@inproceedings{rios-etal-2025-sparsity,
title = "Sparsity May Be All You Need: Sparse Random Parameter Adaptation",
author = "Rios, Jesus and
Dognin, Pierre and
Luss, Ronny and
Natesan Ramamurthy, Karthikeyan",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.1013/",
pages = "18650--18666",
ISBN = "979-8-89176-335-7",
abstract = "Full fine-tuning of large language models for alignment and task adaptation has become prohibitively expensive as models have grown in size. Parameter-Efficient Fine-Tuning (PEFT) methods aim at significantly reducing the computational and memory resources needed for fine-tuning these models by only training on a small number of parameters instead of all model parameters. Currently, the most popular PEFT method is the Low-Rank Adaptation (LoRA), which freezes the parameters of the model and introduces a small set of trainable parameters in the form of low-rank matrices. We propose simply reducing the number of trainable parameters by randomly selecting a small proportion of the model parameters to train on, while fixing all other parameters, without any additional prior assumptions such as low-rank structures. In this paper, we compare the efficiency and performance of our proposed approach to other PEFT methods as well as full parameter fine-tuning. We find our method to be competitive with LoRA when using a similar number of trainable parameters. Our findings suggest that what truly matters for a PEFT technique to perform well is not necessarily the specific adapter structure, but rather the number of trainable parameters being used."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rios-etal-2025-sparsity">
<titleInfo>
<title>Sparsity May Be All You Need: Sparse Random Parameter Adaptation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jesus</namePart>
<namePart type="family">Rios</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Dognin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ronny</namePart>
<namePart type="family">Luss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karthikeyan</namePart>
<namePart type="family">Natesan Ramamurthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Full fine-tuning of large language models for alignment and task adaptation has become prohibitively expensive as models have grown in size. Parameter-Efficient Fine-Tuning (PEFT) methods aim at significantly reducing the computational and memory resources needed for fine-tuning these models by only training on a small number of parameters instead of all model parameters. Currently, the most popular PEFT method is the Low-Rank Adaptation (LoRA), which freezes the parameters of the model and introduces a small set of trainable parameters in the form of low-rank matrices. We propose simply reducing the number of trainable parameters by randomly selecting a small proportion of the model parameters to train on, while fixing all other parameters, without any additional prior assumptions such as low-rank structures. In this paper, we compare the efficiency and performance of our proposed approach to other PEFT methods as well as full parameter fine-tuning. We find our method to be competitive with LoRA when using a similar number of trainable parameters. Our findings suggest that what truly matters for a PEFT technique to perform well is not necessarily the specific adapter structure, but rather the number of trainable parameters being used.</abstract>
<identifier type="citekey">rios-etal-2025-sparsity</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.1013/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>18650</start>
<end>18666</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Sparsity May Be All You Need: Sparse Random Parameter Adaptation
%A Rios, Jesus
%A Dognin, Pierre
%A Luss, Ronny
%A Natesan Ramamurthy, Karthikeyan
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F rios-etal-2025-sparsity
%X Full fine-tuning of large language models for alignment and task adaptation has become prohibitively expensive as models have grown in size. Parameter-Efficient Fine-Tuning (PEFT) methods aim at significantly reducing the computational and memory resources needed for fine-tuning these models by only training on a small number of parameters instead of all model parameters. Currently, the most popular PEFT method is the Low-Rank Adaptation (LoRA), which freezes the parameters of the model and introduces a small set of trainable parameters in the form of low-rank matrices. We propose simply reducing the number of trainable parameters by randomly selecting a small proportion of the model parameters to train on, while fixing all other parameters, without any additional prior assumptions such as low-rank structures. In this paper, we compare the efficiency and performance of our proposed approach to other PEFT methods as well as full parameter fine-tuning. We find our method to be competitive with LoRA when using a similar number of trainable parameters. Our findings suggest that what truly matters for a PEFT technique to perform well is not necessarily the specific adapter structure, but rather the number of trainable parameters being used.
%U https://aclanthology.org/2025.findings-emnlp.1013/
%P 18650-18666
Markdown (Informal)
[Sparsity May Be All You Need: Sparse Random Parameter Adaptation](https://aclanthology.org/2025.findings-emnlp.1013/) (Rios et al., Findings 2025)
ACL