforming smaller fine-tuned models. Despite these limitations, little attention has been given to improving LLMs in temporal structure extraction tasks. This study systematically examines LLMs' ability to extract and infer discourse-level temporal relations, identifying factors influencing their reasoning and extraction capabilities, including input context, reasoning process and ensuring consistency. We propose a three-step framework to improve LLMs' temporal relation extraction capabilities: context selection, prompts inspired by Allen{'}s interval algebra (Allen, 1983), and reflection-based consistency learning (Shinn et al., 2024). Our results show the effectiveness of our method in guiding LLMs towards structured processing of temporal structure in discourse."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fan-strube-2025-consistent">
<titleInfo>
<title>Consistent Discourse-level Temporal Relation Extraction Using Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Strube</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Understanding temporal relations between events in a text is essential for determining its temporal structure. Recent advancements in large language models (LLMs) have spurred research on temporal relation extraction. However, LLMs perform poorly in zero-shot and few-shot settings, often underperforming smaller fine-tuned models. Despite these limitations, little attention has been given to improving LLMs in temporal structure extraction tasks. This study systematically examines LLMs’ ability to extract and infer discourse-level temporal relations, identifying factors influencing their reasoning and extraction capabilities, including input context, reasoning process and ensuring consistency. We propose a three-step framework to improve LLMs’ temporal relation extraction capabilities: context selection, prompts inspired by Allen’s interval algebra (Allen, 1983), and reflection-based consistency learning (Shinn et al., 2024). Our results show the effectiveness of our method in guiding LLMs towards structured processing of temporal structure in discourse.</abstract>
<identifier type="citekey">fan-strube-2025-consistent</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.1010/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>18605</start>
<end>18622</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Consistent Discourse-level Temporal Relation Extraction Using Large Language Models
%A Fan, Yi
%A Strube, Michael
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F fan-strube-2025-consistent
%X Understanding temporal relations between events in a text is essential for determining its temporal structure. Recent advancements in large language models (LLMs) have spurred research on temporal relation extraction. However, LLMs perform poorly in zero-shot and few-shot settings, often underperforming smaller fine-tuned models. Despite these limitations, little attention has been given to improving LLMs in temporal structure extraction tasks. This study systematically examines LLMs’ ability to extract and infer discourse-level temporal relations, identifying factors influencing their reasoning and extraction capabilities, including input context, reasoning process and ensuring consistency. We propose a three-step framework to improve LLMs’ temporal relation extraction capabilities: context selection, prompts inspired by Allen’s interval algebra (Allen, 1983), and reflection-based consistency learning (Shinn et al., 2024). Our results show the effectiveness of our method in guiding LLMs towards structured processing of temporal structure in discourse.
%U https://aclanthology.org/2025.findings-emnlp.1010/
%P 18605-18622
Markdown (Informal)
[Consistent Discourse-level Temporal Relation Extraction Using Large Language Models](https://aclanthology.org/2025.findings-emnlp.1010/) (Fan & Strube, Findings 2025)
ACL