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Abstract

We introduce MANTA, an automated pipeline
that generates high-quality large-scale instruc-
tion fine-tuning datasets from massive web
corpora while preserving their diversity and
scalability. By extracting structured syllabi
from web documents and leveraging high-
performance LLMs, our approach enables
highly effective query-response generation
with minimal human intervention. Extensive ex-
periments on 8B-scale LLMs demonstrate that
fine-tuning on the MANTA-1M dataset signifi-
cantly outperforms other massive dataset gener-
ation methodologies, particularly in knowledge-
intensive tasks such as MMLU and MMLU-
Pro. Our approach also delivers superior per-
formance across a broad spectrum of other
tasks, such as Math and Coding. Moreover,
MANTA supports seamless scalability by al-
lowing the continuous integration of web cor-
pus data, enabling expansion into domains re-
quiring intensive knowledge. '

1 Introduction

The scalability of the dataset size is a critical fac-
tor not only in the pre-training stage but also in
the instruction fine-tuning stage (Yue et al., 2024a;
Honovich et al., 2023; Lambert et al., 2024; Yue
et al., 2024b; Mitra et al., 2024b). A major chal-
lenge in large-scale instruction fine-tuning dataset
generation is that directly constructing a supervised
dataset, consisting of user queries and assistant re-
sponses, is highly human-labor intensive (Zheng
et al., 2024a; Zhao et al., 2024; Kopf et al., 2024).
To more effectively construct high-quality large-
scale fine-tuning datasets, recent researches have
been conducted on developing automated pipelines
with less human intervention (Wang et al., 2023;
Mitra et al., 2024a; Xu et al., 2024; Li et al., 2024;
Yue et al., 2024b). In this context, we aim to ex-
plore how the vast and diverse knowledge within

!The dataset is available at https://huggingface.co/
datasets/LGAI-EXAONE/MANTA-1M.
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Which of the following natural substances is most likely to change its
color in response to a change in pH, and what is the observable color
change that indicates it is acting as an acid-base indicator in a
solution with a pH change from acidic (pH 3) to neutral (pH 7)?

A) Turmeric; Yellow to Red

B) Red Cabbage; Purple to Green
C) Beetroot; Red to Brown

D) Spinach; Green to Yellow

Figure 1: A step-by-step example of the MANTA
pipeline that extracts core knowledge from a large web
corpus and refines it into a syllabus to generate instruc-
tions. It shows that it is possible to generate instructions
that reflect the world knowledge contained in vast Web
Corpus.

massive web corpora can be effectively synthesized
into an instruction dataset.

In this paper, we present a dataset generation
pipeline for instruction fine-tuning from massive
web corpora. Our proposed pipeline, MANTA, pre-
serves the diversity of web corpora and scales up
to the size of the source web corpora, enabling
the construction of large-scale high quality instruc-
tion fine-tuning datasets with minimal human ef-
fort. This is achieved through the systematic em-
ployment of publicly accessible high-performance
LLMs and web corpora filtered for educational
value.

MANTA pipeline starts by encapsulating the
core knowledge of each large-scale web docu-
ment into a JSON-formatted structured syllabus,
as shown in Figure 1. This approach enables us
to achieve both the high quality derived from edu-
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cational value and the robustness in generating in-
structions facilitated by the knowledge-friendly syl-
labus format. The large-scale syllabi, constructed
with near-zero human effort, offer a significant ad-
vantage over previous massive instruction dataset
generation methodologies in that their topic distri-
bution is not confined to predefined taxonomies (Li
et al., 2024), curated seed examples (Wang et al.,
2023; Mitra et al., 2023), or the LLM’s learned
knowledge base (Xu et al., 2024).

By utilizing a publicly accessible fine-tuned
LLM, MANTA pipeline generates a large-scale
supervised dataset composed of query-response
pairs generated from the syllabi. Additionally, we
propose a method for generating more complex
instruction pairs. Syllabus Fusion allows us to in-
crease instruction difficulty by combining multiple
syllabi, resulting in enhanced performance of mod-
els trained on this dataset. Multi-turn Expansion
enables the generation of realistic follow-up con-
versations, improving the usability of the trained
model.

We rigorously validate the MANTA pipeline
through extensive experiments by fine-tuning var-
ious pre-trained LL.Ms with 8B parameters on 1
million MANTA-generated data points, while also
conducting comparative experiments with 1 mil-
lion data points from other massive dataset genera-
tion methodologies. In our experiments, three pre-
trained models—Mistral-3-7B-v0.3 (Jiang et al.,
2023), Llama-3.1-8B (Dubey et al., 2024), and
EXAONE-3.5-7.8B (LG AI Research, 2024)-were
used for baseline.

This results in a significant performance gap
compared to fine-tuning on other massively gener-
ated datasets, demonstrating a clear performance
advantage. A notable finding is that the perfor-
mance gap is particularly pronounced in MMLU
(Hendrycks et al., 2020) and MMLU-PRO (Wang
et al., 2024), which require diverse knowledge.
The models fine-tuned on the MANTA-1M not
only excel in the academic knowledge domain
but also achieve high performance across various
domains, spanning from a mathematics such as
MATH-500 (Lightman et al., 2024) to instruction-
following ability like MT-BENCH (Zheng et al.,
2024b). In addition, the diversity and difficulty anal-
yses conducted on the MANTA-1M dataset itself
suggest that the MANTA pipeline effectively mim-
ics the topic distribution of massive web corpora
while generating more challenging queries.

We highlight our main contributions as follows:

(1) we present MANTA pipeline, an automated
pipeline for instruction dataset generation from
massive web corpora with minimal human effort;
(2) with extensive experiments and various analy-
ses, we demonstrate that the MANTA pipeline
outperforms other massive dataset generation
methodologies; and (3) for reproducibility, we
make a subset of the dataset generated by the
MANTA pipeline publicly accessible.

2 Related work

As the importance of diverse and large-scale
instruction tuning datasets becomes more pro-
nounced, recent studies predominantly focus on
synthesizing mass datasets handling diverse do-
mains by prompting LLMs. Starting from a few
data points used as the seed dataset, many studies
utilize language models’ in-context learning abil-
ity to generate new datasets (Wang et al., 2023;
Yue et al., 2023; Toshniwal et al., 2024). While
these methods are scalable, they need well-crafted
human-generated seed demonstrations.

Another line of research synthesizes instruction
dataset based on the pre-defined topics or tax-
onomies of the instruction. UltraChat (Ding et al.,
2023) first builds the list of topics or materials used
for starting points for building instruction dataset
by interacting with LLMs. GLAN (Li et al., 2024)
also generates datasets by building hierarchical tax-
onomy of human knowledge. ORCA3 (Mitra et al.,
2024a) converts raw text according to 17 defined
skills to used as seed skills to generate dataset.
While these methodolgies have advantage to fo-
cus on pre-defined abilities that the dataset builders
expect their LLMs to have, they are also required
to enumerate the list of topics. Furthermore, the
list of the capabilities or topics is limited to the
knowledge of a few human experts, even they uti-
lize powerful LLMs when brainstorming.

To bypass construction of seed datasets or knowl-
edge taxonomy, recent studies leverage enormous
amount of web corpus to extract and synthesize
instruction dataset. Cheng et al. (2024) collects raw
document from web corpus and directly extracts
question-answer pairs from them. While they rely
on web corpus to represent world knowledge dis-
tribution, the web corpus that is able to be used
for source of the instruct is limited as the format
or quality. On the other hand, since our method
compresses the raw document and extracts syllabus
from it, MANTA pipeline is not constrained to the
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Figure 2: The MANTA pipeline consists of two major stage: the extraction of syllabi from the web to generate
instructions, and the process of enhancing high-quality instructions through a fusion method and multi-turn
extension. In each stage, brown arrows represent inputs to the LL.Ms, while green arrows indicate outputs. The
datasets generated at both stages are included in the MANTA.

specific format or characteristics of the document.

3 MANTA Pipeline

We develop a massive instruction data genera-
tion pipeline, MANTA, that consists of three
major subprocesses. First, we reconstruct well-
formatted texts playing role as syllabus that encap-
sulate the core knowledge from crawled web docu-
ments. Then we generate query-response pairs from
the syllabus. Lastly, we enrich the generalization
performance through difficulty enhancement and
multi-turn expansion. MANTA prioritizes gener-
ating a high-quality instruction fine-tuning dataset
from large-scale web corpora with minimal human
effort. By utilizing this pipeline, we have generated
200k of syllabus and 3M query-response pairs from
them. The overall pipeline for these processes is
shown in Figure 2.

3.1 Web Documents to Structured Syllabi

MANTA pipeline takes massive amounts of web-
crawled corpora as its primary input. To construct
high-quality dataset while preserving the diver-
sity of web-crawled corpora, we leverage LLMs.
Specifically, LLMs encapsulate information in-
cluded in each web document to a formatted text,
which we refer to as a Syllabus. A syllabus is in
JSON-format and represents the core knowledge of
the original web document. Inspired by GLAN (Li
et al., 2024), we prompt the LLMs and generate a
syllabus containing the following attributes: Sub-
ject, Unit, Lesson, Class session, and Key concept.

To ensure the quality of the syllabi, we use 20
million web documents from high-quality web-
crawled corpora, including Wikipedia, FineWeb
(Penedo et al., 2024), and Knowledge Pile (Fei
et al., 2024). Since each web document is mapped

to a single syllabus, we build a syllabi pool of 20
million entries. Note that no human intervention
is involved up to this stage of the process. Unlike
existing studies where the topic distribution of the
generated dataset was restricted by predefined tax-
onomies (Li et al., 2024) or curated seed exam-
ples (Wang et al., 2023; Mukherjee et al., 2023),
MANTA can fully reflect the diverse topic distri-
bution of the massive web corpus.

We further enhance the syllabi pool by adopt-
ing Domain attribute through a bottom-up cate-
gorization approach. Specifically, we perform k-
means clustering on the text-embedding vectors of
each syllabus, partitioning them into 2,000 clus-
ters. Next, we sample 100 syllabi from each cluster
in order of proximity to the centroid, which serve
as the foundation for domain categorization. We
utilize nine domains from Dewey decimal classi-
fication (Dewey, 1876) and additionally introduce
‘Computer Science and Coding’, as well as ‘Mathe-
matics’. After classifying the clusters, we update
the domain attribute of each syllabus, resulting in
200k syllabus from diverse web corpus.

3.2 Syllabus-based Instruction Generation

To generate user queries relevant to a given syllabus
and corresponding responses, MANTA employs a
LLM again. Given a syllabus, we first prompt the
LLM to generate a query. And then, LLM receives
generated query to create response. To be specific,
the EXAONE-3.5-32B-Instruct (LG Al Research,
2024) is used for MANTA Pipeline. Also, various
models can be used to query generator and response
generator. We utilize different kinds of LLMs as
generators in each step shown in Section 4.2.1 and
Appendix F.

Generating data through a syllabus instead of
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directly from raw web documents offers two key
advantages. First, since raw web documents often
focus on granular topics, we observed that directly
generating queries are prone to yielding overly nar-
row and specialized questions. This tendency also
makes the query generator more prompt-sensitive,
which is why our pipeline, incorporating the syl-
labus, is more robust and requires less human ef-
fort. Another advantage is that MANTA can gener-
ate high-quality queries even from web documents
with low educational value when processed through
the syllabus-based generation. This is possible be-
cause the LLM draws upon its own knowledge base
to construct a well-structured syllabus, allowing it
to extract meaningful content even from documents
with limited knowledge.

By following the processes described above,
MANTA pipeline generates large-scale supervised
fine-tuning data from massive web corpora with
minimal human effort.

3.3 Advanced Instruction Generation

Difficulty Control Recent studies observe that
augmenting datasets with complex and difficult
queries improves the overall performances of the
fine-tuned model (Xu et al., 2023; Luo et al., 2024,
2023; Guo et al., 2023). In contrast to existing
methods which aim to enhance the difficulty of
the instruction itself, we design a Syllabus Fusion
method, which utilizes the multiple syllabus to cre-
ate a new, complex instruction. We first randomly
sample syllabus within the same domain. Then we
prompt a LLM to generate a fused syllabus for
complex query generation. Using the prompts in-
troduced in the Appendix 6, we explore the Syl-
labus Fusion with different numbers of syllabi (2,
3,4, 5, and 10). This step assumes that a higher
number will naturally reflect complex knowledge
by integrating each piece of simple knowledge.

Consequently, we believe that the Syllabus Fu-
sion method allows MANTA to automatically cre-
ate diverse complexity without additional prompt-
ing effort for difficulty enhancement, unlike pre-
vious methods (Xu et al., 2023; Luo et al., 2024,
2023).

Multi-turn Expansion To address real-world
scenarios where multi-turn conversations occur,
we expand our dataset to multi-turn scenario. We
categorized various multi-turn scenarios into four
categories and expanded them accordingly in the
pipeline. We define four types of follow-up queries:

* Deepening Question: Requests the same task
but with additional specific conditions.

» Task Extension: Demands a different task
compared to the preceding query.

* Style Transfer: Requests to change the tone
and manner of expression in the preceding
response.

* Modification: Requests to change the format
of writing (e.g. business email, academic pa-
per, programming code, etc.), paragraph struc-
ture (e.g. line breaks, delimiters, markdown
format, etc.), or main content of the preceding
response.

Give the specific query type and the previous con-
versation context, a LLM is prompted to generate
follow-up query sound natural to the context.

4 Experiment

4.1 Setup

Baseline Dataset and Model To minimize hu-
man intervention, we compare our approach with
competitive datasets generated through large-scale,
multi-domain dataset generation using LLMs.
MAmmoTH2 (Yue et al., 2024b) utilizes 10 mil-
lion naturally occurring instructional data points
from a pre-training web corpus and refines them
by LLMs. MAGPIE-PRO (Xu et al., 2024) is a
fully automated method for synthesizing align-
ment data from instruction-tuned LLMs. It is adapt-
able for creating multi-turn, preference-based, and
domain-specific datasets without human involve-
ment. MAGPIE-PRO is constructed using Llama-3-
70B-instruct (AI@Meta, 2024) model, resulting in
IM publicly available data. ORCA 3 (Mitra et al.,
2024a) introduces an automated data generation
agent framework using LL.Ms, utilizing GPT-4 to
create substantial high-quality synthetic data. Al-
though the size of the full dataset is approximately
22M, only 1M is publicly available, thus we use
the 1M dataset for comparison in this study.

For a fair comparison, Supervised Fine-tuning
experiments utilize 1M data points for each
dataset, training similarly sized pretrained models:
EXAONE-3.5-8B, Llama-3.1-8B, and Mistral-7B-
v0.3.

Supervised Fine-Tuning Setup Supervised Fine-
Tuning is conducted on 16 NVIDIA A100-SXM4-
40GB GPUs with a cosine learning rate schedule,
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Fine-tuning | Total | Academic General |

Domain Specific | Instruction Following |

Dataset

‘ Average ‘ MMLU MMLU-PRrRO ARC-C ‘ MATH 500

GPQA-Di1A HUMANEVAL‘ MT-BENCH ALPHACAEVAL2

fine-tuned from Mistral-7B-v0.3

MAmmoTH2-1M 28.74 43.20 29.60 37.03 16.60 24.74 28.00 4.60 4.75
MAGPIE-PRO-1M 21.38 10.20 29.05 57.76 10.00 3.54 38.41 5.38 26.04
ORCA 3-1M 43.01 58.10 34.16 74.15 29.20 32.32 40.85 6.74 7.92
MANTA-IM 47.88 64.51 37.71 71.73 31.80 32.83 41.46 7.08 26.22
fine-tuned from Llama-3.1-8B
MAmmoTH2-1M 37.29 52.73 30.86 65.44 18.40 29.29 39.00 5.61 6.48
MAGPIE-PRO-1M 4443 56.12 34.09 61.01 23.40 30.30 46.95 6.98 33.73
ORCA 3-1M 48.76 64.41 39.80 717.65 31.20 29.29 48.17 7.36 25.97
MANTA-IM 53.20 66.61 45.81 79.69 39.60 34.34 46.34 7.83 34.93
fine-tuned from EXAONE-3.5-7.8B
MAmmoTH2-1M 32.79 55.71 33.44 54.10 31.00 29.80 55.49 491 7.77
MAGPIE-PRO-1M 47.12 56.73 36.29 69.97 38.00 32.83 56.71 5.52 31.21
ORCA 3-1M 49.06 61.94 39.08 80.12 42.00 20.20 53.66 7.16 23.90
MANTA-1IM 57.58 68.67 48.21 80.55 54.00 39.39 58.54 7.45 36.75
MANTA-3M ‘ 58.42 ‘ 68.73 47.85 84.04 ‘ 57.40 34.85 60.98 ‘ 7.77 35.79

Table 1: This result stems from the SFT on EXAONE-3.5-7.8B, Llama-3.1-8B, and Mistral-3-7B-v0.3, utilizing
equal amounts of datasets that were created with LLMs. It outperformed all the benchmarks, particularly in the
Academic General benchmark, indicating that MANTA exhibits robust performance across various disciplines and
difficulty levels, while also being effective with all tested models. When calculating the average score, we multiply

the MT-Bench score by 10 to scale it to a 100-point scale.

an initial learning rate of 2e-5, the AdamW op-
timizer, and a batch size of 256. All training pro-
cesses are carried out up to a maximum of 4 epochs.
All models are trained under the same setup.

Benchmark and Evaluation The evaluation en-
compasses a total of 10 benchmarks, which can be
broadly categorized into Academic General, Do-
main Specific, and Instruction Following fields.

¢ Academic General: Assesses academic world
knowledge. Includes MMLU (Hendrycks
et al., 2020) for 57 subjects, MMLU-PRO
(Wang et al., 2024) for an enhanced version,
and ARC-C for grade 3-9 science exams.

* Domain Specific: Targets specialized do-
mains.

— Math: Uses GSM8K (Cobbe et al.,
2021) for diverse math problems and
MATH 500 (Lightman et al., 2023) for
advanced problems.

— Science: Includes THEOREMQA (Chen
et al., 2023) for complex science prob-
lems and GPQA (Rein et al., 2023)
for expert-level questions in biology,
physics, and chemistry.

— Code: Evaluated using HUMANEVAL
(Chen et al., 2021).

* Instruction Following: Tests model responses
based on real-world instructions.

— MT-BENCH (Zheng et al., 2023) As-
sesses multi-turn dialogue coherence and
engagement.

— ALPACAEVAL 2 LC (Dubois et al.,,
2024) Measures win-rates for various
NLP and instruction-following tasks.

For a detailed description of the evaluation bench-
marks and assessment methods, please refer to Ta-
ble 8 in Appendix.

4.2 Experimental Results

Main Result The Table 1 presents the results of
trained models on four comparative datasets, each
comprising 1M entries. The additional results of
GSMS8K and THEORMQA are shown in the Ta-
ble 7. MANTA-1M outperforms in all benchmark
areas. Specifically, in Academic General tasks, the
significant performance gaps are noted in MMLU
and MMLU-PRO. We believe that MMLU, a
benchmark consisting of elementary to expert level
knowledge across 57 diverse fields, reflects the im-
pact of our dataset, which encompasses various
fields, tasks, and difficulty levels.

In Domain Specific tasks, the models finetuned
on MANTA-1M show robust performances across
diverse domain-specific benchmarks. It is worth
to note that we do not explicitly collect math or
coding-related documents. However, thanks to the
diverse distribution inherent in the web corpus,
which is also reflected in the instruction distribu-
tion, diverse set of instructions across different lev-
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Datasets ‘ MMLU Dataset TTR MLTD  INSTAG  Query Length
‘ STEM Others Social Sciences Humanities MAGPIE-PRO 0.94 19.61 27.62 72.20
- - ORCA 3 0.62  60.45  50.02 1935.83
EXAONE 3.5 2B instruction model (as a Response Generator) MANTA 0.77 38.56 44.87 509.43
MAGPIE-PRO|  60.32 62.92 66.24 55.70
ORCA 3 54.45 56.95 60.91 58.90
MANTA 63.40 65.15 68.97 60.56 Table 3: Diversity evaluation results for 500k samples
QWEN 2.5 32B instruction model (as a Response Generator) in each of the comparison datasets.
MAGPIE-PRO|  64.08 65.71 69.98 62.09
ORCA 3 62.83 63.88 69.42 63.78
MANTA 65.71 68.05 72.41 67.50
#pt-40-2024-08-06 (as a Response Generator) 32B-Instruct), they demonstrate lower performance
MAGPIE-PRO|  62.10 66.07 70.33 64.87 : >
ORCA 3 <703 5973 6a gl than MANTA. ThlS. result proves Fhat MANTA’s
MANTA 64.90 66.49 72.21 65.50 pipeline helps queries to generalize well across

Table 2: Performance changes in each MMLU subtask
with different Response Generators. Even if the An-
swer quality improves, the MANTA query-based dataset
shows the best results.

els of difficulty appears to have been created.

Finally, the model also exhibited superior per-
formance in the Instruction Following benchmark.
This indicates that MANTA-1M effectively incor-
porates real-world scenario.

To scale the training, we fine-tune EXAONE-
3.5B-7.8B on MANTA-3M data points. Apart
from GPQA-DIAMOND and ALPACAEVAL2 LC,
performance improves with increased training data
volume. This indicates that a merely extracting core
knowledge from the web corpus and constructing
instructions from it can lead to automatic genera-
tion of diverse and high-quality datasets.

4.2.1 The Importance of Query Organization

In Table 2, by varying the response generating
models, we demonstrate that our approach to gen-
erate queries is the most dominant factor for ro-
bust model performance. We re-generate the re-
sponses using different parameter size models for
300k samples randomply drawn from ORCA3 and
MAPIE-PRO, and MANTA. Subsequently, each
dataset was trained on EXAONE-3.5-7.8B. Re-
gardless of changes in the answer generating mod-
els, MANTA consistently outperformed in every
MMLU subtask.

This suggests that even if the quality of an-
swers improve, performance can vary depending
on how the dataset queries are composed. Thus,
we believe that the composition of queries signif-
icantly contributes to the finetuned model’s per-
formance. Moreover, as described in Section 4.1,
although both ORCA3 and MAPIE-PRO are built
using models with larger size compared to those
used in the MANTA Pipeline (i.e., EXAONE-3.5-

various domains while maintaining robust perfor-
mance.

S5 Dataset Analysis

5.1 Diversity Analysis

Diversity of Instructions We conduct a diver-
sity evaluation using various metrics to assess the
diversity of queries. First, the TTR (Type-Token
Ratio) was used as a measure of linguistic diver-
sity. TTR (Li et al., 2016) can vary significantly
with the length of the text, tending to be higher for
shorter texts, and lower for longer ones as the pro-
portion of unique words decreases. MAGPIE-PRO
showed the highest TTR, attributed to its shorter
query length compared to other datasets. When
compared to ORCA 3, which has a longer aver-
age query length than MANTA but a lower TTR,
MAGPIE-PRO is assessed to have a higher inci-
dence of unique words. The MTLD (McCarthy and
Jarvis, 2010) metric, Measure of lexical textual di-
versity, designed to address TTR’s limitations. By
this measure, it demonstrated significantly higher
values compared to other datasets, indicating a
broader use of diverse linguistic expressions.

In terms of task and domain diversity, an evalua-
tion was conducted using Lu et al. (2023) approach.
Each data entry was tagged, and the evaluation was
based on the ratio of the number of unique tags
in each dataset to the number of unique tags ap-
pearing across all three datasets. Even in this case,
MANTA has the second highest unique tag ratio.

Domain Distribution We demonstrate how the
knowledge domains of a Web corpus can be re-
flected in the instruction distribution by comparing
the distribution of extracted syllabus from the Web
with the generated instruction domains in Figure 3.

The top side of the figure shows the domain
distribution of the syllabus extracted from the cor-
pus. Since the syllabus was extracted from approx-
imately 20M corpora, it can be interpreted as the
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Figure 3: Comparison of the distribution of Syllabus
extracted from 20M Web Corpus and the distribution of
MANTA-IM generated from it.

knowledge distribution covered by these corpora.
It has been observed that a significant portion falls
within the fields of CODE, MATH, Natural Sci-
ence, and Social Science, reflecting the nature of
these corpora. The bottom side of figure is that
distribution of MANTA-1M. It follows the distri-
bution within the fields of extracted syllabus. This
demonstrates that the distribution of knowledge
available on the Web can naturally be reflected in
the distribution of instructions.

Furthermore, by incorporating a new Web cor-
pus, MANTA that it is possible to expand the
distribution of instructions into new domains or
adjust it according to desired distributions.

5.2 Difficulty Analysis

Difficulty of Instructions The difficulty judge-
ment is conducted using two methods. Similar to
the approach used by Xu et al. (2023), we employed
gpt-40-2024-08-06 to assess the difficulty level of

Dataset LLM-as-a-Judge INSTAG

MAGPIE-PRO 5.84 2.56 £0.84
ORCA 3 8.06 3.97 £ 1.52
MANTA 8.52 4.174+1.09

Table 4: Difficulty judgements for SO0K samples in each
of the comparison datasets.

Difficulty Distribution of Each Dataset

Dataset Diff (AVG)

_ MAGPIE-PRO 5.84
oRcA3 8.06
30000
-

MANTA 8.52
25000

20000

15000

10000
5000 I
0 I | M
1~2 3~4 5~6 7~8 9~10

Figure 4: Histogram of the distribution of Difficulty
judgements (LLM-as-a-Judge) for S00K samples in
each of the comparison datasets.

each of the 500k instructions. The detailed results
are provided in Table 4, and the prompt used for
the Difficulty judgement is available in Appendix
8. Instructions are rated on a scalar value from 1
to 10, with higher values indicating instructions of
greater difficulty.

Figure 4 illustrates that MANTA has an aver-
age difficulty level of 8.52, the highest among the
datasets. This indicates that by simply combining
syllabi from the same domain, it is possible to effi-
ciently generate high-difficulty data without need-
ing additional steps to increase the difficulty.

Leverage of Fused Syllabus We conduct an ex-
periment on Fusion ratio to analyze the impact of
the syllabi fusion method. We adjust the proportion
of the fused dataset on a 300K dataset and trained it
on EXAONE-3.5-7.8B, then report the averge per-
formance on a specialized benchmark(e.g., MATH-
500, GPQA-DiaMOND, MMLU-PRO, THEOR-
MQA). As shown in Figure 5, the average difficulty
of the dataset increases with a higher proportion
of the fused data. However, the best performance
on the benchmark is achieved with a uniform ratio
distribution.

This result aligns with the findings of the study in
Sun et al. (2024), suggesting that instead of solely
training with challenging data, a dataset capable
of generalizing across diverse difficulty contributes
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a0

Average of Task Score

Fused Instruction Ratio

Figure 5: Average benchmark performance based on
fusion ratio changes. The histogram shows dataset dif-
ficulty by fusion ratio, while the line graph displays
model performance after training. Average of difficulty
increases with a higher fusion ratio, but downstream
tasks perform best with a balanced ratio.

Models BASE + Science 200k
MATH-500 58.60 57.80 (-0.8)

GPQA-DIAMOND 32.83 34.34 (+1.51)
MMLU-STEM 65.40  65.70 (+0.3)
THEOREMQA 21.37 24.50 (+3.13)

Table 5: Baseline performance of the EXAONE-3.5-
7.8B model trained on a random 300k dataset, with ob-
served performance improvement when 200k additional
data from a science-related syllabus is incorporated.

more positively to performance improvement in
practical downstream tasks.

5.3 Generating Domain Specific Data by
Targeted Syllabus

Sampling the syllabus of a desired domain to cre-
ate instructions in a controllable environment is an-
other significant advantage of a syllabus database
reflecting diverse core knowledge from enormous
Web corpus.

We conduct an experiment to determine whether
creating instructions based on the Science domain
syllabus would enhance performance in related
downstream tasks. This evaluation is carried out
using four downstream tasks from the Science-
Leaderboard 2, which primarily consists of Sci-
ence domain tasks. We compare the baseline model,
EXAONE-3.5-7.8B, which is trained on a random

Zhttps://huggingface.co/spaces/wenhu/Science-
Leaderboard

300k sample from MANTA as baseline and an ad-
ditional 200k instructions made by the Natural Sci-
ence syllabus.

Detailed performance results are shown in Table
5. Except for the Mathematics domain benchmark,
MATH-500, improvements are observed across all
science-related benchmarks. Notably, significant
enhancements were found in GPQA-DIAMOND
and THEOREMQA, which consist of problems at an
expert level. This shows that utilizing instructions
generated based on the relevant domain syllabus
for the targeted domain can improve performance.

6 Conclusion

We present MANTA, an automated pipeline de-
signed to generate high-quality large-scale instruc-
tion fine-tuning datasets from massive web cor-
pora, while maintaining their diversity and scala-
bility. With a syllabus-formatted structure distilled
from massive web corpora, the MANTA pipeline
robustly generates effective query-response pairs
with minimal human effort. Extensive evaluations
on 8B-scale LLMs show that fine-tuning on the
MANTA-1IM dataset consistently outperforms
other large-scale dataset generation approaches, ex-
celling in knowledge-intensive tasks like MMLU
and MMLU-PRO, while also demonstrating strong
results across a wide range of benchmarks.

7 Limitations & Ethics Statement

Limitations MANTA confirmed that extracting
core knowledge from a vast corpus in the form
of a syllabus and generating large volumes of in-
structions based on this improve the performance
of downstream tasks. However, since the experi-
ment was started with only 20M corpora, we spec-
ify that there may be performance changes when
the MANTA pipeline is applied to larger corpora.
We suggest a research direction on the feasibility
of the MANTA pipeline across various forms and
volumes of raw formats. Additionally, we experi-
mented with the MANTA pipeline based on a few
specific models. However, we hope that future re-
search will explore this pipeline in depth using data
derived from various models.

Ethics Statement MANTA aims to reduce hu-
man effort and create diverse, high-quality datasets
by utilizing LLM throughout the entire process of
generating instructions. However, it is noted that
harmful datasets may be included in some stages
of the process. Therefore, by labeling each data
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instance with the results of the safety evaluation an-
notations conducted in the Appendix D, users can
be fully aware of the risks while using the data. Ap-
proximately 5% of the entire 1M dataset is identi-
fied as risky, and 3% of those require expert-related
advice. We also specify that the datasets we release
are for research use only to assess and develop
the learning capabilities of LLMs for this reason.
Therefore, we release this data in accordance with
the terms of the CC-BY-NC-4.0 license.
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A Statistics of MANTA with Other
Instruction Datasets.

Table 6 presents the statistical analysis of the MAm-
moTH2 (Yue et al., 2024b) MAGPIE-PRO (Xu
et al., 2024) and ORCA 3 (Mitra et al., 2024a)
datasets, in addition to the MANTA dataset.

B Additional Evaluation Result

Apart from the THEORMQA results on Mistral 7B
v0.3, it shows excellent results in additional bench-
marks as well. This demonstrates that MANTA has
satisfactory generalization capabilities. The results
can be found in Table 7.

C Evaluation Details

For fair evaluation of a instruction tuned model,
we evaluate all benchmarks in the Academic Gen-
eral and Domain Specific category using the 0-shot
setting. As an exception, THEORMQA followed
the original measurement method. To accomplish
this, we direct language models using prompts that
demand answers in particular formats, and then ex-
tract the final answer from their responses. For a
fair comparison, we use the same prompts across
all models. We make public all the prompts we
used in (LG AI Research, 2024) for transparent
reproducibility.

In the Instruction Following benchmark that
evaluate by LLM-as-a-judge, gpt-40-2024-08-06
is used for MT-bench, and gpt-4-1106-preview is
used for ALPHACA EVAL 2.

The detailed evaluation metrics and methodol-
ogy are shown in Table 8. All results were reported
by taking the maximum result from the models that
3 epochs or 4 epochs.

D Safety Analysis

We conduct additional experiments focusing on
cost and safety concerns. We utilized the (Team,
2024) to evaluate the safety of datasets and the tox-
icity of responses from learning models to assess
the safety of MANTA-1M. The overall dataset
was found to be 95% safe, with approximately
5% deemed harmful. All types of toxicity were
below 1%, except for the Specialized Advice cat-
egory, which stood at 3%. This category includes
responses with professional financial, medical, or
legal advice, or those claiming that dangerous activ-
ities or items are safe. Given the dataset includes a
substantial amount of data from medical, legal, and

other specialized domains, it is analyzed that this
category was detected in relevant query responses.

E Cost Analysis

E.1 API Call Perspective (LLM Inference
Count)

The cost can be correlated with the number of API
calls, equating to the number of LLM inferences.
While datasets based on LLM generation do not
explicitly state the cost details, with the exception
of MAGPIE-PRO, we can calculate the API call
count necessary to generate a single instruction as
follows:

* MANTA : Total of 3 calls for syllabus ex-
traction, instruction generation, and response
generation.

¢ ORCA 3: Due to iterations aimed at enhanc-
ing instruction quality and difficulty, it is as-
sociated with high costs. The ORCA 3 (Mitra
et al., 2024a) notes this limitation, "Generat-
ing synthetic data with multiple agents using
LLMs and tools can be resource intensive.”

* MAmmoTH?2 : Requires complex processes
involving various LLMs, such as URL classi-
fication, question extraction, and refining.

e MAGPIE-PRO : Similar to MANTA, 3 calls
are needed for instruction generation, re-
sponse generation, and filtering, but it nec-
essarily undergoes a deduplication step.

In conclusion, these calculations demonstrate
the ability to rapidly scale to large volumes with
fewer calls compared to other automatic generation
methodologies.

E.2 Generation time for the MANTA

We perform experiments on a server with two
NVIDIA H100 SXM5 80GB GPUs using the
VLLM inference framework. The models are
loaded in the float8 format.

When creating the 1M MANTA dataset, it spent
24 hours to generate the initial instructions (Step
1) and fusion - multi turn (Step 2). However, the
extraction of the syllabus from the web corpus
required approximately 100 hours, as it was con-
ducted on 20 million documents.
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Statistics of MANTA

Source Answer Turn (Avg) Total Tokens Query Length (AVG) Response Length (AVG)
MAmmoTH2-1M Raw Corpus Mixtral-22Bx8, Qwen-72B 343M 58.574+52.18 272.45 £210.32
MAGPIE-PRO-1M - Llama-3-70B-instruct 1 476M 15.16 £9.7 460.68 +210.71
ORCA 3-1M Raw Corpus GPT-4 1.17 4£0.69 964M 383.18 £861.64 439.92 +277.44
MANTA-1M Raw Corpus ~ EXAONE-3.5-32B-instruct 1.1 £0.31 791M 86.44 +52.16 625.17 £211.02
Table 6: Statistics of MANTA with Other Instruction Datasets.
MMLU
STEM Others Social Sciences Humanities
Models ‘ Domain SpeCiﬁC EXAONE-3.5-32B-instruct (as a Query Generator)
\ GSMBK  THEORMQA 63.87 62.61 69.97 60.26
Mistral-7B-vO.3 QWCH2.5-32B-IHStIUCt (as a Query Generator)
MAmmoTH2-1M 31.31 20.88 65.62 65.89 69.95 60.8
MAGPIE-PRO 1M 51.93 18.00 Gemma-3-27b-it (as a Query Generator)
ORCA 3-IM 52.53 20.50 66.06 68.47 72.28 66.19
MANTA-1M 74.68 19.63
Deepseek v3 (as a Query Generator)
Llama-3.1-8B 66.87 67.99 72.33 64.66
MAmmoTH2-1M 23.35 21.63
MAGPIE-PRO 1M 61.25 22.50
ORCA 3-IM 61.56 22.63 Table 9: The results of the MMLU for each sub-task, Af-
MANTA-IM 7938 2525 ter processing through the MANTA pipeline with Query
EXAONE-3.5-7.8B Generators of different sizes and model families, we
gﬁé‘;?gg%é 111\16[ %gg %ggg generated responses using the same Response Genera-
ORCA 3-1M 7278 26.50 tor (i.e., EXAONE-3.5-32B-instruct).
MANTA-1M 82.64 29.75

Table 7: Additional Result in Academic General bench-
mark (e.g. GSM8K) and Domain Specific (e.g Theor-
mQA)

Benchmark Evaluation Settings Metric
Academic General
MMLU 0-shot / CoT Accuracy
MMLU-PRO 0-shot / CoT Accuracy
ARC-C 0-shot Accuracy
Domain Specific
GSMSK 0-shot / CoT Accuracy
MATH 500 0-shot / CoT Accuracy
GPQA-DIAMOND 0-shot / CoT Accuracy
THEORMQA 5-shot Accuracy
HUMANEVAL 0-shot pass@1
Instruction Following
LLM-as-a-judge
MT-BENCH (2pt-40-2024-08-06 ) LLM score
ALPACAEVAL 2.0 LLM-as-a-judge Win rate

(gpt-4-1106-preview )

Table 8: The benchmarks used to evaluate and their
evaluation settings with metric.

F Analysis of Changes in the Query
Generator Model of the MANTA
Pipeline

Based on EXAONE-3.5-32B-Instruct, Qwen2.5-
32B-Instruct, Gemma-3-27b-it, and Deepseek v3,
we analyze the results obtained by following
the MANTA pipeline, as described in Section
3. We used the same syllabi, sampling 120k
to generate queries and the Response Generator
(i.e., EXAONE-3.5-32B-instruct). These were uni-
formly trained using EXAONE-3.5-7.8B. As a re-
sult in the Table 9, we can see that as the size
and capability of the query-generating model im-
prove, the performance improves proportionally. It
becomes evident that the composition of queries by
the trained model is even more crucial.

G Performance Variation Based on
Model Size

The results aiming to observe the impact of changes
in model size within the Academic General Bench-
mark are presented in Table 10. When comparing
EXAONE-3.5-2.4B and EXAONE-3.5-7.8B, with
each comparison set comprising 1 million data,
all results proportionally increase with the size of
the model parameters. However, the trends in the
results for each dataset remain consistent, demon-
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Academic General

MMLU MMLU-PRO ARC-C
fine-tuned from EXAONE-3.5-2.4B
MAmmoTH2-1M | 46.5 30.66 66.47
MAGPIE-PRO-1IM | 46.05 28.84 5.46
ORCA 3-1M 51.28 33.69 70.22
MANTA-IM 56.74 38.33 74.15
fine-tuned from EXAONE-3.5-7.8B
MAmmoTH2-1M | 55.71 33.44 54.10
MAGPIE-PRO-1M | 56.73 36.29 69.97
ORCA 3-1M 61.94 39.08 80.12
MANTA-IM 68.67 48.21 80.55

Table 10: Performance Variation Across Different
Datasets According to Model Size.

Academic General

MMLU MMLU-PRrO

fine-tuned from EXAONE-3.5-7.8B
MANTA-1IM 68.67 48.21
MANTA-1IMypgrade | 68.12 48.81

80.55
83.79

Table 11: Performance Changes of MANTA After Logi-
cal Filtering

strating the robustness of MANTA.

H Performance Variation Based on
Logical Filtering Results

Based on the automatically generated results, filter-
ing was conducted to address more logical tasks,
followed by an analysis of the filtering effect. The
filtering prompt used was Yuan et al. (2025). In
this filtering, data were assessed for logical com-
plexity on a 1-10 scale. Data scoring 6 or higher
were kept as is, while those below 6 were used
to generate a new improved question to enhance
complexity. The MANTA-1M,;,4rqde is refined re-
sponses based on the improved questions reviewed
by the EXAONE-3.5-32B-instruct model. Both
original MANTA and MANTA-1IM,4rqde Were
then trained and implemented in the EXAONE-3.5-
7.8B model. These results can be seen in Table
11. The MANTA-1M,p4rade showed improved per-
formance on the Academic General benchmark,
except for the MMLU. This is likely because the
MMLU covers a wide range of fields and includes
questions at various difficulty levels, from elemen-
tary onwards. Training only on more challenging
data seems to weaken generalization. These results
align with those discussed in Section 5.2.

Generating Instruction from fused Syl-
labus

System:

After listening to the given all lecture syllabi,
please create one question that students can solve.
The question should be professional, creative, and
designed to encourage deep reasoning.

Create it in JSON format as follows {"Gener-
ated_Question": str }

User:
[Lecture Syllabil]
{{Given Syllabus list}}

Figure 6: Prompt for Generating Instruction using fused
syllabi

ARC-C . . 3
Generating Multi-turn Conversation

System:

Create a follow up question that follows a given
Q-A. However, the follow up question must satisfy
given condition.

Create it in JSON format as follows {"Gen-
erated_Question": str }

User:
Given Q-AQuestion : {{Previous Turn Query}}
Answer : {{Previous Turn Response}}

Given Condition :
{{Given Condition for Multi-turn Generation} }

J

Figure 7: Prompt for Generating Multi-turn Conversa-
tion

I Examples of Prompts for Genrating
Step

The prompts for Advanced Instruction Generation
step are shown in Figures 6-7

J Difficulty judge Prompt

The prompts for Difficulty judge Prompt is shown
in Figures 8

K Example of instructions according to
the number of fused syllabi and
instruction generation from the
Difference corpus

Examples of instructions based on a fustion of syl-
labi and examples of instructions extracted from
different web corpora.
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Examples of Generated Instructions based on the
Number of Fused Syllabus in Mathematics

Difficulty Judge prompt

System:

Evaluate and rate the difficulty of the following
question. You should give an overall score on a
scale of 1 to 10, where a higher score indicates
higher difficulty and complexity. Please rate
questions at the level of a toddler as 1-2, questions
at the level of an elementary school student as 3-4,
questions at the level of a middle school student as
5-6, questions at the level of a high school student
as 7-8, and questions at the level of a college
student or professional as 9-10. You must just give
a score without any other reasons.

User:
Given Query
{ { Generated Query }}

Figure 8: Prompt for Difficulty judgement of Instruction
by LLM-as-a-judge

#0

In a regular octagon, three vertices are chosen at random. Using
concepts from geometric probability, explain how you would calculate
the probability that the triangle formed by these vertices includes at
least one side that coincides with a side of the octagon. Additionally,
discuss any symmetries in the octagon that simplify this calculation.

#2

In a geometry problem involving a circle, if a tangent line intersects the
circle at point P and a radius drawn to point P measures 4 cm, forming
a right angle with the tangent, and you are given that another angle
within the circle, adjacent to the radius but not directly involving the
tangent, measures 60 degrees, use the properties of circles and angles
to fill-in-the-blank: The measure of the angle formed between the
tangent at point P and a line segment extending from the center of the
circle through point P to an external point Q is ___ degrees.

#4

In a small town, two weather stations, A and B, independently record
daily temperatures in degrees Celsius. Station A has a daily temperature
variation with a mean of 20°C and a variance of 9, while Station B has a
mean of 22°C and a variance of 16. On a particular day, the combined
temperature measurement used by the town hall is calculated as the
sum of the temperatures recorded by both stations. Given this
setup:\n\nl. Calculate the expected combined temperature (mean) for
that day.\n2. Determine the variance of the combined temperature
measurement.\n3. If the town wants to ensure that the combined
temperature rarely exceeds 45°C, calculate the probability that the
combined temperature will be greater than 45°C, assuming
temperatures follow a normal distribution.\n\nUse your understanding
of combining random variables and their variances from AP®/College
Statistics to address these points.

Figure 10: Example of instructions generated per fusion

Example of Generated Instructions . . ..
P count in the field of mathematics. #n where n signifies

Utilizing a Fused Syllabus in Mathematics

Syllabi in Mathematics Domain

[Lecture Syllabus]

#i## PROVIDED SYLLABUS 1

Domain : Mathematics

Subject: Algebra

Unit : Linear Equations

Lesson : Point-Slope Form

Class_session : Finding the Equation of a Line Through Two Points
Key_concept : Calculating slope and using it to find the equation of a
line in point-slope form

### PROVIDED SYLLABUS 2

Domain : Mathematics

Subject: Algebra

Unit : Rationalization

Lesson : Rationalizing the Denominator

Class_session : Using Conjugates to Rationalize Denominators
Key_concept : Rationalization is the process of eliminating radicals
from the denominator of a fraction by multiplying the numerator and
denominator by the conjugate of the denominator.

Generated Query

In the context of algebraic linear equations, consider two points on a
Cartesian plane: A(2, 3) and B(5, 11). Calculate the slope of the line
passing through these points and use the point-slope form to construct
the equation of the line. Provide your answer in the formaty - y1 =m(x -
x1), clearly stating all the steps and values used in your calculation.

the number of combined syllabi.

Example of MANTA from Fine-web Code

Raw Corpus

Message: session_start(): Server 18.104.22.168 (tcp 11211) failed with:
Connection refused (111)\nLine Number: 18\nWe just sent you an email,
containing instructions for how to reset your password.\nl am a
Cowbird citizen. I've told 17 stories. | joined Cowbird on September 29,
2014.\nJust in the point of boiling

Extracted Syllabus
{

"Domain": "Computer Science and Coding",

"Subject": "Computer Science with PHP",

"Unit": "Web Development",

"Lesson": "Session Management and Error Handling",

"Class Session'": "Troubleshooting Server Connection Issues",
"Key Concept": "Session Initialization and Server Communication"

Generated Query

Given a PHP web application that experiences intermittent session
initialization failures due to server communication issues, complete the
following code snippet to enhance error handling and ensure proper
session management. Specifically, implement a mechanism to log
errors related to session start failures and attempt reconnection a
specified number of times before giving an error message to the user.
Use session_start() and appropriate error logging functions.

Figure 9: Example of Generated Instructions utilizing a

fused syllabi in Mathematics domain
Figure 11: Example of MANTA pipeline from Fine web

Code Corpus.
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‘Examples of MANTA from Fine-web MATH

Raw Corpus
# What is the the vertex of y=2x"2+15x -2 ?\n\nFeb 28,
2016\n\n${x}_{\\text{vertex}} = - 3.75$\n\nl will let you work out

${y}_(\\text{vertex$\n\n#### Explanation: Given:$\\text{ } y = 2 {x}*{2}
+ 15 x - 2$\n\nA quick way of finding ${x}_{\\text{vertex}}$ is as
follows:\n\nWrite as $\\text{ } y = 2 \\left({x}"{2} + \\frac{15}{2} x\\right) -
2$\n\nNow apply $\\text{ } \\left(- \\frac{1}{2\\right) \\times \\frac{15}
{2} = - \\frac{15H4} = 3.75%\n\n$\\textcolor{b | u eH{x}_{\\text{vertex}} =
-3.75)$\n" \nNow substitute back into
the original equation to find ${y}_{\\text{vertex}}$

Extracted Syllabus
{

"Domain": "Mathematics",

"Subject": “Algebra",

"Unit": "Quadratic Equations",

"Lesson": "Finding the Vertex of a Parabola",

"Class Session™: “Calculating Vertex Coordinates",

"Key Concept": "Vertex of a quadratic function and its calculation”

Generated Query

If we imagine an ellipse as the path of planets influenced by two
celestial bodies, and you discovered an elliptical orbit where the
distance between the foci is 4 units while the major axis length is 10
units, how would you use the concept of eccentricity to argue whether
this orbit is more likely to resemble that of Earth (eccentricity around
0.017) or Mars (eccentricity around 0.093)? Chat away your reasoning!

Figure 12: Example of MANTA pipeline from Fine Web
MATH Corpus.

Example of MANTA from Knowlege PILE

Raw Corpus

Social Development « What is it? = The process of learning to interact
with others and to express oneself to others\nHealthy Social
Development * Shows tolerance for others * Can communicate well with
others » Listens to different point of views before acting\ninfluences
that shape Development « The bond formed between the parent and
child « The atmosphere of the home °* Temperament of the
child\nAttachment « What is it? « The bond between a parent/ caregiver
and the child « Essential to form- Erik Erikson Trust vs Mistrust » Basis of
developing trust-needed for healthy social/femotional development.

Extracted Syllabus
{

"Social Sciences",
: “Psychology",
"Unit": "Developmental Psychology",
"Lesson": "Social and Emotional Development",
"Class Session": “Understanding Social Development and
Attachment",
"Key Concept": "The importance of attachment
and influences on social development"

Generated Query

Match each activity with its potential impact on social and emotional
development in infants and toddlers:

A) Circle time sharing stories

B) Independent play with sensory bins

C) Group puppet shows focusing on emotions

D) Structured turn-taking games during snack time

|. Enhances empathy and understanding of emotions

I1. Develops social skills such as turn-taking and cooperation
I1l. Supports individual exploration and sensory development
IV. Encourages collective attention and listening skills

Which pairing correctly links the activity to its developmental impact?

Figure 13: Example of MANTA pipeline from Knowl-
edge PILE.
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