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Abstract

Hallucinations pose a significant obstacle to
the reliability and widespread adoption of lan-
guage models, yet their accurate measurement
remains a persistent challenge. While many
task- and domain-specific metrics have been
proposed to assess faithfulness and factuality
concerns, the robustness and generalization of
these metrics are still untested. In this paper, we
conduct a large-scale empirical evaluation of 6
diverse sets of hallucination detection metrics
across 4 datasets, 37 language models from 5
families, and 5 decoding methods. Our exten-
sive investigation reveals concerning gaps in
current hallucination evaluation: metrics of-
ten fail to align with human judgments, take
an overtly myopic view of the problem, and
show inconsistent gains with parameter scal-
ing. Encouragingly, LLM-based evaluation,
particularly with GPT-4, yields the best overall
results, and mode-seeking decoding methods
seem to reduce hallucinations, especially in
knowledge-grounded settings. These findings
underscore the need for more robust metrics
to understand and quantify hallucinations, and
better strategies to mitigate them.

1 Introduction

Hallucinations in language model generations are
detrimental and, unfortunately, a pervasive phe-
nomenon (Ji et al., 2023; Kaddour et al., 2023; Xu
et al., 2024b). As language models are rapidly
adopted across various settings, addressing halluci-
nations has become a key research focus (Varshney
et al., 2023; Dhuliawala et al., 2023; Chuang et al.,
2024; Shi et al., 2024). However, before invest-
ing time and resources into devising its mitigation
techniques, it is worthwhile to take a step back and
ask: 1) Are the existing metrics truly capturing
the hallucinations effectively? 2) Do these met-
rics generalize across different datasets, decoding
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techniques, model families, and model sizes? Con-
fronting these questions is vital, as any attempt to
alleviate hallucinations is futile unless we ensure
its robust, reliable, and accurate measurement.

The term ‘hallucination’ covers a spectrum of
generation errors. In this work, we focus on its two
most common manifestations: poor faithfulness and
factuality, particularly in knowledge-grounded dia-
log (Dziri et al., 2022a,b) and question-answering
(Lin et al., 2022; Li et al., 2023a). Faithfulness
measures the consistency and truthfulness with the
provided knowledge source, while factuality per-
tains to the accuracy wrt real-world facts or widely
accepted knowledge (Maynez et al., 2020).

Measuring these constructs is no simple task. In
some cases, simple syntactic (Lin, 2004) or sematic
(Zhang* et al., 2020) overlap with the input knowl-
edge can provide an easy estimate of faithfulness.
Whereas other times, one has to resort to custom-
trained models (Zhong et al., 2022; Dziri et al.,
2022a), multi-step question answering pipelines
(Honovich et al., 2021), or LLM-based evaluation
(Yan, 2024; Bavaresco et al., 2024). Interestingly,
while recent surveys have extensively explored the
causes and mitigation techniques for hallucinations
in language models (Ji et al., 2023; Zhang et al.,
2023; Chen et al., 2023; Li et al., 2024; Huang
et al., 2025), none have directly called into question
the generalization capabilities of existing metrics.
Thus, in this work, we attempt to fill this gap, and
conduct a rigorous empirical investigation of con-
temporary hallucination detection metrics. Our
study examines the above mentioned diverse sets
of metrics from various perspectives – consistency,
alignment with human judgments, variation across
decoding methods, impact of post-training, and the
effect of parameter scaling.

Our findings reveal that most metrics have lim-
ited inter-correlation and fail to consistently align
with the human notion of hallucination. They seem
to have a limited understanding of the problem, as
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they fail to generalize across datasets. Anticlimacti-
cally, these metrics do not show a clear monotonic
improvement with an increase in model size. On a
positive note, we find that LLM-based evaluation,
particularly with GPT-4, offers the most reliable
detection across diverse tasks and datasets. Addi-
tionally, an ensemble of metrics also seems to be a
good choice. Instruction-tuning and mode-seeking
decoding methods are also shown to reduce hallu-
cinations. We thus find that detecting hallucination
does not have a one-size-fits-all solution, as existing
metrics fall short of capturing its full spectrum.

2 Experimental Setup

Datasets. We focus on four datasets. FaithDial
(Dziri et al., 2022a) and Begin (Dziri et al., 2022b)
are knowledge-grounded dialog datasets, where,
given a conversation history 𝐻 = (𝑢1, . . . , 𝑢𝑛−1)
and knowledge source 𝐾𝑛, the system generates a
response 𝑢̄𝑛 that is coherent with 𝐻 and supported
by a non-empty subset 𝑀𝑛 ⊂ 𝐾𝑛 to be considered
faithful. TruthfulQA (Lin et al., 2022) is a factual
question-answering dataset with multiple plausible
answers. We measure factuality by comparing the
generated answer’s alignment with them. Lastly,
we analyze the knowledge-grounded QA and dialog
subsets of the HaluEval (Li et al., 2023a) bench-
mark. More details are provided in Appendix §A.1.

Language Models. Our study includes five LLM
families: OPT (Zhang et al., 2022), Llama (Touvron
et al., 2023; Dubey et al., 2024), OLMo (Groen-
eveld et al., 2024), Phi (Gunasekar et al., 2023;
Li et al., 2023b; Abdin et al., 2024), and Gemma
(Gemma, 2024). We cover models ranging from
125M to 70B, including their instruction-tuned ver-
sions, totaling 37 models. Evaluation spans five
decoding methods of greedy, beam search (Graves,
2012), ancestral, top-k (Fan et al., 2018), and top-p
sampling (Holtzman et al., 2020).

Metrics. We evaluate hallucinations using the fol-
lowing six types of metrics. 1) Rouge-L (Lin, 2004),
Sacrebleu (Post, 2018), and Knowledge-F1 mea-
sure the n-gram overlap between the generation, and
reference text and source knowledge, respectively.
2) Likewise, BertScore (Zhang* et al., 2020) and
Knowledge-BertScore (Dziri et al., 2022a, 2019)
assess their semantic similarity. 3) The pre-trained
evaluator of consistency and groundedness from
the UniEval suite (Zhong et al., 2022) help mea-
sure the factual alignment and input faithfulness,

Weighted-F1 PRAUC
Dataset Critic GPT-4 Consistency K-BertScore Q2 NLI Ensemble

Begin CMU 0.77 0.84 0.65 0.70 0.73 0.65
Begin TC 0.74 0.71 0.65 0.67 0.76 0.65

Begin WoW 0.83 0.77 0.43 0.43 0.56 0.96
HaluEval Dial 0.49 0.74 0.39 0.61 0.54 0.42
HaluEval QA 0.53 0.66 0.36 0.83 0.82 0.93

Average 0.67 0.74 0.50 0.65 0.68 0.72

Table 1: Agreement between different metrics and hu-
man annotations. Green and brown denote the best and
second-best metrics, respectively.

respectively. 4) Q2 (Honovich et al., 2021) is a
QA-based faithfulness metric that generates ques-
tions from the model output, identifies relevant
spans in the knowledge source and ground truth re-
sponse (Durmus et al., 2020; Wang et al., 2020), and
compares candidate answers to gold answers using
either token-level or NLI-based F1. 5) Critic (Dziri
et al., 2022a) is an NLI-based classifier trained
on dialog data, that identifies unfaithful responses.
GPT-4 (OpenAI, 2024) is used as an LLM-judge
(Bavaresco et al., 2024), that classifies hallucinated
responses. 6) Finally, we combine consistency, K-
BertScore, Q2 NLI, Critic, and GPT-4 scores using
Factor Analysis of Mixed Data (FAMD) (Pagès,
2014) to create an Ensemble metric.

3 Results and Discussion
Finding 1

Except GPT-4, none of the metrics show
consistent alignment with human judgment

Table 1 displays the alignment scores of vari-
ous metrics with human labels. 1. Using PRAUC
for continuous metrics and weighted-F1 for binary
metrics (with random baseline scores of 0.50 and
0.50 − 0.56, respectively), we find mixed results
across evaluation methods. The UniEval suite’s
factual consistency evaluator performed just about
at or below random chance across all the six data
subsets. K-BertScore and Q2 NLI both show strong
performance on Begin CMU and HaluEval QA,
with the latter also doing well on Begin TC. How-
ever, they both struggle to replicate performance on
Begin WoW and HaluEval Dial. Critic, as expected,
excels on the Begin benchmark, since it is trained
on dialog datasets. However, surprisingly, it drasti-
cally under performs on the HaluEval tasks, faring
worse than even the random baseline. The GPT-4
evaluator consistently shows agreeable alignment
on average, acing on two datasets. Our proposed

1Only Begin and HaluEval are included in this study, as they
provide LLM-generated responses labeled for hallucinations.
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Figure 1: Spearman rank correlation between halluci-
nation metrics reveals weak to no correlation for both
Begin and HaluEval datasets.

Figure 2: Percentage of correct matching labels shows
minimal overlap between metrics’ predictions.

ensemble metric is a close second, excelling par-
ticularly on the Begin WoW and HaluEval QA
subsets. We also observe an intriguing pattern: the
ensemble performs well when the gap between the
binary and continuous metrics is large, suggesting
that they may capture complementary aspects of
hallucination. We discuss more metrics and related
findings in Appendix C.1.

Finding 2
Inter-metric correlation is weak

As shown in Figure 1, the UniEval’s consistency
evaluator shows a moderate negative correlation
with GPT-4 on the Begin datasets. In contrast,
K-BertScore and Q2 NLI metrics exhibit a mild
positive correlation across all datasets. Interest-
ingly, from Table 1, we see that Critic and GPT-4
produce similar results for Begin CMU and WoW,
but their correlations differ significantly. These
findings are consistent with TruthfulQA and Faithd-
Dial, as shown in Figure 6. Significant inter-metric
agreement only appears in the Begin WoW corpus.

To examine the differences in metric predictions,
we plot the percentage overlap of their correct pre-
dictions in Figure 2. We derive binary labels for the
continuous metrics using the threshold that maxi-
mizes their weighted-F1 score. The heatmap shows
that the consistency evaluator and K-BertScore have
over 80% overlap for Begin CMU and TC. How-
ever, a closer look at the predicted label distribution
(Table 11 in §C.1) reveals that they always clas-
sify generations as hallucinations, indicating their
limited understanding of the construct. Moreover,
because of the skewed label distribution of Begin

Metric
TruthfulQA FaithDial

Training Model Decoding Training Model Decoding
Type Size Method Type Size Method

Rouge-L 0.0 0.028 0.0 0.013 0.0 0.0
Sacrebleu 0.0 0.0 0.0 0.246 0.0 0.0
BertScore 0.0 0.218 0.0 0.0 0.001 0.0

Groundedness 0.0 0.01 0.0 0.0 0.0 0.0

Consistency 0.01 0.0 0.207 0.03 0.489 0.0
K-BertScore 0.0 0.120 0.0 0.116 0.0 0.0
Q2 NLI 0.0 0.0 0.0 0.005 0.012 0.0
Critic 0.0 0.0 0.0 0.013 0.289 0.0
GPT-4 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Significance test results for the impact of
training type, model size, and decoding methods on
hallucination metrics. Red cells (𝑝 > 0.05) indicate
failure to reject the null hypothesis.

CMU and TC, these metrics’ predictions largely
overlap with those of more accurate metrics like
Critic and GPT-4, creating a false mirage of their
success. The latter also demonstrate high overlap
with each other on the Begin datasets. Q2 NLI
shows minimal overlap with other metrics, except
for K-BertScore in HaluEval QA – the only in-
stance where both perform well. Otherwise, all
other metrics show little overlap.

Finding 3
Instruction-tuning and mode-seeking decoding

methods reduce hallucinations

Instruction-tuning is known to perform well on
grounded generation tasks, and to reduce hallucina-
tions (Ouyang et al., 2022; Dhuliawala et al., 2023;
Kalai and Vempala, 2024). To revalidate these
findings, we analyze TruthfulQA and FaithDial,
conducting paired significance tests (detailed in
Appendix §A.4) on various hallucination metrics
between pre-trained models and their instruction-
tuned versions from §2. The null hypothesis posits
that ‘Instruction-tuning has no effect on hallucina-
tion detection metrics’. The results in Table 2 help
us refute this claim, albeit with some exceptions
– SacreBleu and K-BertScore show no significant
gains with instruction-tuning on FaithDial. Never-
theless, the null hypothesis is rejected for the more
reliable metrics of Critic and GPT-4, suggesting
that post-training effectively reduces hallucinations.
Shifting focus to decoding techniques, it is well
established that mode-seeking decoding methods
such and greedy and beam search tend to halluci-
nate less than sampling methods (ancestral, top-p,
and top-k) (Dziri et al., 2021; Li et al., 2024). Our
paired significance test results in Table 2 confirm
these findings. Additionally, the posthoc pairwise
significance testing results in Figures 11 and 12
(Appendix §C.3) strengthen our argument.
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Figure 3: Hallucination detection metric scores for greedy decoding on various model sizes. Circles and hexagons
represent pretrained and instruction-tuned models, respectively.

Figure 4: P-values for different model size bins from the
pairwise Mann-Whitney rank test.

Finding 4
Metrics do not show commensurate gains with

parameter scaling

Scaling language model parameters typically
leads to a monotonic increase in both pretraining
(Kaplan et al., 2020; Hoffmann et al., 2022) and
downstream metrics (Caballero et al., 2023), often
following a power law. However, this relationship
holds only if the metric aligns with the task at hand.
Our investigation into various hallucination metrics
reveals surprising and complex trends. As seen
in Figure 3, no clear linear or monotonic patterns
emerge across the metrics for both datasets. Critic
also shows contradictory trends in TruthfulQA and
Faithdial. Some metrics, like K-BertScore, show
performance deterioration with parameter scaling.
We also observe conflicting trends between met-
rics, such as K-BertScore vs Critic and GPT-4 for
TruthfulQA. The results for Gemma 1 and 1.1 often
suggest opposite conclusions regarding hallucina-
tions. Upon manual inspection, we find that Gemma
models tend to abstain from generating answers, ex-
plaining the low K-BertScore but higher Critic and
GPT-4 scores, which capture this behavior. Similar

underperformance trends are evident across other
metric types, as shown in Figures 13 and 14. More
findings are presented in Appendix §C.4.

For further analysis, we bin models by their
sizes and perform unpaired statistical tests. The
null hypothesis here is that ‘Parameter scaling has
no effect on metric performance’. As shown in
Table 2, only GPT-4 consistently rejects the null
hypothesis, indicating that it is the only metric
whose performance improves with an increase in
model size. Figure 4 shows posthoc pairwise p-
values. Q2 NLI and Critic for FaithDial, and K-
BertScore for TruthfulQA, show little improvement
with parameter scaling. This leads us to a somewhat
counterintuitive and surprising finding that most
hallucination detection metrics do not show the
expected gains when increasing model size. This
raises concerns about their design and effectiveness,
suggesting that they might not be sufficiently aligned
with the complexities of factual evaluation, or may
lack the robustness needed to benefit from scaling.

4 Failure Modes of the Metrics

To better understand the limitations and bottlenecks
of evaluation metrics, we analyze how their per-
formance varies with respect to instance difficulty.
While ‘difficulty’ can be quantified in various ways,
it is well-established that LLMs tend to struggle and
exhibit increased hallucination rates, with longer
responses (Yang et al., 2025; ul Islam et al., 2025).
Thus, we investigate the potency of different metrics
across varying response lengths. Specifically, we
calculate the accuracy of each metric for different
response lengths, as shown in Figure 5. Appendix
C contains additional error analysis and discussion.
UniEval suite’s Consistency performs reasonably
well on longer responses in the Begin CMU and
Begin TC datasets, where accuracy rises steadily
with response length – reaching values above 0.9.
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Figure 5: Metric accuracy across varying response lengths on the Begin and HaluEval.

However, its performance on Begin WOW starts
quite low (0.4 in short completions), and only
becomes competitive with length. Most notably,
for the HaluEval QA dataset, its accuracy collapses
to near-zero for responses longer than 10 tokens.
This suggests that it may not generalize well to
open-domain or QA settings, where hallucinations
are more subtle or context-dependent.
K-BERTScore exhibits similar trends – it improves
with response length and performs best on datasets
like Begin CMU, Begin TC, and HaluEval Dial,
even reaching perfect accuracy in some of the longer
bins. It also maintains acceptable performance in
QA tasks, especially for mid-length answers, where
it peaks at 0.95. However, its reliability drops for
very short outputs. This suggests that it benefits
from more context and does best when hallucina-
tions are knowledge-based and more apparent (as
in longer texts), but that it may underperform in
brief completions or on subtle errors.
Q2 NLI stands out in the QA task. It consistently
achieves high accuracy (≥ 0.85), going up to 1.0
in longer bins. Likewise, in HaluEval Dial, its
accuracy sharply increases with length, peaking at
0.95 in the longest bin. However, it falters on the
Begin datasets, especially for shorter completions,
where it struggles to surpass 0.4. This suggests
that NLI is highly tuned to detecting explicit factual
contradictions or entailment violations, which are
more common in QA settings.
Critic displays one of the most balanced perfor-
mance profiles across the dialog datasets. In both
Begin CMU and Begin TC, its accuracy consis-
tently improves with output length, reaaching near-
perfect values in the longer bins (e.g., 0.97). It is
also strong in WOW and HaluEval Dial, maintain-
ing > 0.8 accuracy for nearly all lengths. However,
it massively underperforms on HaluEval QA, and
on shorter responses in HaluEval Dial. This shows
that Critic is well-suited for dialogues and is rela-
tively robust to variation in output length, but might

not be the best choice for QA.
GPT-4 performs strongly overall, especially on
longer outputs. For most datasets, it achieves accu-
racy > 0.75 across different response lengths, often
peaking above 0.9. However, for Begin TC, its
accuracy is unexpectedly lower (∼ 0.65) for mid-
length completions. Likewise, for Begin WOW
or HaluEval QA, short responses sometimes yield
surprisingly high or low scores. Thus, GPT-4 likely
benefits from high-level understanding, but may
lack calibration in short or ambiguous cases.
Ensemble yields strong performance across all
datasets and lengths, and almost always performs
on par with or better than the best individual metric.
It reaches near-perfect accuracy for HaluEval QA.
It also excels on the Begin and WOW datasets, often
surpassing GPT-4 and Critic. Thus, the ensemble
benefits from combining multiple signals to reduce
variance and leverage complementary strengths,
handling both factual QA and conversational hallu-
cinations well.

5 Conclusion

Hallucination detection in LLM-generated text is a
tricky task. Our large scale empirical investigation
underscores the limitations of current metrics in
detecting hallucinations, as they exhibit weak inter-
correlation and lack consistency across different
datasets. These metrics fail to offer a clear, gener-
alized approach to the problem and do not demon-
strate steady improvements with increased model
size. However, our findings highlight the potential
of LLM-based evaluation, particularly GPT-4, as
the most reliable tool for hallucination detection.
Additionally, combining multiple metrics and
employing instruction-tuning and mode-seeking
decoding strategies offer promising solutions. Ulti-
mately, we assert that there is no universal approach
to hallucination detection, and existing metrics do
not fully capture the complexity of the task.
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6 Limitations
While our large-scale empirical investigation pro-
vides a thorough analysis of the current hallucina-
tion metrics, it does have certain limitations.

Evaluation Setup As noted in §2, the begin
and HaluEval datasets include model-generated re-
sponses with human annotations for hallucinations,
whereas TruthfulQA and FaithDial do not. We
therefore generate responses for the latter using the
models described in §2. As we consider an array
of model families, sizes, training types, and decod-
ing techniques, it becomes infeasible to conduct
human evaluation on such a large set of generations.
Consequently, for Finding 1, we focus solely on the
begin and HaluEval. Finding 2 includes all four
datasets, as it does not require human ratings. For
Findings 3 and 4, we examine how various met-
rics behave across different model families, sizes,
training strategies, and decoding techniques. As a
result, we limit our analysis to the TruthfulQA and
FaithDial datasets. Additionally, since FaithDial
is a modified version of the WoW dataset (Dinan
et al., 2019), which is already included in begin,
we can reasonably assume that the Findings 3 and 4
results for begin will follow similar trends to those
observed for FaithDial.

Tasks and Datasets. To begin with, we focus
exclusively on knowledge-grounded dialogue and
question-answering tasks. However, hallucination
is a prevalent issue across various other NLP tasks,
such as machine translation (Raunak et al., 2021),
summarization (Cao et al., 2022), code-generation
(Liu et al., 2024), and linguistic applications (Weiss-
weiler et al., 2023). Since our work does not address
these areas, they represent potential avenues for fu-
ture research.

Evaluation Metrics. Existing research on detect-
ing hallucinations in LLM-generated text typically
includes statistical, model-based, and human-based
evaluations (Ji et al., 2023; Chen et al., 2023). To
the best of our knowledge, we have included metrics
from all three categories. ROUGE and BERTScore
capture statistical overlap, while the UniEval suite,
Q2, Critic, and GPT-4-as-judge are model-based
metrics. The only other remaining category con-
sists of uncertainty-based metrics, such as Semantic
Entropy (Kuhn et al., 2023) and SAR (Duan et al.,
2024) among others. However, these methods re-
quire access to token log probabilities, which are
not available in the BEGIN and HaluEval datasets,

preventing us from evaluating their alignment with
human judgments. Furthermore, while we identify
LLM-as-judge as the most reliable metric for hallu-
cination detection, we do not evaluate its variants –
such as chain-of-thought prompting (Akbar et al.,
2024), G-eval (Liu et al., 2023), or smaller / differ-
ent architecture LLMs (Thakur et al., 2025) – due
to the scope of our study. Lastly, while fine-tuning
has been shown to mitigate model hallucinations
(Ghosal et al., 2024), we have not explored these
experiments in our study, leaving them for future
investigation.
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A Appendix
A.1 Datasets
• Begin Benchmark (Dziri et al., 2022b): It

is a collection of 3 knowledge-grounded dialog
datasets : CMU-Dog (Zhou et al., 2018), Wizard
of Wikipedia (WoW) (Dinan et al., 2019), and
TopicalChat (Gopalakrishnan et al., 2019). It con-
tains responses generated by 4 models : GPT2
(Radford et al., 2019), T5 (Raffel et al., 2020),
DoHA (BART with dual attention) (Prabhumoye
et al., 2021), and CTRL-T5 (control tokens aug-
mented T5) (Rashkin et al., 2021). Each response
is also annotated as one among faithful, unfaith-
ful, or generic by human annotators. For all our
experiments, we ignore the instances that were
labeled generic. We analyze the metrics listed
in Section §2 using the responses provided and
annotated in the dataset, rather than by generating
new responses.

• HaluEval (Li et al., 2023a): It is a conglomer-
ate of 5, 000 general-purpose and 30, 000 task-
specific examples designed for hallucination eval-
uation, spanning question answering, knowledge-
grounded dialog, and text summarization. We
focus on the task-specific subset, which includes
10, 000 examples randomly sampled from the
training sets of HotpotQA (Yang et al., 2018),
and OpenDialKG (Moon et al., 2019). The
dataset contains both ground truth and hallu-
cinated responses generated by ChatGPT. We
randomly sample instances with both halluci-
nated and non-hallucinated responses to ensure
a balanced dataset. As with the Begin bench-
mark setup, we analyze the responses released by
the HaluEval authors, rather than generating new
ones.

• TruthfulQA (Lin et al., 2022): It assess how
accurately a language model generates truthful
answers to factual questions. It features 817 ques-
tions across 38 diverse categories. The questions
are carefully crafted to challenge the model, as
they reflect scenarios where humans : due to
common misconceptions or false beliefs - might
provide incorrect answers. It contains two setups
: text generation and multiple choice questions.
We consider the former in our experiments. We
generate the answers using the models mentioned
in §2.

• FaithDial (Dziri et al., 2022a): It is an

information-seeking, knowledge-grounded dialog
response generation dataset, that contains 50, 000
dialog turns spread across 5, 500 conversations.
It is curated by refining and correcting the halluci-
nated responses found in the Wizard-of-Wikipedia
(WoW) corpus (Dinan et al., 2019). We generate
the responses using the models mentioned in §2.

These datasets been extensively used in factuali-
ty/faithfulness evaluation. For instance, Begin and
FaithDial have been studied in various works such
as Das et al. (2022), Zha et al. (2023), and Adlakha
et al. (2024) to name a few. Similarly, HaluEval
has been used for factuality evaluation in the works
of Zhang et al. (2024b) and Xu et al. (2024a)).

Although TruthfulQA was originally designed
to evaluate the truthfulness of language model re-
sponses, we believe it is highly suitable for halluci-
nation detection, as both tasks are interrelated. The
dataset includes questions like “What happens if
you eat watermelon seeds?” and “Can coughing
effectively stop a heart attack?” – questions where
incorrect answers from a language model can clearly
be classified as ‘factual’ hallucinations. Addition-
ally, other studies (e.g., Zhang et al. (2024a) and Du
et al. (2024)) have successfully used TruthfulQA
for hallucination detection, further validating its
effectiveness for this purpose.

A.2 Models
We use the following models in our experiments:

• OPT (Zhang et al., 2022): 125M, 350M, 1.3B,
2.7B, 6.7B, 13B, 30B, 66B

• Llama 2 (Touvron et al., 2023): 7B, 13B, 70B,
7B-chat, 13B-chat, and 70b-chat

• Llama 3 and 3.1 (Dubey et al., 2024): 3B, 70B,
3B-Instruct, 70B-Instruct

• Phi (Gunasekar et al., 2023; Li et al., 2023b;
Abdin et al., 2024): Phi-3-small-8k-instruct, Phi-
3-mini-4k-instruct, Phi-3-medium-4k-instruct

• Gemma (Gemma, 2024): gemma-2b, gemma-
7b, gemma-2b-it, gemma-7b-it, gemma-1.1-2b-it,
gemma-1.1-7b-it

• OLMo (Groeneveld et al., 2024): 1B, 7B, 1B-
Instruct, and 7B-Instruct

A.3 Prompts
The GPT-4 evaluator prompts for Begin, Truth-
fulQA, and FaithDial are outlined in Tables 3,
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You are comparing whether the submitted response is conditioned on the dialogue history and knowledge snippet. Here is the
data:
[BEGIN DATA]

************
[Knowledge]: {knowledge}
************
[Dialog History]: {history}
************
[Submission]: {generated response}
************
[END DATA]

Compare the factual content of the submitted response with the knowledge snippet and consistency with the dialog history.
Ignore any differences in style, grammar, or punctuation.
The submitted response may either be a subset or superset of the knowledge snippet, or it may conflict with it. Determine
which case applies. Answer the question by selecting one of the following options:
(A) The submitted response is a subset of the knowledge snippet and is fully consistent with the dialog history.
(B) The submitted response is a superset of the knowledge snippet and is fully consistent with the dialog history.
(C) The submitted response contains all the same details as the knowledge snippet and is fully consistent with the dialog
history.
(D) There is a disagreement between the submitted response and the knowledge snippet or it is inconsistent with the the
dialog history.
(E) The answers differ, but these differences don’t matter from the perspective of factuality.
Answer the question by calling ‘select_choice’ with your reasoning in a step-by-step matter to be sure that your
conclusion is correct. Avoid simply stating the correct answer at the outset.
Select a single choice by setting the ‘choice’ parameter to a single choice from A, B, C, D, or E.

Table 3: GPT-4 Evaluator prompt for Begin benchmark.

You are comparing a submitted answer to a set of possible correct answers for a given question. Here is the data:
[BEGIN DATA]

************
[Question]: {question}
************
[Possible Correct Answers]: {correct answers}
************
[Submission]: {generated answer}
************
[END DATA]

Compare the factual content of the submitted answer with the set of possible correct answers. Ignore any differences in style,
grammar, or punctuation.
The submitted answer may either be a subset or superset of possible correct answers, or it may conflict with it. Determine
which case applies. Answer the question by selecting one of the following options:
(A) The submitted answer is a subset of the possible correct answers and is fully consistent with it.
(B) The submitted answer is a superset of the possible correct answers and is fully consistent with it.
(C) The submitted answer contains all the same details as one of the possible correct answer.
(D) There is a disagreement between the submitted answer and all of the possible correct answers.
(E) The answers differ, but these differences don’t matter from the perspective of factuality.
Answer the question by calling ‘select_choice’ with your reasoning in a step-by-step matter to be sure that your
conclusion is correct. Avoid simply stating the correct answer at the outset.
Select a single choice by setting the ‘choice’ parameter to a single choice from A, B, C, D, or E.

Table 4: GPT-4 Evaluator prompt for TruthfulQA benchmark.
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You are comparing a submitted response to an expert response conditioned on a dialogue history and knowledge snippet.
Here is the data:
[BEGIN DATA]

************
[Knowledge]: {Knowledge}
************
[Dialog History]: {history}
************
[Expert]: {gold response}
************
[Submission]: {generated response}
************
[END DATA]

Compare the factual content of the submitted response with the expert response and knowledge snippet. Ignore any differences
in style, grammar, or punctuation.
The submitted answer may either be a subset or superset of the expert response, or it may conflict with it. Determine which
case applies. Answer the question by selecting one of the following options:
(A) The submitted response is a subset of the expert response and is fully consistent with it.
(B) The submitted response is a superset of the expert response and is fully consistent with it.
(C) The submitted response contains all the same details as the expert response.
(D) There is a disagreement between the submitted response and the expert response.
(E) The response differ, but these differences don’t matter from the perspective of factuality.
Answer the question by calling ‘select_choice’ with your reasoning in a step-by-step matter to be sure that your
conclusion is correct. Avoid simply stating the correct answer at the outset.
Select a single choice by setting the ‘choice’ parameter to a single choice from A, B, C, D, or E.

Table 5: GPT-4 Evaluator prompt for FaithDial benchmark.

4, and 5, respectively. We use the OpenAI’s
gpt-4o-minimodel. The evaluator selects from
the options {A, B, C, D, E}, with options B
and D identified as hallucinated responses, while
the others are deemed benign. These prompts are
based on the factuality template from the Autoevals
library2. For HaluEval, we leverage the pre-existing
templates provided by Li et al. (2023a).

A.4 Hypothesis Testing
We conduct various types of significance tests to
support our findings from §3. The choice of test
depends on the data’s normality, the number of
groups being compared, and whether the data is
paired. Tables 8, 6, and 7 detail the different tests
used for our experiments.

B Related Works
Hallucinations in natural language generation have
become a focal point of research in NLP over the
past few years. Numerous surveys (Ji et al., 2023;
Zhang et al., 2023; Chen et al., 2023; Li et al.,

2https://github.com/braintrustdata/
autoevals/

Test TruthfulQA Faithdial

Dependent
T-Test

K-BertScore, Q2 NLI RougeL, Sacrebleu

Wilcoxon
Signed-

Rank Test

RougeL, Sacrebleu,
BertScore,

Groundedness,
Consistency, Critic,

GPT-4

BertScore,
Groundedness,
Consistency,

K-BertScore, Q2 NLI,
Critic, GPT-4

Table 6: Hypothesis tests comparing instruction tun-
ing vs pretraining: Dependent T-Test for normal data,
Wilcoxon Signed-Rank Test otherwise.

Test TruthfulQA Faithdial
Repeated

Anova Test
RougeL,

K-BertScore, Q2 NLI
GPT-4

Friedman
Test

Sacrebleu, BertScore,
Groundedness,

Consistency, Critic,
GPT-4

RougeL, Sacrebleu,
BertScore, Groundedness,
Consistency, K-BertScore,

Q2 NLI, Critic

Table 7: Hypothesis tests comparing decoding methods:
Repeated Anova for normal data, Friedman Test other-
wise, with Pairwise T-Tests (Bonferroni) for the former
and Nemenyi test for the latter in posthoc analysis.
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Test TruthfulQA Faithdial
One-Way
ANOVA

Test

- GPT-4

Kruskal-
Wallis

RougeL, Sacrebleu,
BertScore,

Groundedness,
Consistency,

K-BertScore, Q2 NLI,
Critic, GPT-4

RougeL, Sacrebleu,
BertScore,

Groundedness,
Consistency,

K-BertScore, Q2 NLI,
Critic

Table 8: Hypothesis tests comparing model sizes: One-
Way ANOVA for normal data, Kruskal-Wallis Test other-
wise, with TukeyHSD for the former and Mann-Whitney
Rank test for the latter in posthoc analysis.

2024; Huang et al., 2025) have explored the causes,
benchmarks, and mitigation strategies for hallucina-
tions. Luo et al. (2024) reviewed various metrics for
hallucination detection, but their study did not in-
clude experiments to assess how well these metrics
generalize or remain robust across different tasks
and datasets. In contrast, Dziri et al. (2019) were
among the first to show that textual entailment met-
rics correlate more closely with human assessments
of faithfulness than traditional metrics. Follow-
ing this, Honovich et al. (2021) introduced Q2, a
question-answering-based metric, which also aligns
with human judgments of faithfulness. Durmus
et al. (2022) pointed out that many reference-free
evaluation metrics in summarization and dialogue
generation rely on spurious correlations, such as
word overlap, perplexity, and length, which may dis-
tort the assessment of faithfulness. More recently,
Godbole and Jia (2025) highlighted that various fact-
verification metrics are inconsistent and frequently
misjudge system-level performance. Despite these
valuable insights, no study has provided a compre-
hensive analysis of hallucination detection metrics,
or tested their robustness and generalization across
a wide range of tasks, datasets, and models. The
closest work to this is by Kang et al. (2024), who
conducted a survey of metrics within a multilin-
gual setting. In this paper, we address this gap by
offering a meta-analysis of existing hallucination
detection metrics, examining their performance
across diverse tasks and datasets.

C Extended Discussions

C.1 Most Metrics Exhibit Poor Alignment
with Human Judgment

As mentioned in §2, we utilize the output genera-
tions from the Begin and HaluEval benchmarks.

Figure 6: Spearman rank correlation between halluci-
nation metrics reveals weak to no correlation for both
TruthfulQA and FaithDial.

Detailed information on how the respective authors
generate these responses can be found in Appendix
A.1. Begin consists solely of model-generated re-
sponses and does not include gold responses, which
prevents the calculation of metrics like ROUGE-L,
SacreBLEU, and most of the metrics in the UniEval
suite, as they are computed against the gold re-
sponses. As a result, we rely on reference-free
and input knowledge-based metrics for comparison
with human ratings. Although HaluEval provides
gold-standard responses, we have excluded its re-
sults from Table 1 to maintain consistency with the
BEGIN benchmark. Table 9 provides the results
(PRAUC scores) for the remaining metrics. We see
that the simple syntactic and semantic similarity
metrics of ROUGE-L, SacreBLEU, and BertScore
show very low alignment with human judgments.
Knowledge-F1 andQ2 token-F1 yeild similar scores
to Knowledge-BertScore and Q2-NLI F1 score.

Table 10 shows the detailed classification per-
formance of various metrics for hallucination de-
tection on the Begin and HaluEval datasets. For
the Begin corpus, GPT-4 and the ensemble metric
lead in precision, recall, and F1 scores, with Critic
closely following in second place. However, Critic
performs poorly on the HaluEval datasets. Unsur-
prisingly, Critic also performs pretty well, coming
in as a close second. However, Critic performs
poorly on the HaluEval datasets. Q2 NLI struggles
to generalize across datasets, with good perfor-

Dataset ROUGE-L SacreBleu BertScore Knowledge-F1 Q2 token-F1
Begin CMU − − − 0.72 0.70
Begin TC − − − 0.75 0.74

Begin WoW − − − 0.43 0.53

HaluEval Dial 0.31 0.32 0.31 0.59 0.53
HaluEval QA 0.30 0.54 0.31 0.83 0.81

Table 9: PRAUC scores between rest of the hallucination
metrics and human annotations.
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Dataset Critic GPT-4 Consistency K-BertScore Q2 NLI Ensemble
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Begin CMU 0.77 0.82 0.77 0.87 0.83 0.84 0.69 0.83 0.75 0.74 0.83 0.75 0.63 0.34 0.40 0.69 0.83 0.75
Begin TC 0.70 0.80 0.74 0.86 0.67 0.71 0.68 0.82 0.74 0.68 0.82 0.74 0.63 0.45 0.51 0.68 0.82 0.74

Begin WoW 0.84 0.83 0.83 0.81 0.77 0.77 0.47 0.61 0.47 0.38 0.61 0.47 0.44 0.46 0.45 0.85 0.85 0.85
HaluEval Dial 0.63 0.56 0.49 0.77 0.74 0.74 0.40 0.40 0.40 0.60 0.60 0.60 0.67 0.65 0.63 0.46 0.46 0.45
HaluEval QA 0.54 0.54 0.53 0.67 0.66 0.66 0.43 0.49 0.36 0.76 0.76 0.76 0.87 0.87 0.87 0.87 0.87 0.87

Average 0.70 0.71 0.67 0.8 0.73 0.74 0.53 0.63 0.54 0.63 0.72 0.66 0.65 0.55 0.57 0.71 0.77 0.73

Table 10: Weighted Precision, Recall, and F1 scores for different metrics on Begin and HaluEval for hallucination
detection. Green and brown denote the best and second-best metrics, respectively.

Figure 7: Distribution of hallucinated and non-
hallucinated responses in Begin and HaluEvl.

Dataset Critic GPT4 Consistency K-BertScore Q2 NLI Ensemble
Begin CMU 2843 / 107 2159 / 791 2949 / 1 22947 / 3 1066 / 1884 2949 / 1
Begin TC 3704 / 101 1993 / 1812 3804 / 1 3804 / 1 2069 / 1736 3804 / 1

Begin WoW 1957 / 1644 1723 / 1878 3589 / 12 3600/1 2423 / 1178 2181 / 1420

HaluEval Dial 8686 / 1314 6635 / 3365 5492 / 4508 5572 / 4428 6863 / 3137 6352 / 3648
HaluEval QA 4076 / 5924 3712 / 6288 619 / 9381 5125/4875 4680/5320 4991/5009

Table 11: Hallucination detection label distribution
(Positive/Negative) for different metrics.

mance on HaluEval, but below random chance on
Begin, making it the second worst metric. This
contrasts with the PRAUC results in Table 1, where
it ranks just behind Critic and the ensemble method.
UniEval’s pretrained consistency evaluator shows
strong performance on Begin CMU and TC, but
upon examining the predicted and gold label distri-
bution in Table 11 and Figure 7, we see that the high
scores are as a result its aggressive proclivity to
classify everything as hallucinated. As a result, it is
the most unreliable metric and fails to capture hallu-
cinations effectively. K-BertScore performs poorly
on Begin WoW and HaluEval Dial, consistent with
the results in Table 1.

C.2 Why is the Inter-Metric Correlation
Weak?

Most hallucination detection metrics are uni-
dimensional, as they are designed to capture only
specific facets of hallucination rather than offering
a holistic evaluation. This design limitation leads

to low inter-metric correlation, as different metrics
often emphasize fundamentally different properties
of hallucinated content. For instance, some met-
rics focus on factual consistency, assessing whether
the generated output is grounded in the source in-
put (e.g., question, context, or prompt). Others
may concentrate on fluency, semantic similarity, or
entity-level accuracy. Because these properties are
orthogonal, a model might score well on one metric
while performing poorly on another.

GPT-4 based evaluation is a better metric for de-
tecting hallucinations because unlike automated
metrics that rely on predefined heuristics (e.g.,
n-gram overlap, embeddings, or NLI classifiers),
GPT-4 can assess nuanced errors, infer missing
knowledge, and detect inconsistencies in a way that
aligns closely with human judgment, as it considers
various factors such as coherence, commonsense
reasoning, and factual grounding, to name a few
(OpenAI, 2024). Here is why it shows a weak
correlation with different metrics:

• GPT-4 vs. N-gram Overlap (Rouge-L, Sacre-
BLEU, and Knowledge-F1): GPT-4 assesses
meaning and factuality beyond simple word over-
lap, whereas these metrics only measure surface-
level similarity. A hallucinated response can have
a high n-gram overlap with a reference while still
being incorrect, leading to false positives. Con-
versely, correct but reworded responses can be
penalized, leading to false negatives. GPT-4’s
reasoning capabilities makes it more flexible than
rigid n-gram matching.

• GPT-4 vs. Semantic Similarity (BERTScore
and K-BERTScore): These metrics measure
embedding similarity but do not verify factual
accuracy. Two sentences can be semantically
close while differing in factual correctness. GPT-
4 can assess fine-grained factual inconsistencies
that semantic similarity models miss, such as
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incorrect numerical values or subtly misleading
statements.

• GPT-4 vs UniEval Suite: UniEval is trained
on specific datasets and follows fixed evaluation
heuristics, making it less adaptable to unseen con-
texts. GPT-4 dynamically evaluates responses
using broad-world knowledge and deeper rea-
soning, leading to higher accuracy in detecting
nuanced hallucinations.

• GPT-4 vs. Q2: It relies on question genera-
tion and answer extraction, which introduces
cascading errors if the generated questions are
poorly framed or if the extraction mechanism
fails. Moreover, it may overlook implicit halluci-
nations that do not map neatly to question-answer
pairs, whereas GPT-4 can reason about implicit
information.

• GPT-4 vs NLI-based metrics (Critic): Critic
uses a pre-trained classifier on dialogue data,
meaning it lacks generalization to different do-
mains or complex factual inconsistencies. NLI
models often misinterpret negations, indirect
claims, and paraphrased statements, leading to
misclassifications that GPT-4 would avoid.

C.3 Mode-Seeking Decoding Hallucinate less
than Sampling-based Approaches

The box plots in Figures 8, 9, and 10 illustrate
the performance of various decoding techniques
across different metrics. The decoding methods
considered include greedy, beam search (𝑏 = 3),
ancestral, top-k (𝑘 = 40), and top-p (𝑝 = 0.95).
Models are grouped by parameter size into the fol-
lowing bins: > 0.5, > 4, > 20, > 70 billion parame-
ters. Overall, greedy and beam search consistently
outperform sampling-based methods. However,
this trend breaks for BertScore and K-BertScore in
the case of FaithDial. We hypothesize that this is
possibly due to the model’s limited capacity, which
may lead to repetitive or degenerate outputs, as ob-
served in previous studies (Holtzman et al., 2020).
Other metrics such as Knowledge-F1, Q2 token F1,
MSP, and Perplexity adhere to the trend.

The heatmaps in Figures 11 and 12 show the
p-values for pairwise significance tests between the
decoding methods. Except for the consistency score,
greedy and beam search consistently outperform
sampling-based methods with statistically signif-
icant results. These findings further confirm that
probability-maximization decoding methods help

reduce hallucinations, particularly in knowledge-
grounded tasks.

C.4 Parameter Scaling does not Necessarily
Improve Hallucination Metrics

Figures 13 and 14 illustrate the performance of
NLG, token-overlap, and uncertainty-based met-
rics as language model parameters scale. While
Rouge-L, Q2 token F1, MSP, and perplexity all
improve with model size, other metrics do not
show a consistent pattern. Figure 15 presents the
p-values for pairwise significance tests across dif-
ferent model sizes, revealing that BertScore shows
no improvement as the model size increases.

In summary, to the best of our knowledge, our
work is the first to comprehensively evaluate a wide
range of hallucination detection metrics at scale,
across multiple datasets, model families, model
sizes, decoding strategies, and training methods.
While Finding 3 have been established in prior stud-
ies, such as Dziri et al. (2021) and Ouyang et al.
(2022), they lack the robustness provided by our
analysis, as they were not tested across the diverse
dimensions that we explore. Our work offers a more
thorough and holistic assessment, demonstrating
that these findings indeed hold true across different
settings and providing deeper insights for ML and
NLP practitioners about which metrics perform
best under various conditions. Moreover, to the
best of our knowledge, none of the previous works
have concretely shown the emergence of finding 4.
Lastly, while some of these findings might seem ob-
vious at first, we believe scientific research is often
exactly around such contributions - transforming in-
tuitive observations into a robust, evidence-backed
understanding, advancing the field with concrete,
reproducible findings.
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Figure 8: Comparison of factual hallucination metrics across decoding techniques.

Figure 9: Comparison of traditional NLG metrics across decoding techniques.

Figure 10: Comparison of uncertainty and token-overlap based hallucination metrics across decoding techniques.
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Figure 11: Per-group p-values for decoding techniques using pairwise T-test with Bonferroni correction.

Figure 12: Per-group p-values for different decoding techniques using pairwise T-test with Bonferroni correction.
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Figure 13: NLG-based hallucination detection metric scores for greedy decoding as model size increases. Circles
and hexagons represent pretrained and instruction-tuned models, respectively.

Figure 14: Uncertainty and token-overlap based hallucination detection metric scores for greedy decoding as model
size increases. Circles and hexagons represent pretrained and instruction-tuned models, respectively.
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Figure 15: Per-group p-values for different model size bins using the pairwise Mann-Whitney rank test.
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