@inproceedings{dementieva-etal-2025-emobench,
title = "{E}mo{B}ench-{UA}: A Benchmark Dataset for Emotion Detection in {U}krainian",
author = "Dementieva, Daryna and
Babakov, Nikolay and
Fraser, Alexander",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.107/",
pages = "2025--2048",
ISBN = "979-8-89176-335-7",
abstract = "While Ukrainian NLP has seen progress in many texts processing tasks, emotion classification remains an underexplored area with no publicly available benchmark to date. In this work, we introduce **EmoBench-UA**, the first annotated dataset for emotion detection in Ukrainian texts. Our annotation schema is adapted from the previous English-centric works on emotion detection (Mohammad et al., 2018; Mohammad, 2022) guidelines. The dataset was created through crowdsourcing using the Toloka.ai platform ensuring high-quality of the annotation process. Then, we evaluate a range of approaches on the collected dataset, starting from linguistic-based baselines, synthetic data translated from English, to large language models (LLMs). Our findings highlight the challenges of emotion classification in non-mainstream languages like Ukrainian and emphasize the need for further development of Ukrainian-specific models and training resources."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dementieva-etal-2025-emobench">
<titleInfo>
<title>EmoBench-UA: A Benchmark Dataset for Emotion Detection in Ukrainian</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daryna</namePart>
<namePart type="family">Dementieva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolay</namePart>
<namePart type="family">Babakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>While Ukrainian NLP has seen progress in many texts processing tasks, emotion classification remains an underexplored area with no publicly available benchmark to date. In this work, we introduce **EmoBench-UA**, the first annotated dataset for emotion detection in Ukrainian texts. Our annotation schema is adapted from the previous English-centric works on emotion detection (Mohammad et al., 2018; Mohammad, 2022) guidelines. The dataset was created through crowdsourcing using the Toloka.ai platform ensuring high-quality of the annotation process. Then, we evaluate a range of approaches on the collected dataset, starting from linguistic-based baselines, synthetic data translated from English, to large language models (LLMs). Our findings highlight the challenges of emotion classification in non-mainstream languages like Ukrainian and emphasize the need for further development of Ukrainian-specific models and training resources.</abstract>
<identifier type="citekey">dementieva-etal-2025-emobench</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.107/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>2025</start>
<end>2048</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmoBench-UA: A Benchmark Dataset for Emotion Detection in Ukrainian
%A Dementieva, Daryna
%A Babakov, Nikolay
%A Fraser, Alexander
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F dementieva-etal-2025-emobench
%X While Ukrainian NLP has seen progress in many texts processing tasks, emotion classification remains an underexplored area with no publicly available benchmark to date. In this work, we introduce **EmoBench-UA**, the first annotated dataset for emotion detection in Ukrainian texts. Our annotation schema is adapted from the previous English-centric works on emotion detection (Mohammad et al., 2018; Mohammad, 2022) guidelines. The dataset was created through crowdsourcing using the Toloka.ai platform ensuring high-quality of the annotation process. Then, we evaluate a range of approaches on the collected dataset, starting from linguistic-based baselines, synthetic data translated from English, to large language models (LLMs). Our findings highlight the challenges of emotion classification in non-mainstream languages like Ukrainian and emphasize the need for further development of Ukrainian-specific models and training resources.
%U https://aclanthology.org/2025.findings-emnlp.107/
%P 2025-2048
Markdown (Informal)
[EmoBench-UA: A Benchmark Dataset for Emotion Detection in Ukrainian](https://aclanthology.org/2025.findings-emnlp.107/) (Dementieva et al., Findings 2025)
ACL