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Abstract

The IMPRESSION section of a radiology report
summarizes critical findings of a radiology re-
port and thus plays a crucial role in commu-
nication between radiologists and physicians.
Research on radiology report summarization
mostly focuses on generating the IMPRESSION
section by summarizing information from the
FINDINGS section, which typically details the
radiologist’s observations in the radiology im-
ages. Recent work start to explore how to in-
corporate radiology images as input to mul-
timodal summarization models, with the as-
sumption that it can improve generated sum-
mary quality, as it contains richer information.
However, the real effectiveness of radiology
images remains inconclusive. To address this,
we conduct a thorough analysis to understand
whether existing multimodal models can effec-
tively utilize radiology images in generating a
summary of the FINDINGS section. Our anal-
ysis reveals that multimodal models might not
actually make use of radiology images. For
example, masking the image inputs leads to
minimal or no performance drop compared to
the original images when they are used as input
to a trained multimodal summarizer. An expert
annotation study on two widely used datasets
also shows that radiology images are often un-
necessary for writing the IMPRESSION section
if FINDINGS section is provided 1.

1 Introduction

Radiology report acts as a bridge of communication
between radiologists and physicians (Kahn et al.,
2009; Gershanik et al., 2011). Having reliable ra-
diology reports could improve communication, en-
hance patient care, and facilitate research and data
analysis in the field of radiology (Pesapane et al.,
2023). A standard radiology report usually contains
REASON FOR THE EXAM, COMPARISON (with

1Data pre-processing code, note IDs, and data
split are available at https://github.com/raymondsim/
rrs-analysis.

any available previous exams), FINDINGS, and IM-
PRESSION sections (Naik et al., 2001; Wallis and
McCoubrie, 2011). Specifically, FINDINGS sec-
tion, describes what the radiologist observes in the
image(s), and IMPRESSION section, summarizes
important findings and possible causes (differential
diagnosis) (Wallis and McCoubrie, 2011) are the
two most critical sections in the radiology report
analysis.

Earlier work on radiology report summarization
aims to generate IMPRESSION given the FINDINGS

section as input (Zhang et al., 2018; Miura et al.,
2021; Ben Abacha et al., 2021). More recently,
researchers (Kim et al., 2023; Wang et al., 2023;
Nicolson et al., 2023) explored the usage of ra-
diology images as additional context, aiming to
improve the generated IMPRESSION, under the
assumption that radiology images could provide
richer information to generate a more accurate IM-
PRESSION section. However, the effectiveness of
incorporating radiology images in radiology report
summarization remains inconclusive.

In this paper, we critically examine the effective-
ness of using radiology images in radiology report
summarization. Our key research question is: To
what extent does the radiology image contribute
to generating more accurate and informative IM-
PRESSION section? To this end, we systematically
perform controlled experiments with several mul-
timodal summarization models. We first observe
that text-only models often outperform multimodal
models but masking image inputs lead to minimal
or no performance drop, raising concerns about
whether visual information is genuinely utilized by
multimodal summarization models. We then ex-
plore two-stage fine-tuning strategies aimed at en-
couraging image utilization and introduce an exclu-
sive set, by removing sentences describing critical
diagnosis from the text input, enforcing the reliance
of radiology images. Finally, we conduct an expert
annotation study to assess the actual necessity of ra-
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Figure 1: An overview of our study. In this study, we (1) train summarization models under multimodal setting,
mask image during inference time, and observe performance changes and how model attends to visual tokens, (2)
to track the bottleneck, we train projection layer and language model separately, (3) we conducted an annotation
study, to understand if radiologists need radiology image to write the IMPRESSION section, (4) to disentangle
model behavior and dataset characteristics, we constructed an exclusive set, where text input has missing critical
information, in order to assess a model’s ability in utilizing visual input.

diology images for radiology report summarization
task, using two widely used datasets, MIMIC-HIST-
AUG and CheXpert.

Based on our analysis, we argue that assessing
the utility of different input modalities is crucial
when building a multimodal model (Sim et al.,
2025). This is particularly important for domain-
specific tasks like radiology report summarization,
where the accuracy of generated content can di-
rectly influence clinical decision-making and pa-
tient outcomes.

To review, our contributions in this paper are
three-fold:

• A thorough analysis of model behavior
and dataset characteristics to investigate the
(in)effectiveness of visual information in radi-
ology report summarization.

• An expert annotation study that aligns with
our analysis findings and provides suggestions
on the additional context that is needed to
generate a more accurate IMPRESSION.

• We explore a two-stage fine-tuning strategy
and introduce an exclusive set, designed to
disentangle dataset characteristics from model
behavior, providing insights into the utility of
image inputs in multimodal models.

2 Analysis Setup

2.1 Problem Formulation
The task of multimodal radiology report summa-
rization is defined as: given a text XT and a radi-

ology image XV , we aim to generate an IMPRES-
SION section of a radiology report that summarizes
critical findings. In our study, we use the BACK-
GROUND section (if available) concatenated with
the FINDINGS section as input text, XT .

2.2 Multimodal Model Architecture

Most multimodal summarization models, including
recent Large Vision Language Models (LVLMs)
such as LLaVA, DeepSeek-VL, and Qwen-VL, typ-
ically follow a three-stage architecture that inte-
grates visual and textual inputs. The model com-
prises: (1) a frozen vision encoder fvision, (2) a
trainable projection layer fproj, and (3) a pretrained
language model fLM, as illustrated in Figure 1.

Given an input image XV and a sequence of text
tokens XT , the image is first encoded into visual
features:

V = fvision(XV )

These features are then mapped into the language
embedding space using a projection layer:

V ′ = fproj(V )

Finally, the language model conditions on both the
text XT and the projected image features V ′ to
generate the output:

Ŷ = fLM(XT , V
′)

This architecture enables the model to perform
multimodal processing by attending to both modal-
ities. In our experiments, we leverage this modular
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structure to explore whether and how the model
utilizes image features by applying different fine-
tuning strategies and controlled experiments.

2.3 Models

Text-only Summarization Models We selected
four text-only summarization models as baseline
methods. We use (1) PG (See et al., 2017), pointer-
generator model introduces copy and coverage
mechanism to the standard seq2seq framework, (2)
BART (Lewis et al., 2020), a pretrained encoder-
decoder summarization model whose pre-training
objective is reconstructing corrupted documents,
(3) GSum (Trienes et al., 2023) which extends
pretrained BART with a guidance encoder, (4)
WGSum (Hu et al., 2021) is a domain-specific
method for radiology report summarization that
uses a graph-guided decoder to attend a graph of
clinical entities. These models were selected as
they are either radiology domain-specific or widely
used for radiology report summarization tasks.

Multimodal Summarization Models We se-
lected six radiology domain-specific multimodal
models. (1) Vilmedic (Delbrouck et al., 2021) uses
an RNN encoder-decoder model and fuses visual in-
formation extracted from pre-trained Densenet101
(Huang et al., 2017) using dot-product attention,
(2) CvT-BERT (Nicolson et al., 2023) uses pre-
trained Convolutional vision Transformer (CvT)
as image encoder to extract image features, then
uses BERT as a decoder to generate IMPRESSION

section conditioned on FINDINGS, (3) VG-BART
(Yu et al., 2021) uses dot-product attention and
multi-head attention methods to incorporate visual
information into BART. In addition, we also adapt
some representative Large Vision Language Mod-
els (LVLMs), including (4) LLaVA-1.5 (Liu et al.,
2023), LLaVA-Med (Li et al., 2023), (5) Qwen-
VL (Bai et al., 2023), and (6) DeepSeek-VL (Lu
et al., 2024). We use 7b version for all LVLMs.

2.4 Datasets

MIMIC-CXR (Johnson et al., 2019) is a large-
scale radiology report summarization dataset, con-
sisting of 377,110 chest X-Rays and 227,827 asso-
ciated radiology reports, collected from Beth Israel
Deaconess Medical Center between 2011 - 2016.
We follow the official train/validation/test split.

OpenI (Demner-Fushman et al., 2015) is a small-
scale radiology report collected by Indiana Uni-

MIMIC-CXR OpenI CheXpert

# exp 122k / 963 / 1.5k 2.2k / 386 / 653 42k / 1k / 2k
EXCLUSIVE 22,224 / - / 767 159 / - / 70 14,906 / - / 1,309

# sentx 5.48 5.83 5.81
# wordx 56.35 52.38 65.85

# senty 1.61 1.42 4.47
# wordy 15.89 9.78 36.93

Table 1: Dataset statistics including number of samples
for train/val/test split, number of sentences and tokens
in FINDINGS and IMPRESSION.

versity with 3,346 reports after preprocessing. We
follow the official train/validation/test split.

CheXpert (Irvin et al., 2019) is a large-scale
chest radiograph dataset collected from Stanford
Hospital, for studies conducted between October
2002 and July 2017. 2

2.5 Evaluation Metrics

We assess the quality of generated summaries from
two dimensions: i) similarity to reference sum-
maries and ii) correctness using domain-specific
faithfulness metrics. For similarity, we use
ROUGE score (Lin, 2004), which computes the
overlapping n-grams, word pairs, and word se-
quences between generated summaries and ground
truth. We report F1 score for ROUGE-1, ROUGE-2
and ROUGE-L.

For factual correctness, we use pretrained
ChexBert (Smit et al., 2020a) to obtain 14-class
labels for generated summaries and ground truth,
whose results will then be used to compute F1 score.
We also use RadGraph 3 score (Jain et al., 2021) to
measure factual correctness and completeness.

3 Text-Only Summarization vs.
Multimodal Summarization

To understand whether incorporating radiology im-
ages in summarization models can improve sum-
mary quality, we compare the performance of
representative text-only models and multimodal
models, including Large Vision Language Models
(LVLMs). In addition, we design an ablation ex-
periment on multimodal models trained on paired
FINDINGS and radiology images to generate the
IMPRESSION section. At inference time, we mask

2As the official dataset does not include text reports, we
use the shared task version of the dataset from RRG24 shared
task (Xu et al., 2024), which provides train and test set. We
randomly sampled 2000 instances from the training set and
use them as the validation set.

3RadGraph-XL is used and partial reward are used.
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MIMIC-CXR OpenI CheXpert

R-1 R-L RadG CBert R-1 R-L RadG CBert R-1 R-L RadG CBert

Text-Only Models

PG 40.14 36.84 26.72 54.44 57.80 57.27 48.76 84.53 42.70 37.49 14.39 42.00
BART 50.86 47.00 40.90 65.39 68.51 67.73 63.35 87.29 57.46 51.94 19.84 56.85
GSum 45.32 42.98 35.18 59.60 61.76 60.10 52.32 85.28 51.92 47.09 15.22 49.01
WGSum 43.92 41.55 31.17 58.92 60.52 58.67 50.36 84.73 44.64 41.02 14.89 45.00

Multimodal Models

VG-BART Dot 50.69 46.68 40.92 65.59 51.38 51.21 42.24 84.84 55.07 49.84 18.63 56.45
VG-BART MHA 50.64 46.89 41.10 65.33 56.30 56.14 47.08 84.23 54.63 49.02 18.70 55.60
CvT-BERT 43.85 44.32 37.76 58.52 60.12 57.91 50.16 84.10 49.01 44.56 18.90 51.00
Vilmedic 35.58 34.13 28.13 54.13 63.95 63.88 60.25 84.53 50.94 46.15 18.63 52.70
LLaVA-1.5 47.32 44.32 38.81 62.14 50.78 50.13 43.96 87.44 51.22 45.26 37.63 53.90
Qwen-VL 47.62 44.30 38.83 63.08 49.67 49.52 43.41 86.62 51.54 45.45 38.76 53.81
DeepSeek-VL 46.70 43.12 37.79 62.95 49.51 49.08 42.50 86.83 49.19 42.86 35.93 54.90
LLaVA-Med 47.58 44.53 38.81 62.98 50.91 50.93 44.18 88.41 51.64 46.01 38.61 57.27

Table 2: The performance of all text-only and multimodal baseline methods on the test sets of MIMIC-CXR, OpenI,
and CheXpert datasets. F1 score is reported for all evaluation metrics. The best score and upper bound for all
metrics are 100. RadG refers to RadGraph, CBert refers to ChexBert.

the image input and provide the FINDINGS section
only. In other words, we report results of models
trained on multimodal inputs, but with the image
masked during inference time. We conjecture that
any performance drop from this masking operation
indicates the extent to which the model relies on
image input.

Results From Table 2, we found that incorporat-
ing visual information (i.e., multimodal summariza-
tion models) performs worse than text-only mod-
els on most evaluation metrics, including ROUGE
scores and radiology factuality measures. This find-
ing could partially be explained by how a radiology
report is constructed. Radiologists first write the
FINDINGS section based on the radiology image,
and then write the IMPRESSION section based on
the FINDINGS section. If a radiologist writes the
FINDINGS section with sufficient details, this sec-
tion should include all key information from radi-
ology images. Another possible reason is that mul-
timodal models failed to learn meaningful cross-
modal interactions between text and visual repre-
sentations.

In addition, we observe that LVLMs like LLaVA,
Qwen-VL, and DeepSeek-VL perform slightly
worse than smaller models like BART and VG-
BART. We hypothesize that large models require
more data during fine-tuning. We leave this for fu-
ture work, as the aim of this study is to understand
the utilization of radiology images in generating
IMPRESSION section.

We assess the contribution of visual information
in multimodal radiology report summarization by
masking the image input at inference time. Specif-

Figure 2: Performance change (∆ score) when the
image is masked, evaluated on MIMIC-CXR. Upper
bounds for all metrics are 100. Masking images only
causes minimal to no negative effect on the model’s
overall performance. Complete results are reported in
Appendix E.

ically, we replace the X-Ray image with a black
image (all-zero pixel values) and measure the per-
formance drop compared to using the original im-
ages. From Figure 2, we observe that masking
images on multimodal models has minimal to no
negative effect on overall model performance. This
indicates that multimodal models do not genuinely
utilize image input when generating IMPRESSION

section, they heavily rely on the text input (i.e.,
FINDINGS section).

4 Two-Stage Fine-Tuning: Encourage
Image Utilization

Most multimodal models consist of three main com-
ponents: an image encoder, a language model, and
a projection layer that projects visual embeddings
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MIMIC-CXR OpenI CheXpert

Model Setting R-L RadG CBert R-L RadG CBert R-L RadG CBert

LLaVA-1.5 Proj 36.09 30.62 55.44 6.72 6.79 78.10 35.35 24.18 48.10
LM 44.32 38.80 62.14 49.98 43.96 87.44 45.26 37.63 53.90
Proj + LM 44.27 38.38 61.76 59.13 53.53 86.68 45.46 38.10 54.10
Proj → LM 44.06 38.34 61.76 50.33 44.05 87.90 45.42 37.79 53.20
Proj → Proj + LM 43.83 37.98 61.76 50.75 44.29 88.36 45.35 38.45 53.45

Qwen-VL Proj 36.76 31.44 56.45 6.69 8.33 85.45 40.25 29.13 50.50
LM 44.30 38.83 63.08 52.66 45.78 87.14 45.45 38.41 54.25
Proj + LM 44.41 39.26 63.52 62.90 58.24 87.60 45.43 38.50 53.95
Proj → LM 44.10 38.76 63.58 52.33 45.75 87.44 45.31 38.57 54.65
Proj → Proj + LM 44.10 38.62 63.14 52.11 45.61 87.90 45.59 38.30 54.85

DeepSeek-VL Proj 35.47 30.59 56.20 13.41 8.06 84.53 31.20 18.30 48.20
LM 43.12 37.79 62.95 49.01 42.50 86.83 42.86 34.11 50.25
Proj + LM 42.80 37.39 62.39 29.80 23.95 52.57 43.03 34.56 50.20
Proj → LM 42.72 37.80 63.45 48.81 42.54 86.06 42.67 34.15 52.40
Proj → Proj + LM 42.80 37.87 63.70 49.47 42.68 86.83 42.94 35.10 52.15

Table 3: The performance of LVLMs on the test sets of MIMIC-CXR, OpenI and CheXpert datasets, fine-tuned with
different strategies. F1 score is reported for all evaluation metrics. The best score and upper bound for all metrics
are 100. RadG refers to RadGraph, CBert refers to ChexBert.

Figure 3: Performance changes on LLaVA-1.5, Qwen-VL, and DeepSeek-VL trained on MIMIC-CXR with different
training strategies. Results showed that training the projection layer only, or two-stage fine-tuning, encourages
models to utilize image inputs, as masking the image causes a significant drop.

to the language model representation space. We
suspect that the FINDINGS section in these datasets
might contain sufficient information to generate the
IMPRESSION section. Hence, multimodal summa-
rization models might learn to rely on text input
while ignoring image input, as the latter is harder to
interpret (Verma et al., 2024). To track the bottle-
neck where image input is ignored, we conducted
a controlled experiment by training the projection
layer and the language model separately, together,
and sequentially. Specifically, there are five set-
tings as shown in Table 3, which are: i) projection
layer only, ii) language model only, iii) projection
layer and language model, iv) projection layer first,
then language model, v) projection layer first, then
projection layer and language model.

We hypothesize that training the projection layer
forces the model to map visual features to corre-
sponding medical concepts in vocabulary space.
Training the projection layer and the language
model together will cause the text input to dom-
inate, and the model will take shortcuts and heavily

rely on text input only, ignoring image input.

Results Our results are presented in Table 3. We
can see that training the projection layer only forces
the model to align image representation to the lan-
guage model’s textual space, and masking the im-
age input leads to a significant performance drop
(Figure 3). Training the language model along with
the projection layer enables the model to utilize text
input only; masking image input does not affect
the overall performance. Two-stage fine-tuning,
where training the projection layer first, and then
the language model and/or the projection layer, pre-
serves the model’s ability in projecting image input
to language model textual space, and the language
model learns to utilize this image input; masking
image input leads to a performance drop.

We also visualized the attention weights on vi-
sual tokens at inference as shown in Figure 4.
Specifically, we averaged the attention weights on
visual tokens at each generated token. From the vi-
sualization plot, we observe that LLaVA-1.5 trained
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on the projection layer only relies heavily on vi-
sual features. Training the language model only
or the language model with the projection layer
on LLaVA-1.5 causes the model to ignore visual
features, as it has extremely low attention weights
on visual tokens. Models trained with two-stage
fine-tuning (i.e., fine-tune the projection layer first,
then the language model) attend to visual tokens
similar to training the projection layer only.

However, it is worth noting that the overall per-
formance of such a two-stage fine-tuning strategy
is very close to training the language model and/or
projection layer together. We suspect this is be-
cause text input (i.e., FINDINGS section) contains
rich information that is sufficient to generate IM-
PRESSION section.

5 Do Medical Experts Need Image To
Write IMPRESSION section?

Dataset Raw Agreement Avg. “Yes” %

MIMIC-CXR 96% 94%
CheXpert 86% 88%

Table 4: Inter-annotator agreement and results on the
annotation question: “Can you write the IMPRESSION
section using only the FINDINGS section, without seeing
the radiology image?”

To understand the utilization of text and vision
modalities by medical practitioners, we conducted
an annotation study with the help of two medical
experts with over 20 years of experience. We pro-
vided 100 samples from MIMIC-CXR and CheX-
pert (50 randomly selected samples from each
dataset) to two annotators. Specifically, we pro-
vide X-Ray images, FINDINGS, and IMPRESSION

section, and asked whether it is possible to write a
complete IMPRESSION section from the FINDINGS

section only, without using the corresponding radi-
ology image. We perform a medical expert annota-
tion study on MIMIC-CXR and CheXpert datasets
only, as OpenI dataset is relatively smaller com-
pared to MIMIC-CXR and CheXpert. It might not
reflect the real characteristics of radiology report
datasets in a real clinical setting. The annotation in-
terface and guidelines can be found in Appendix B.

Results Our annotation study result is presented
in Table 4. We find medical experts agree that
radiology images are unnecessary in writing the
IMPRESSION section most of the time (94% for
MIMIC-CXR and 88% for CheXpert). Out of the

annotated samples, samples that require informa-
tion from radiology images are those FINDINGS

section that do not contain sufficient information
of the current study. That is, some diagnosis are
mentioned in IMPRESSION section but not in FIND-
INGS section. This annotation study results align
with our model performance from the previous sec-
tion, forcing multimodal summarization models
to use radiology images using a two-stage fine-
tuning strategy leads to similar or slightly worse
performance compared to training the language
model only or the language model and projection
layer together. Our annotation achieves 96% and
86% agreement for MIMIC-CXR and CheXpert
datasets, respectively.

Our annotators pointed out that one critical infor-
mation missing from MIMIC-CXR and CheXpert
datasets is imaging request, which typically indi-
cates specific clinical questions or reasons for the
exam. This context is essential in a real-world clin-
ical setting as it guides radiologists to focus on spe-
cific concerns when interpreting radiology images
or writing reports. Future work on constructing a
radiology report summarization dataset could in-
clude this information to guide the summarization
model in generating a more accurate IMPRESSION

section.

6 Isolating Dataset Characteristics And
Model Behavior With The Exclusive Set

As IMPRESSION section is written based on the
FINDINGS section, we hypothesize that FINDINGS

section contains enough information to generate the
IMPRESSION section. To test the effectiveness of
radiology images, we construct a controlled dataset
called the exclusive set, where some critical sen-
tences are removed from the FINDINGS section,
and can only be obtained from the image input. We
hypothesize that two-stage fine-tuning strategy will
outperform other methods on the exclusive set, as
it enables the model to leverage visual information
as discussed in the previous section.

To construct the exclusive set, we first ob-
tain three sets of diagnosis (binary) labels from
FINDINGS, IMPRESSION (using ChexBert (Smit
et al., 2020b)) and radiology images (using
TorchXRayVision (Cohen et al., 2022)) respec-
tively. For FINDINGS and IMPRESSION, each di-
agnosis label is associated with a target sentence,
which is used to justify whether a diagnosis is posi-
tive or negative. If a diagnosis is consistent across
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MIMIC-CXR OpenI CheXpert

Model Setting R-L RadG CBert R-L RadG CBert R-L RadG CBert

LLaVA-1.5 Proj 18.52 14.16 17.34 8.32 7.98 27.14 17.50 11.52 19.25
LM 27.27 22.32 28.03 8.31 7.22 27.14 36.10 23.67 20.47
Proj + LM 27.06 22.05 28.03 8.36 7.18 25.71 36.21 23.36 20.02
Proj → LM 30.19 26.12 38.20 8.40 7.06 31.43 38.71 29.72 24.68
Proj → Proj + LM 30.19 25.86 36.63 8.33 6.70 30.00 30.65 29.49 24.37

Qwen-VL Proj 13.46 15.37 16.20 7.20 8.52 27.14 28.77 13.90 19.33
LM 23.77 25.05 22.54 11.66 9.49 31.43 37.72 23.98 21.70
Proj + LM 23.89 24.95 22.69 11.43 9.32 28.57 37.81 24.02 22.23
Proj → LM 22.73 25.06 25.59 10.85 5.62 30.00 39.79 29.39 25.67
Proj → Proj + LM 23.03 25.53 26.59 10.09 5.39 30.00 40.25 30.03 26.81

DeepSeek-VL Proj 18.76 14.27 17.60 12.85 9.01 27.14 9.33 4.64 15.05
LM 25.67 20.70 22.95 12.84 8.72 25.63 31.59 18.87 17.49
Proj + LM 26.06 21.27 24.51 12.83 8.72 25.63 31.21 18.52 17.27
Proj → LM 30.58 26.47 38.10 13.11 8.61 28.97 37.67 28.97 21.16
Proj → Proj + LM 30.63 26.32 38.20 13.25 8.69 28.97 37.99 28.81 19.94

Table 5: The performance of LVLMs on the test sets of exclusive sets for MIMIC-CXR, OpenI, and CheXpert,
fine-tuned with different strategies. F1 score is reported for all evaluation metrics. The best score and upper bound
for all metrics are 100. RadG refers to RadGraph, CBert refers to ChexBert.

Figure 4: LLaVA-1.5 averaged attention weights on the visual token at generation.

all three label sets (i.e., all positive or all negative),
we remove the target sentence from FINDINGS,
such that the only source of information for this
diagnosis is the radiology image.

For instance, if the label, “Heart Enlargement”
is positive for FINDINGS, IMPRESSION, and the
corresponding radiology image, we create the ex-
clusive set by removing the target sentence from
the original FINDINGS. With this, the augmented
FINDINGS and the radiology images contain exclu-
sive information, where FINDINGS do not mention
about heart enlargement, while the radiology image
indicates heart enlargement.

The previous section shows that encouraging
LVLMs to utilize radiology images does not lead to
a performance gain. Two-stage fine-tuning strategy
achieves similar performance to training the lan-
guage model only or training the language model
and the projection layer together, though masking
image input leads to a significant performance drop.
Our medical expert annotation study also shows
that radiology images are not needed to write the
IMPRESSION section. To disentangle model perfor-
mance and dataset characteristics, we further train
and test models on the exclusive set. This exclusive

set enables us to test whether a multimodal model
is utilizing image input or not, as the radiology im-
age is the only source of information for the target
diagnosis.

Results From Table 5, we observe that models
trained with two-stage fine-tuning strategies (i.e.,
projection layer first, then the language model only
or with the projection layer) can achieve better over-
all performance. This suggests that such a training
strategy encourages the model to utilize image in-
put and integrate information from both modalities
more effectively. The first stage of training fine-
tunes the projection layer only with the language
model frozen, forcing the model to map visual fea-
tures to the language model representation space.
The second stage training trains the language model
and optionally with the projection layer, enables
the model to integrate multimodal information and
produce a more complete IMPRESSION section.

7 Discussion

Multimodal Radiology Summarization Is Ill-
Defined In a clinical setting, radiologists first
write the FINDINGS section based on a radiology
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image and write the IMPRESSION section based
on the FINDINGS section. Due to the nature of
how the IMPRESSION section is written, radiology
image is often unnecessary when writing the IM-
PRESSION section. This is confirmed by our med-
ical annotators (Section 5). Therefore, we argue
that a multimodal radiology report summarization
task is ill-defined, as in most examples, FINDINGS

section (text input) have provided enough informa-
tion to generate an accurate IMPRESSION section.
As we have shown that X-Ray images are not re-
quired to write the IMPRESSION section in general,
future work on multimodal radiology report sum-
marization should focus on identifying cases that
require additional input, other than the FINDINGS

section. We believe this insight may extend to other
multimodal tasks as well, particularly those where
multimodal inputs are added to tasks that are origi-
nally designed as single modality task, resulting in
limited contribution from the additional modality.
In such a case, the role of each modality should
be carefully evaluated before assuming its neces-
sity and effectiveness in model design, to avoid
modality collapse (Sim et al., 2025).

Multimodal Models Learn Shortcuts and Com-
pletely Ignore One Modality From the medi-
cal expert annotation study, we confirm that mul-
timodal inputs (FINDINGS section and radiology
image) in radiology report summarization dataset
are highly redundant, where the images are not
needed to generate the IMPRESSION section. These
training data causes the model to heavily rely on
text input, and ignore image input completely. This
is shown by our ablation experiments, where mask-
ing the image leads to minimal or no performance
changes, indicating that the model relies on text
cues in generating the IMPRESSION section.

Two-Stage Fine-tuning Forces Model to Align
Medical Concepts Our experimental results
showed that training the projection layer and the
language model sequentially encourages the model
to utilize both text and image modalities, mitigating
the problem of shortcut learning for multimodal
tasks. Specifically, the first training stage trains
the projection layer to project visual features to
the language model representation space, aligning
medical concepts to the vocabulary space. The sec-
ond training stage trains the language model, and
optionally the projection layer, to better integrate
multimodal inputs in the language model space.
This could be a solution for multimodal tasks that

require multimodal input integration, but are often
dominated by text modality during model training.

8 Related Work

8.1 Radiology Report Summarization

Early work on radiology report summarization fo-
cus on utilizing background information (Zhang
et al., 2018), attending medical entities from FIND-
INGS section (Sotudeh Gharebagh et al., 2020), us-
ing Graph Neural Networks (Hu et al., 2021, 2022)
and RadGraph score (Xie et al., 2023) to guide
radiology report summarization.

Some efforts have been made to incorporate
visual information from radiology images into
the summarization model (Delbrouck et al., 2021;
Wang et al., 2023; Nicolson et al., 2023), using
methods like medical vision-language model pre-
training (Kim et al., 2023), and retrieval-based
strategies (Wang et al., 2023). While these methods
yield marginal gains (Delbrouck et al., 2021; Kim
et al., 2023), it remains unclear whether models
truly attend to and utilize visual input.

8.2 Modality Contribution

Recent studies have investigated the contribution
of an input modality in multimodal models (Goyal
et al., 2017). Parcalabescu and Frank (2023,
2025) use Shapley-values to randomly mask im-
age patches and text tokens to measure the output
changes which reflects modality importance. Liang
et al. (2023a) proposed an information theory-
based framework to estimate a dataset’s multimodal
interaction and conducted an annotation study on
general domain datasets (Liang et al., 2023b). To
the best of our knowledge, our work is the first to
investigate the role of radiology image in radiol-
ogy report summarization, from model behavior to
medical expert annotation study.

8.3 Multimodal Summarization

Multimodal summarization attracts the interest of
the research community as it can utilize multiple
modalities and generate an informative summary
(Li et al., 2020; Im et al., 2021; Delbrouck et al.,
2021; Li et al., 2018; Atri et al., 2021). Some
works focus on pretraining vision-language models
(VLMs) (Dosovitskiy et al., 2020; Van Veen et al.,
2023; Radford et al., 2021). Specifically, Yu et al.
(2021) proposed the first general framework to fuse
visual information into pretrained language models
(PLMs) such as BART and T5, and this framework
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has been used as the baseline in multimodal sum-
marization tasks.

9 Conclusion & Future Work

In this work, we critically examined the effective-
ness of radiology images in multimodal radiology
report summarization. Through extensive model
analysis, input ablations, and medical expert anno-
tations, our results highlight the need to reassess
how multimodal models utilize different modal-
ities, and how multimodal tasks are formulated,
along with the necessity of multimodal inputs. Fu-
ture work should focus on reassessing multimodal
task definition, the modality imbalanced problem in
datasets, and involving expert annotation to better
reflect and align with real-world clinical decision-
making.

Limitations

Our study is limited to chest X-ray images within
the radiology domain. Hence, findings presented
in this paper may not generalize to other imaging
modalities such as CT or MRI, which may exhibit
different characteristics and cause different model
behavior. Additionally, the datasets used in this
study are collected from institutions in the United
States, where reporting styles and clinical work-
flows may differ from those in other regions. These
factors may influence the behavior of multimodal
models across diverse settings. Nonetheless, we
believe our empirical analysis provides insights
that are broadly informative and could guide future
research on multimodal learning in other domain-
specific tasks and datasets.
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A The Exclusive Set Construction

The exclusive set is constructed by obtaining three
sets of diagnosis labels from FINDINGS, IMPRES-
SION and the radiology images using the pretrained
ChexBert (Smit et al., 2020b) and TorchXRayVi-
sion (Cohen et al., 2022). If a diagnosis label agrees
in three sets of labels (i.e., all positive or all nega-
tive), we remove the sentence that is used to justify
the presence of absence of a diagnosis from the
FINDINGS section. We visualize the overview of
the construction process in Figure 5.

B Medical Expert Annotation Study

B.1 Annotation Guideline
Question: Can you write the IMPRES-
SION section with FINDINGS section
only, without using radiology image? (Y
/ N)

• For this question, you need to read
FINDINGS (column B) and Impres-
sion (column C), and decide if the
IMPRESSION section can be written
based on the provided FINDINGS

section only, without any other in-
formation like radiology images
and historical data.

• Answer Y (Yes) if the FINDINGS

section contains enough informa-
tion to write the provided IMPRES-
SION section.

• Answer N (No) if other information
is required to write the provided IM-
PRESSION section, and is missing
from the FINDINGS section.

B.2 Annotation Interface
We use Microsoft Excel for the annotation study.
We include a screenshot of the annotation interface

of our task in Figure 6

C Prompt Used For Summarization

For training and inference, we use the following
prompt for LLaVA-1.5, Qwen-VL, DeepSeek-VL,
and LLaVA-Med:

You are an expert multimodal medical
language model specializing in radiology.
Your task is to analyze both the Findings
section of a radiology report and the cor-
responding radiograph images to gener-
ate a concise, clear, and accurate Impres-
sion section. The Impression should: 1.
Integrate information from the written
report and visual findings in the radio-
graphs. 2. Highlight the most critical
findings while ensuring consistency be-
tween the text and image analysis. 3. Be
written in a formal tone suitable for med-
ical professionals. 4. Avoid unnecessary
repetition or extraneous details.

Here is the radiology image: <image>

Here is the Findings section: <Findings>

D Experimental Details

All experiments were run on a single A100 40GB
GPU. We use LVLMs weights from Hugging-
face, including LLaVA-1.5 (llava-1.5-7b-hf),
LLaVA-Med (llava-med-v1.5-mistral-7b),
Qwen-VL (Qwen2-VL-7B) and DeepSeek-VL
(deepseek-vl-7b-chat). All LVLMs are
fine-tuned with LoRA framework with 1 epoch
and batch size 4 on all three datasets due to
computational constraint. For all other models, we
train 25 epochs for MIMIC-CXR, 20 epochs for
CheXpert, and 10 epochs for OpenI, with batch
size 4 and early stopping based on ROUGE-2
score. Unless otherwise specified, we followed the
default hyperparameters and settings reported in
the respective original papers.

E Baseline Model Results

In Table 6, we report ROUGE-1, ROUGE-L, Rad-
graph, and ChexBert for all baseline models, with
and without image input (black image).

F Using Image Only As Input

We report results inference using image only as
input in Table 7.
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Figure 5: Overview of the dataset preprocessing and augmentation pipeline. Labels for FINDINGS, IMPRESSION,
and radiology images are obtained from ChexBert (Smit et al., 2020b) and TorchXRayVision (Cohen et al., 2022).
For diagnosis that aligns across all three label sources (e.g., “Heart Enlargement” is positive in three sets of labels in
this example), the target sentence is augmented (negation for conflicting set, removal for exclusive set).

Figure 6: An example of the annotation interface.

G Medoid Chest X-Ray As Input

Other than using a black image as input to test the
utilization of the image in multimodal summariza-
tion models, we also report results using medoid
chest x-ray image as input in Table 8.

H Two-Stage Fine-tuning Results

In Table 9, we report ROUGE-L, Radgraph and
ChexBert score for LVLMs trained with different
training strategies, inference with and without im-
age (black image).

I LLM as a judge

In Table 10, we report evaluation results on MIMIC-
CXR and OpenI using LLM-as-a-judge. Specifi-
cally, we use the ChexPrompt framework (Zam-
brano Chaves et al., 2025), which uses GPT-4 as
a backbone model to automatically evaluate gen-
erated reports and categorize six types of errors,

separately for clinically significant and insignifi-
cant cases.

We find that the text-only model BART generates
the fewest errors in most categories, consistent with
n-gram overlapping (ROUGE) and radiology factu-
ality metrics (F1-RadGraph and F1-ChexBert). For
instance, on MIMIC-CXR, BART has the fewest
false positive findings and omission of findings
compared to other LVLMs, but it has more insignif-
icant errors compared to other LVLMs.

J Case Studies

Based on the expert annotation study, we catego-
rize studies into three categories in Table 11: i)
average case, the FINDINGS section contains suf-
ficient information to construct the IMPRESSION

section; ii) FINDINGS section shorter than IMPRES-
SION section, and iii) FINDINGS section refers to
previous studies.
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MIMIC-CXR OpenI CheXpert

R-1 R-L RadG CBert R-1 R-L RadG CBert R-1 R-L RadG CBert

Text-Only Models

PG 40.14 36.84 26.72 54.44 57.80 57.27 48.76 84.53 42.70 37.49 14.39 42.00
BART 50.86 47.00 40.90 65.39 68.51 67.73 63.35 87.29 57.46 51.94 19.84 56.85
GSum 45.32 42.98 35.18 59.60 61.76 60.10 52.32 85.28 51.92 47.09 15.22 49.01
WGSum 43.92 41.55 31.17 58.92 60.52 58.67 50.36 84.73 44.64 41.02 14.89 45.00

Multimodal Models

VG-BART Dot 50.69 46.68 40.92 65.59 51.38 51.21 42.24 84.84 55.07 49.84 18.63 56.45
VG-BART MHA 50.64 46.89 41.10 65.33 56.30 56.14 47.08 84.23 54.63 49.02 18.70 55.60
CvT-BERT 43.85 44.32 37.76 58.52 60.12 57.91 50.16 84.10 49.01 44.56 18.90 51.00
Vilmedic 35.58 34.13 28.13 54.13 63.95 63.88 60.25 84.53 50.94 46.15 18.63 52.70
LLaVA-1.5 47.32 44.32 38.81 62.14 50.78 50.13 43.96 87.44 51.22 45.26 37.63 53.90
Qwen-VL 47.62 44.30 38.83 63.08 49.67 49.52 43.41 86.62 51.54 45.45 38.76 53.81
DeepSeek-VL 46.70 43.12 37.79 62.95 49.51 49.08 42.50 86.83 49.19 42.86 35.93 54.90
LLaVA-Med 47.58 44.53 38.81 62.98 50.91 50.93 44.18 88.41 51.64 46.01 38.61 57.27

Multimodal Models (Mask Image)

VG-BART Dot 50.67 46.59 40.92 65.58 51.38 51.21 42.25 84.84 55.15 49.85 18.65 56.50
VG-BART MHA 50.56 46.82 41.06 65.33 56.22 56.13 47.17 84.38 54.63 49.03 18.71 55.60
CvT-BERT 43.84 44.35 37.41 59.01 59.80 56.97 50.23 83.98 49.04 44.68 18.95 51.03
Vilmedic 35.66 34.18 27.63 54.08 63.87 63.72 60.33 84.15 50.94 46.14 18.63 52.70
LLaVA-1.5 47.31 44.08 38.95 62.95 50.78 50.13 43.96 87.44 50.91 44.93 36.18 54.50
Qwen-VL 47.69 44.38 39.04 63.08 46.68 49.55 43.41 86.62 50.97 44.71 35.93 54.90
DeepSeek-VL 46.78 43.13 37.89 63.17 48.95 48.50 42.10 86.68 47.14 40.94 26.99 51.90
LLaVA-Med 47.59 44.52 38.89 62.91 50.91 50.94 44.20 88.45 51.60 46.20 38.57 57.00

Table 6: The performance of all text-only and multimodal baseline methods on the test sets of MIMIC-CXR, OpenI,
and CheXpert datasets. F1 score is reported for all evaluation metrics. The best score and upper bound for all
metrics are 100. RadG refers to RadGraph, CBert refers to ChexBert.

K Dataset License

MIMIC-CXR is under the PhysioNet Credentialed
Health Data License 1.5.0. OpenI is publicly avail-
able and no license terms are stated. CheXpert is
also publicly available under the Stanford Univer-
sity Dataset Research Use Agreement.
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MIMIC-CXR OpenI CheXpert

Model Setting R-L RadG CBert R-L RadG CBert R-L RadG CBert

LLaVA Proj 13.43 7.67 44.62 4.27 2.38 25.50 2.71 1.47 57.58
LM 17.29 14.22 44.74 16.11 5.97 17.00 47.78 41.88 84.53
Proj + LM 17.30 14.22 44.74 14.90 5.77 14.75 47.25 39.29 84.53
Proj → LM 17.24 14.10 44.74 14.07 4.68 11.80 47.83 41.97 84.53

Deepseek-VL Proj 17.44 14.27 44.62 8.72 8.22 20.75 3.37 8.60 32.00
LM 17.99 14.76 44.93 25.51 9.92 18.35 47.90 42.10 84.53
Proj + LM 18.06 14.82 44.62 25.08 9.72 18.40 47.91 42.10 84.53
Proj → LM 18.05 14.92 44.91 17.82 6.62 22.40 47.91 42.10 84.53

Qwen-VL Proj 17.32 14.00 44.68 17.41 6.38 21.25 4.48 1.46 71.82
LM 16.89 13.25 44.81 17.67 5.50 14.80 47.78 42.00 84.53
Proj + LM 16.16 12.34 44.74 17.93 6.69 17.80 43.44 31.79 84.38
Proj → LM 15.00 9.83 44.74 15.90 5.67 11.35 47.92 42.13 84.53

Table 7: The performance of LVLMs on test sets of MIMIC-CXR, OpenI, and CheXpert datasets, using image only
as input. LVLMs are tested on FINDINGS and X-Ray image pairs. F1 score is reported for all evaluation metrics.
The best score and upper bound for all metrics are 100. RadG refers to RadGraph, CBert refers to ChexBert.

MIMIC-CXR OpenI CheXpert

R-1 R-L RadG CBert R-1 R-L RadG CBert R-1 R-L RadG CBert

VG-BART Dot 50.69 46.68 40.92 65.59 51.38 51.21 42.24 84.84 55.07 49.84 18.63 56.45
VG-BART MHA 50.63 46.85 41.11 65.33 56.31 56.15 47.10 84.30 54.59 49.11 18.70 55.60
CvT-BERT 43.85 44.32 37.76 58.52 60.08 57.87 50.12 84.04 49.05 44.61 19.01 51.03
Vilmedic 35.56 34.11 28.13 54.13 63.87 63.81 60.23 84.49 50.98 46.17 18.70 52.81
LLaVA-1.5 47.30 44.29 38.81 62.14 50.78 50.13 43.9 87.44 51.23 45.28 37.65 53.89
Qwen-VL 47.61 44.32 38.81 63.00 49.66 49.50 43.45 86.58 51.55 45.48 38.80 53.83
DeepSeek-VL 46.71 43.13 37.79 62.95 49.51 49.08 42.50 86.83 49.19 42.86 35.93 54.90
LLaVA-Med 47.60 44.55 38.85 63.01 50.93 50.94 44.21 88.45 51.62 46.00 38.60 57.28

Table 8: The performance of LVLMs using medoid image and FINDINGS section as input on test sets of MIMIC-
CXR, OpenI, and CheXpert datasets.

MIMIC-CXR OpenI CheXpert

Model Setting R-L RadG CBert R-L RadG CBert R-L RadG CBert

LLaVA-1.5 Proj 36.09 30.62 55.44 6.72 6.79 78.10 35.35 24.18 48.10
LM 44.32 38.80 62.14 49.98 43.96 87.44 45.26 37.63 53.90
Proj + LM 44.27 38.38 61.76 59.13 53.53 86.68 45.46 38.10 54.10
Proj → LM 44.06 38.34 61.76 50.33 44.05 87.90 45.42 37.79 53.20
Proj → Proj + LM 43.83 37.98 61.76 50.75 44.29 88.36 45.35 38.45 53.45

Qwen-VL Proj 36.76 31.44 56.45 6.69 8.33 85.45 40.25 29.13 50.50
LM 44.30 38.83 63.08 52.66 45.78 87.14 45.45 38.41 54.25
Proj + LM 44.41 39.26 63.52 62.90 58.24 87.60 45.43 38.50 53.95
Proj → LM 44.10 38.76 63.58 52.33 45.75 87.44 45.31 38.57 54.65
Proj → Proj + LM 44.10 38.62 63.14 52.11 45.61 87.90 45.59 38.30 54.85

DeepSeek-VL Proj 35.47 30.59 56.20 13.41 8.06 84.53 31.20 18.30 48.20
LM 43.12 37.79 62.95 49.01 42.50 86.83 42.86 34.11 50.25
Proj + LM 42.80 37.39 62.39 29.80 23.95 52.57 43.03 34.56 50.20
Proj → LM 42.72 37.80 63.45 48.81 42.54 86.06 42.67 34.15 52.40
Proj → Proj + LM 42.80 37.87 63.70 49.47 42.68 86.83 42.94 35.10 52.15

Mask Image

LLaVA-1.5 Proj 15.67 16.23 44.43 6.72 6.79 78.10 19.55 12.64 48.35
LM 44.12 38.95 62.95 49.98 43.96 87.44 44.88 36.18 54.50
Proj + LM 44.17 38.37 62.75 59.10 53.80 86.98 45.21 38.40 54.10
Proj → LM 33.87 29.58 54.88 50.30 43.92 89.13 33.12 15.98 50.60
Proj → Proj + LM 36.05 31.70 57.76 50.41 44.21 88.97 32.39 15.73 50.20

Qwen-VL Proj 13.07 16.52 44.68 5.99 8.00 82.54 17.29 13.69 48.15
LM 44.42 39.04 63.08 51.56 45.04 87.29 44.70 35.93 44.69
Proj + LM 44.54 39.29 62.77 62.41 57.84 86.98 44.82 37.95 44.72
Proj → LM 27.18 25.33 51.69 51.87 45.09 88.06 22.77 15.53 45.85
Proj → Proj + LM 28.34 26.31 52.00 52.07 45.11 87.75 23.23 15.36 46.80

DeepSeek-VL Proj 20.23 16.30 43.80 12.68 7.39 85.30 24.99 12.19 47.85
LM 42.85 37.36 62.70 48.46 42.10 86.68 40.93 26.99 51.90
Proj + LM 43.11 37.66 62.58 30.14 24.13 52.32 40.79 27.24 51.05
Proj → LM 37.01 32.80 54.13 47.86 41.44 86.06 32.97 15.34 50.55
Proj → Proj + LM 36.74 31.99 53.94 48.63 41.69 86.37 32.71 15.31 51.20

Table 9: The performance of LVLMs on the test sets of MIMIC-CXR, OpenI and CheXpert datasets, fine-tuned with
different strategies. F1 score is reported for all evaluation metrics. The best score and upper bound for all metrics
are 100. RadG refers to RadGraph, CBert refers to ChexBert.
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MIMIC-CXR

Number of Clinically Significant Error

FP. Findings Omission Findings Inc. Location Inc. Severity FP Comparison Omission Comparison

BART 414 637 16 157 2 244
LLaVA 443 755 11 118 1 253
QWen 449 702 13 134 1 266

Deepseek 481 663 17 132 2 256

Number of Clinically Insignificant Error

FP. Findings Omission Findings Inc. Location Inc. Severity FP. Comparison Omission Comparison

BART 41 1 3 1 10 0
LLaVA 37 1 3 2 6 0
QWen 27 0 2 4 2 0

Deepseek 36 1 1 2 6 0

OpenI

Number of Clinically Significant Error

FP. Findings Omission Findings Inc. Location Inc. Severity FP. Comparison Omission Comparison

BART 138 149 6 15 0 15
LLaVA 133 196 2 7 0 14
QWen 139 207 5 16 0 15

Deepseek 128 206 0 8 0 12

Number of Clinically Insignificant Error

FP. Findings Omission Findings Inc. Location Inc. Severity FP. Comparison Omission Comparison

BART 6 0 1 0 1 0
LLaVA 15 0 0 1 0 0
QWen 16 0 2 1 2 0

Deepseek 15 0 0 1 3 0

Table 10: Evaluation results on MIMIC-CXR and OpenI using ChexPrompt. We report 6 types of clinically
significant and insignificant errors as designed in ChexPrompt. We observe that the text-only model, BART,
generates the fewest errors in most categories, consistent with n-gram overlapping (ROUGE) and radiology
factuality metrics (F1-RadGraph and F1-ChexBert). * FP. refers to False Positive, Inc. refers to Incorrect.

a. Average case: FINDINGS section itself is sufficient to construct the IMPRESSION section

Findings: Single portable chest radiograph dated 12-30-2011 at 0303 demonstrates midline appearance of the trachea. The lung volumes are decreased,
and there is mild widening of the superior mediastinum likely secondary to position and technique. The lungs are otherwise clear. No focal pleural or bony
abnormalities are identified. Exam is limited by overlying trauma backboard.

Impression: 1. no radiographic evidence of acute cardiopulmonary disease. 2. mild widening of the superior mediastinum is likely secondary to technique
and projection. 3. no acute fracture or pneumothorax identified.

b. Short FINDINGS section

Findings: There is a persistent right-sided pleural effusion

Impression: Right sided pleural effusion persistent cardiomegaly and interstitial edema

c. Report referring to previous studies

Findings: A right subclavian venous catheter is seen with tip in the mid superior vena cava. Low lung volumes are appreciated. Vasculature and
cardiomediastinal silhouette is within normal limits.

Impression: 1. low lung volumes. cardiomediastinal silhouette and pulmonary vasculature are within normal limits. 57793358474 single portable
view of the chest: 1-19-2007 findings: interval increase in pulmonary edema is noted. impression: 1. interval increase in pulmonary edema.

Table 11: Based on the medical expert annotation, we split radiology reports into three categories: i) Average
Case, where FINDINGS section itself contains sufficient information to construct the IMPRESSION section; ii) Short
FINDINGS section, that cannot infer the IMPRESSION; and iii) Report referring to previous studies, require access to
previous studies to construct IMPRESSION section.
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