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Abstract

Multimodal Knowledge Graphs (MMKGs) en-
hance knowledge representations by integrat-
ing structural and multimodal information of
entities. Recently, MMKGs have proven ef-
fective in tasks such as information retrieval,
knowledge discovery, and question answering.
Current methods typically utilize pre-trained
visual encoders to extract features from im-
ages associated with each entity, emphasiz-
ing complex cross-modal interactions. How-
ever, these approaches often overlook the vary-
ing relevance of visual information across
entities. Specifically, not all entities bene-
fit from visual data, and not all associated
images are pertinent, with irrelevant images
introducing noise and potentially degrading
model performance. To address these is-
sues, we propose the Differentiated Vision for
Multimodal Knowledge Graphs (DVMKG)
model. DVMKG evaluates the necessity of
visual modality for each entity based on its
intrinsic attributes and assesses image quality
through representativeness and diversity. Lever-
aging these metrics, DVMKG dynamically ad-
justs the influence of visual data during feature
integration, tailoring it to the specific needs of
different entity types. Extensive experiments
on multiple benchmark datasets confirm the
effectiveness of DVMKG, demonstrating sig-
nificant improvements over existing methods.

1 Introduction

Multimodal Knowledge Graphs (MMKGs) extend
traditional knowledge graphs by integrating multi-
modal data, such as images and text, to overcome
the limitations of incomplete or ambiguous entity
representations that arise from relying solely on tex-
tual information(Liu et al., 2019). By incorporating
visual data , MMKGs generate richer entity embed-
dings, improving performance in downstream tasks,
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including knowledge graph completion (Xu et al.,
2024b; Cao et al., 2022; Liang et al., 2023b), en-
tity alignment(Li et al., 2023a; Lin et al., 2022)
and information retrieval(Dietz et al., 2018; Yang,
2020).

Existing MMKG approaches focus on the encod-
ing and fusion of different modalities (Chen et al.,
2024b): late fusion (Lu et al., 2022; Wang et al.,
2022; Li et al., 2022b) combine modality features
just before output, and early fusion (Fang et al.,
2022; Wei et al., 2023) integrate features earlier
to foster deeper cross-modal interactions. Recent
studies (Shang et al., 2024; Zhang et al., 2024c¢)
address the challenges of integrating visual infor-
mation by reducing noise through link-specific im-
age relevance and improving image-text matching
for long-tail entities. However, these methods as-
sume that the visual modality uniformly enhances
performance, neglecting to evaluate its necessity
for entities, thus lacking a systematic approach to
assess its entity-specific benefits.

To effectively harness visual knowledge in
MMKG:s, two critical aspects must be considered:
entity-level necessity and image-level selection.
As shown in Figure 1(a), experiments reveal that
randomly removing visual data—either by exclud-
ing all images for 10% of entities or 10% of im-
ages across all entities—can unexpectedly improve
model performance. This indicates that not all en-
tities benefit from visual features. For example,
as illustrated in Figure 1(b), entities with distinct
visual characteristics, such as FC_Schalke_04 gain
from visual data, which provides additional context
for predictive accuracy. Conversely, abstract enti-
ties like Norwegian_ language often lack relevant
visual cues, and including such data may fail to cap-
ture their conceptual depth, potentially degrading
performance. At the image level, when multiple
relevant images are available, selecting those that
meaningfully enhance the entity representation is
essential. As illustrated with FC_Schalke_04, im-
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Figure 1: (a) Experimental results of randomly removing part of the visual modality. The y-axis shows the relative
change compared to the model with all images (baseline, y=0). Positive values indicate improvement, while negative
values indicate degradation. (b) Visual data improves performance for concrete entities (e.g., "FC_Schalke_04") but
diminishes it for abstract ones (e.g., "Norwegian_language").

ages are evaluated based on representativeness and
diversity. The team logo, with its high representa-
tiveness score, captures the club’s identity, while
diverse images like team photos and stadium views
provide broader perspectives, supporting a well-
rounded understanding. Balancing representative-
ness and diversity prevents overfitting to specific
visual cues and enhances the richness of entity rep-
resentations in the knowledge graph.

To address the above issues, we introduce the
Differentiated Vision for Multimodal Knowledge
Graphs (DVMKG) Model, which classifies entities
as abstract or concrete based on inherent properties
and assigns a visualizability score to determine the
necessity of visual data for each entity. At the entity
level, a large language model (LLM) assigns a visu-
alizability score to each entity, determining its need
for visual data. For image selection, we leverage
object detection and Pretrained Vision-Language
Model (PVLM) to evaluate semantic alignment, en-
suring visual accuracy while promoting diversity to
reflect various entity facets. A multi-head attention
mechanism dynamically adjusts visual embeddings
according to entity-specific requirements, and inter-
modal contrastive learning aligns representations
across modalities. Finally, a weighted fusion layer
integrates these embeddings to optimize the multi-
modal representation. Our main contributions are
summarized as follows:

¢ We introduce the DVMKG model, which cate-
gorizes entities as abstract or concrete and as-
signs visualizability scores to prioritize those
benefiting most from visual data, while opti-
mizing image selection using representative-
ness and diversity metrics.

* We employ a multi-head attention mechanism
and inter-modal contrastive learning to dy-
namically adjust and align visual embeddings,
fused via a weighted mutan layer for a com-
prehensive multimodal representation.

* We validate DVMKG on three widely used
datasets, demonstrating its effectiveness in
enhancing MMKG representations through
entity-specific visual integration.

2 Assessing Visual Modality in MMKG

In MMKG, visual modality can enhance knowl-
edge graph representation, yet its necessity varies
across entities. Even for entities that benefit from
visual information, the most suitable images differ.
This section explores how to identify entities that
require visual information and select images to rep-
resent them, addressing this challenge at two levels:
entity level and image level. At the entity level,
we assess the relevance of visual data by scoring
entity visualizability. At the image level, we focus
on selecting images for entities to capture essential
characteristics while maintaining diversity.

2.1 The definition of MMKG

Multi-modal Knowledge Graph. A MMKG can
be formally defined as G = (£, R, M, T) , where
& is the set of entities, R is the set of relations
between entities, M = {s, v, t} is the set of multi-
modal data, where s, v, t denote structural, visual,
textual modality, and 7 = {(h,r,t)|h,t € E,r €
R} represents the relational triples of the knowl-
edge graph. Each triple in the graph is represented
as (h,r,t, mp, m;), where h and t are head and tail
entities, r is the relation between them, and my,
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Figure 2: Overview of the DVMKG. At the Entity Level, LLM generate an entity visualizability score (EVS).
At the Image Level, vision-language models assess representativeness and diversity, which are combined into a
representativeness-diversity score (RDS) to adjust visual embeddings. Visual (e¢?), structural (e®), and textual (e?)
embeddings are fused through contrastive learning and Weight Modality Fusion to provide the final prediction.

m; are the multi-modal information attached to the
respective entities.

2.2 Assessing Entity Visualizability

Not all entities in the MMKG benefit from the vi-
sual information. Concrete entities, such as person
type entities, are readily associated with distinct vi-
sual forms, whereas abstract entities, like language
or culture type entities, are difficult to be described
by visual attributes. We introduce the following
definition based on their degree of abstraction or
concreteness:

Non-visualizable Entity (NVE): Entities lack-
ing a direct visual representation due to their ab-
stract nature.

Visualizable Entity (VE): Entities with a clear,
concrete visual representation.

Recognizing that concreteness and abstraction
exist on a continuum rather than as binary oppo-
sites(Villani et al., 2022). To quantify this, we
introduce the Entity Visualizability Score (EVS),
a continuous measure ranging from 0 to 1, where 0
denotes highly abstract, non-visualizable entities,
and 1 denotes highly visualizable entities.

To assign EVS to entities, we leverage a LLM
guided by prompt engineering strategies, detailed
in Appendix B. The LLM’s extensive prior knowl-
edge improves the accuracy of visualizability es-
timation. Given that LLMs struggle with ab-
stract concepts compared to concrete ones (Liao

et al., 2023), we enhance their capability by in-
tegrating two information sources: (1) textual
entity descriptions and (2) structural informa-
tion from entity triples. The structured triples
are transformed into natural language sentences
(e.g., the triple"<Orlando_Engelaar, current_team,
FC_Schalke_04>" is converted to the sentence
"Orlando Engelaar plays for FC Schalke 04"),
thereby enriching the contextual cues available to
the model.

2.3 Evaluating the Representativeness and
Diversity of Visual Information

In the previous section, we identified entities that
benefit from visual modality at the entity level.
However, for entities associated with multiple im-
ages, selecting the most effective images for repre-
sentation is essential. To address this, we evaluate
visual modality at the image level using two met-
rics: Representative Image Score and Diversity
Image Score (RDS).

2.3.1 Representative Image Score

Concrete entities are often associated with a diverse
set of images. For instance, a public figure may
appear in various contexts, such as formal events
or casual moments, each reflecting different facets
of their identity. To quantify the representativeness
of an image I; for a given entity e, we propose a
scoring mechanism that integrates two components:
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a PVLM and the object detection component. The
method ensures that the selected image aligns with
the entity’s name and resembles its typical visual
representation.

Let I = {1, 1s,...,1I,} denote the set of im-
ages related to entity e. The representative image
score Sgep (1, €) for each image I; is computed as
a weighted sum:

Sgep (Iiye) = a-Spyrm, +(1—a) - Sop, (1)

where o € [0, 1] is a weighting parameter balanc-
ing the contributions of the two components.

PVLM Component: The PVLM evaluates the
alignment between an entity’s name name(e) and
the image I;. It generates a similarity score, trans-
formed via the Sigmoid function o

Sevimp (1i, €) = o (PVLM(Z;, name(e))). (2)

Here, PVLMp(I;, name(e)) denotes the raw simi-
larity score output by the PVLM.

Object Detection Component: A typical im-
age Iy, 1s selected to encapsulate the entity’s key
visual characteristics (details are provided in Ap-
pendix C.1). The object detection component mea-
sures the visual similarity between [;and the typical
image Iy, of an entity e:

Sop(Li, Iryp) = max

) (cos (05, Ityp)),  (3)
ol €0bj(1;)

where Obj(I;) is the set of detected objects in im-
age I;, oj represents the j-th detected object. The
maximum similarity ensures that the most repre-
sentative object in I; is considered.

2.3.2 Diverse Image Score.

While representativeness focuses on core charac-
teristics, diversity ensures that the chosen set of
images reflects a broader range of the entity’s at-
tributes. The diversity image score Sp;, for an
image I; of entity e evaluates the image’s align-
ment with the entity’s textual description and its
uniqueness compared to other images:

Spiv(li,€) = B-SpyLMm,, (1is €)+(1=8)-Sun(ls, 1), (4)

where (3 € [0, 1] balances the contributions of the
PVLM and uniqueness components.

PVLM Component for Diversity: Unlike the
representativeness score, this component aligns
the image with keywords extracted from the en-
tity’s textual description ¢. For example, en-
tity FC_Schalke_04 described as "a professional

German football and multi-sports club from
Gelsenkirchen," keywords such as "football" and
"German" guide the selection of diverse images,
such as football-related scenes and German culture.
Let key(t) = (ki1,ka,...,kn) denote the set of
keywords from the textual description £. The score
is:

Sevimp = Y o(PVLM(I;, k). (5)
kj€key(t)

This aggregates the similarity scores between I;
and each keyword, capturing a wider range of vi-
sual attributes.

Uniqueness Component: The uniqueness score
Stn (I, I) ensures that I; provides distinct infor-
mation by comparing it to other images in I:

Stn = ﬁ Z(l —cos(V(1;), V(I))), (6)
J#i

where V' (I;) represents the feature vector of /; ex-
tracted by the PVLM, n is the number of images
of e.

By combining Sg., and Spi,,, we select images
that both align with the entity’s core identity and
capture its diverse attributes. This dual-scoring
framework enhances the visual modality’s role in
MMKGs, providing a richer and more comprehen-
sive entity representation.

3 Methodology

To effectively leverage the visual modality needs
of different entities, we propose the DVMKG
framework. The EVS and RDS serve as key in-
puts to our framework, integrating entity-specific
visual demands into the Multimodal Knowledge
Graph Completion (MKGC) task. As shown in
Figure 2, we first introduce the pre-trained en-
coders for different modalities. We then detail
the Entity-Specific Visual Weight Adjustment (ES-
VWA) module, inter-modal contrastive learning,
and the Weighted Modality Fusion mechanism.

3.1 Multiple Modality Feature Encoding

We use pretrained encoders to encode each modal-
ity in the MMKG, complementary representations
for subsequent fusion and learning. The embed-
dings obtained from the structural, visual, and tex-
tual modalities are denoted as ES, EV, and Et,
respectively. The detailed process is described in
Appendix C.5.

20173



3.2 Entity-Specific Visual Weight Adjustment

This ESVWA module dynamically adjusts the con-
tribution of visual embeddings based on each en-
tity’s specific visual modality requirements and the
quality of the available visual data. This adaptive
mechanism enhances the entity’s representation
during multimodal fusion.

The EVS and the RDS are first stacked along the
feature dimension to consolidate them into a unified
tensor representation I € R2*?, with d represent-
ing the embedding dimension. Next, the stacked
tensor is projected into a lower-dimensional space
using a linear transformation:

Liis = W1 -1+ by, @)

where W7 € R*2 and b, € R? are learnable
parameters.

To further refine the visual embeddings, a self-
attention mechanism is applied. The input to the
self-attention layer is the projected tensor 1,;5; and
the output of the self-attention mechanism is:

T
A = softmax (QL) V,
vV

Q = WQ . IviS7K = WK . IViS7V = WV . Ivis~

(3

Here, Q, K, V are the query, key, and value ma-
trices derived from L,;s. Wq, W, Wy, € R4
are learnable parameters of the attention layer. Fi-
nally, A are applied to the initial visual modality
embeddings E" refining the visual representation:

E, = AOEy, (©))

where ® denotes element-wise multiplication, en-
suring that the contribution of each dimension in
the visual embedding is scaled according to its dy-
namically computed importance.

3.3 Inter-modal Contrastive Learning

To ensure consistency across modalities and reduce
interference, we employ inter-modal contrastive
learning to align entity representations. The con-
trastive loss is defined as:

L:CL:— Z Zlogz

p,geEM €T

)

10)
where M = {s, v, t} denotes the set of multimodal
data. e and e are embeddings of entity ¢ from
modalities p and g, respectively, and 7 is a temper-
ature parameter that controls similarity sensitivity.

3.4 Weight Modality Fusion

Inspired by the Mutan model (Ben-Younes et al.,
2017), we introduce a weighted modality fusion
layer that integrates modality-specific embeddings
with entity-specific visual importance:

WMF(E®, EY,E%) = (W.E®) © (W,E")) ® (W,E*) ,
an
where W, W, and W, are the learnable weight
matrices, and ® denotes element-wise multiplica-
tion. The multimodal embedding E™™ is:

E™™ = ReLU (WMF (E*, E,,E*)). (12)

3.5 Training

To assess the difference between predicted values g
and true labels y, we employ the cross-entropy loss
function, which measures the discrepancy between
actual values and the predicted outputs. Specifi-
cally, the modality-specific cross-entropy loss £s
is computed as follows:

€]

w? -
Lo = T S Wi - log(@i,p)) (13)

pEM i=1
+ (1 = yi,p) - log(1 — Jip),

where wP is the weight for modality p, M =
{s,t,v,mm} denotes the set of modalities, and
€ represents the set of entities. The total loss is
defined as:

Liotal = Lar + ALcrL, (14)

where ) is a hyperparameter that balances the con-
tribution of the two loss terms.

4 Experiments

4.1 Experimental Basic Setup

We evaluate our model on three widely adopted
multimodal knowledge graph (MMKG) datasets:
DB15K(Liu et al., 2019), YAGO15K(Liu et al.,
2019) and FB15K-237(Mousselly-Sergieh et al.,
2018). To assess the effectiveness of our proposed
DVMKG model, we compare it with representa-
tive baselines from both unimodal and multimodal
knowledge graph completion methods. All imple-
mentation details, including experimental settings
and hyperparameter choices, are provided in Ap-
pendix C.

4.2 Main Experiment

As shown in Table 1, DVMKG consistently
achieves state-of-the-art results in the MKGC task,
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DB15K YAGO15K FB15K-237
Hits@l Hits@3 Hits@l0 MRR Hits@l Hits@3 Hits@10 MRR Hits@l Hits@3 Hits@10 MRR
Unimodal methods
TransE (Bordes et al., 2013) 0.128 0.315 0.471 0.249 0.185 0.271 0.381 0.201 0.198 0.376 0.441 0.294
DistMult (Yang et al., 2015) 0.148 0.263 0.396 0.230 0.215 0.316 0.438 0.291 0.199 0.301 0.446 0.241

ConvE (Dettmers et al., 2018) 0.219 0.328 0.507 0.294
TuckER(Balazevié et al., 2019)  0.233 0.380 0.480 0.330
KC-GenRe (Wang et al., 2024) 0.240 0.385 0.483 0.336

0.168 0.261 0.426 0.267 0.237 0.356 0.501 0.325
0.183 0.276 0.457 0.281 0.261 0.394 0.536 0.353
0.188 0.280 0.460 0.282 0.256 0.387 0.533 0.329

MPIKGC (Xu et al., 2024a) 0.227 0.373 0.475 0.321 0.180 0.275 0.459 0.280 0.267 0.395 0.543 0.358
Multimodal methods

IKRL (Xie et al., 2016) 0.141 0.349 0.491 0.268 0.162 0.247 0.346 0.251 0.194 0.284 0.458 0.309
TransAE (Wang et al., 2019) 0.213 0.312 0.412 0.281 0.177 0.262 0.359 0.268 0.199 0.317 0.463 0.315
RSME (Wang et al., 2021) 0.241 0.321 0.402 0.298 0.233 0.319 0.414 0.305 0.242 0.344 0.467 0.331
VISTA (Lee et al., 2023) 0.247 0.350 0.469 0.308 0.280 0411 0.485 0.347 0.240 0.343 0.468 0.335
IMF (Li et al., 2023b) 0.251 0.362 0.482 0.329 0.288 0.396 0.499 0.360 0.267 0.396 0.551 0.360
SNAG (Chen et al., 2024a) 0.247 0.407 0.528 0.345 0.310 0.423 0.519 0.384 0.234 0.365 0.520 0.329
AdaMF (Zhang et al., 2024b) 0.253 0411 0.529 0.351 0.307 0.426 0.525 0.385 0.268 0.397 0.539 0.359
DVMKG(Ours) 0307 0.424" 0.538" 0.386"  0.360" 0.470" 0.534" 0.419°  0.285"  0.413" 0.568" 0.379"

Table 1: Experimental results on datasets from MMKG. The most competitive baseline results are underlined and
the best outcomes are highlighted in bold. The superscript * denotes statistically significant improvement (p < 0.05).

outperforming all unimodal and multimodal base-
lines across the three benchmark datasets. This
underscores the efficacy of our approach in lever-
aging entity-specific visual information. Among
the unimodal methods, MPIKGC and KC-GenRe
, which utilize large language models (LLMs), ex-
hibit strong performance relative to other unimodal
techniques. Despite this advancement within uni-
modal strategies, these LLM-enhanced unimodal
models are generally surpassed by several mul-
timodal approaches. This suggests that while
advanced textual understanding is beneficial, in-
tegrating visual modalities provides complemen-
tary information that significantly enhances overall
MKGC performance.

4.3 Ablation Experiment
4.3.1 Impact of Scoring Modules

To assess the contribution of the two scoring mod-
ules that guide the adjustment of the visual repre-
sentations of the entities, we performed ablation
experiments under three conditions: (1) w/o EVS:
removing the Entity Visualizability Score; (2) w/o
RDS: removing the Representative Image Score
and Diversity Image Score; (3) w/o EVS+RDS: re-
moving both EVS and RDS simultaneously.

As shown in Table 2, the ablation studies confirm
the effectiveness of EVS, RDS, and their combina-
tion in refining the visual modality. The elimination
of either scoring module degrades overall perfor-
mance. Notably, the entity visualizability score
exerted a greater influence compared to the repre-
sentativeness and diversity scores, indicating that

Model Hits@1 Hits@3 Hits@10 MRR
DVMKG 0.360 0.447 0.534 0.419
-w/o EVS 0.345 0.430 0.521 0.406
-w/o RDS 0.347 0.432 0.525 0.408
-w/o EVS+RDS  0.341 0.427 0.517 0.401
Table 2: Ablation study on YAGO15K.
Model MSE MAE
GPT-40 (Achiam et al., 2023) 0.0855 0.2126
DeepSeek-v3 (Liu et al., 2024) 0.0930 0.2354
GLM-4-plus (GLM et al., 2024) 0.0820 0.2124
Gemini-2.0-pro (Team et al., 2025) 0.0810 0.2126
Qwen2.5-Max (Yang et al., 2024)  0.0620 0.1943
-w/o triples 0.0875 0.2270
-w/o text 0.1211  0.2760
-w/o text+triples 0.1400  0.2980

Table 3: Scoring entities based on Visualizability.

for entities with lower-quality visual data, adjust-
ing the visual modality is likely more critical than
determining the relative weight of the image in the
final embedding.

4.3.2 Ablation Study on LLM-Based
Visualizability Scoring

Evaluating LLM Performance for Visualizabil-
ity Scoring. To evaluate the performance of dif-
ferent LLMs and validate the effectiveness of each
component in our LLM-based scoring mechanism,
we conducted an ablation study. We manually anno-
tated 10% of the entities with visualizability scores
for the test set. The comparison of different LLMs
in Table 3 demonstrates varying levels of perfor-
mance in visualizability scoring, with Qwen2.5-
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Max achieving the best results. We also compares
different LLM configurations in this task. Only
using entities provides baseline performance, while
adding structural and textual descriptions progres-
sively improves accuracy. These results highlight
that integrating structural and textual information
significantly enhances the LLM’s accuracy in as-
sessing visualizability, providing a reliable measure
of entity abstraction and concreteness.

Analysis of EVS Distribution and Its Impact.
The overall distribution and the domain-specific
distributions of EVS are illustrated in Figure 3.
Overall distribution reveals significant variations
in EVS across different entities, indicating that the
LLM effectively distinguishes the visualizability
needs of entities. In the domain of "Language &
Culture," the EVS values are generally lower due to
their abstract nature, reflecting that entities in this
domain rely less on visual modality. In contrast,
entities in the "Footballer" domain exhibit higher
EVS values.

As shown in Figure 4, the radar chart illustrates
Hit@1 various EVS ranges. Notably, DVMKG
consistently outperforms the other models, partic-
ularly in the lower EVS ranges (0-0.2). This high-
lights DVMKG's ability to handle entities with low
visualizability effectively by dynamically adjust-
ing the weight of the visual modality. As EVS
increases, the performance gap narrows, indicating
that most models benefit from highly visualizable
entities. Nevertheless, DVMKG maintains a advan-
tage across all EVS ranges.

The bar chart further validates the superiority
of the DVMKG model in specific domains. In

IMF SNAG "' AdaMF " DVMKG
14

]
10 [

Time (h)

S N A & X

DB15K YAGO15K FB15K-237

Figure 5: The results of the efficiency experiment.

the Language & Culture domain, DVMKG signifi-
cantly outperforms other models, demonstrating its
ability to effectively handle the visual information
needs of abstract entities. In the Footballer domain,
DVMKAG also excels, further proving its robustness
in processing concrete entities.

Effectiveness of components in representative-
ness and diversity scoring is presented in Ap-
pendix D and E.

4.4 Efficency Analysis

In the efficiency experiment, we compared the
training times of IMF, SNAG, AdaMF, and our
proposed DVMKG model. As shown in Figure
5, DVMKG achieved the shortest training time
in all datasets. The IMF model employs a two-
stage fusion, maintaining moderate efficiency. The
Transformer-based architecture used in SNAG re-
sults in the longest training time due to its complex-
ity. AdaMF employs adaptive modality weights
but remains less efficient than our model. DVMKG
integrates LLM and PVLM to enhance visual un-
derstanding capabilities. While leveraging these
advanced models typically increases computational
complexity, DVMKG achieves a balance between
performance and efficiency. Although an LLM is
part of the architecture, its primary role is confined
to a straightforward scoring task. Furthermore,
DVMKG’s design incorporates a simpler model
architecture and exhibits faster convergence speed.
This rapid convergence is facilitated by effective
initialization. By doing so, DVMKG minimizes un-
necessary computational load, focusing resources
on entities where visual information is most rele-
vant.
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0.1

head / relation / prediction

head / relation / prediction

head / relation / prediction

Query IMF: Taylor_Swift/ award / grammy IMF: Orlando_Engelaar/ playsFor / FC_Schalke_04 X% IMF: Norwegian_language/ spokenin / Norway X
: RSME: Taylor_Swift / award / grammy RSME : Orlando_Engelaar/ playsFor / FC_Schalke_04 +#  RSME: Norwegian_language/ spokenin / Norway X
Triplets Ours: Taylor_Swift / award / grammy Ours: Orlando_Engelaar/ playsFor / FC_Schalke 04 + Ours: Norwegian_language/ spokenln / Norway
Ours(w/oERS):  Taylor_Swift / award / grammy Ours(w/o ERS) : Orlando_Engelaar/ playsFor / FC_Schalke 04 X Ours(w/oERS): Norwegian language/ spokenln / Norway X

Figure 6: Case study of visual modality evaluation for different entities. This figure presents a comparative analysis
of the visual modality evaluation for three different entities from the dataset: "Taylor_Swift," "FC_Schalke_04," and
"Norwegian_language." Each entity is characterized by its description, images, visual score, and corresponding

knowledge graph query triplets.

4.5 Case study

To intuitively analyze our experimental results, we
conducted case studies by selecting one entity each
from the high, intermediate and low entity visual-
izability score categories. We compared two mod-
els: IMF, which employs a parameterization to ad-
just the contribution of each modality, and RSME,
which selectively integrates relevant visual data to
optimize entity representations by filtering out less
impactful information. We also included an abla-
tion study, referred to as "ours(w/o ERS)," where
both EVS and RDS were removed to eliminate their
combined effect on the visual modality. As shwon
in Figure 6, we can further notice through the case:

» "Taylor_Swift"(High EVS): As a highly visu-
alizable entity, Taylor Swift’s visual informa-
tion effectively complements other modalities,
requiring minimal adjustments. In this case,
all models successfully made the correct pre-
diction.

e "FC_Schalke_04"(Intermediate EVS): In this
case, its associated images include those
that are representative (e.g., team logos and
group photos) and others that are less relevant.
Our DVMKG and RMSE model reduced the
weight of the visual modality and irrelevant
images to minimize interference, which led
to successful predictions. However, the IMF
and "DVMKG-w/o ERS" failed due to limited
modality adjustment.

* "Norwegia_language"(Low EVS): DVMKG
dynamically lowers the visual modality’s

weight, relying on textual and structural data
for correct predictions. RSME fails by filter-
ing low-scoring images without accounting
for entity-specific visual needs.

These case studies demonstrate the effectiveness
of our model in dynamically adjusting the visual
modality based on the visual score of each entity.
By selectively reducing or emphasizing visual in-
formation, our approach optimally integrates visual
data to enhance the representation of MMKGs.

5 Conclusion

In this paper, we propose the DVMKG model to
address the critical challenge of effectively inte-
grating visual information in MMKGs, that not
all entities benefit equally from visual data and
not all images are pertinent. At the entity level,
DVMKG evaluates the degree of visualizability for
each entity. At the image level, DVMKG assesses
the quality of associated images through compre-
hensive representativeness and diversity scores.
Based on these scores, DVMKG dynamically ad-
justs the influence of visual information during the
feature integration process, employing techniques
such as multi-head attention for refined visual em-
beddings and contrastive learning for cross-modal
alignment. Our extensive experiments conducted
on multiple benchmark datasets robustly demon-
strate DVMKG'’s superiority over existing meth-
ods. The results confirm that an entity-specific
approach to visual modality integration can signifi-
cantly enhance the representational capabilities of
Multimodal Knowledge Graphs.
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6 Limitations

Although the DVMKG model demonstrates sig-
nificant effectiveness in its current application, an
exciting direction for future development would be
to extend the DVMKG framework to incorporate
other data types, like audio or interactive media,
which could further enhance the depth and versatil-
ity of multimodal knowledge graph representations.
Additionally, a valuable area for future investiga-
tion is to explore the application of DVMKG’s
entity-specific visual assessment principles more
widely. This includes potential uses in a broader
range of image-enhanced natural language process-
ing, such as multimodal question answering, topic
detection, and document classification.

7 Ethics Statement

To the best of our knowledge, this work does not
involve any discrimination, social bias, or private
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A Related Work
A.1 MMKG Representation Learning

MMKG representation learning methods focus on
integrating diverse data modalities such as text and
images within knowledge graphs, enhancing the
modeling and understanding of complex data struc-
tures and improving entity representations (Fang
et al., 2022; Wang et al., 2022; Liang et al., 2023a).
By incorporating such diverse information, these
methods are able to enrich entity representations
and improve reasoning in multimodal scenarios.
For instance, MMKRL (Lu et al., 2022) employs
attention and gating mechanisms for cross-modal
interactions, resulting in more robust entity repre-
sentations in noisy or incomplete data scenarios.
Building on this, MMRotatH (Wei et al., 2023) fa-
cilitates the incremental integration of new modali-
ties without requiring full model retraining, ensur-
ing adaptability in dynamic environments. Addi-
tionally, DuMF (Li et al., 2022b) fuses visual and
textual content to enrich entity representations by
capturing complementary information from differ-
ent modalities. MARS (Zhang et al., 2022) further
enhances entity representations by incorporating
multimodal data to improve analogical reasoning,
thereby producing more accurate and comprehen-
sive embeddings in knowledge graph tasks.

A.2 Visual Modality Integration in
Multimodal Representation

In recent years, the integration of multimodal data
has gained significant traction across various fields,
as it enables models to leverage complementary
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information from diverse modalities. The selec-
tion, processing, and fusion of visual modalities
have become pivotal to improving representation
learning. Existing research often approaches this
from two perspectives: refining the image modality
internally and improving cross-modal alignment
between visual and textual data. For intra-Visual
Modality, images are divided into common and in-
novation components, with joint sparse representa-
tion used to model both shared and unique features
(Yu et al., 2011). TransFusion (Bai et al., 2022)
further develop a soft-association mechanism using
self-attention to adaptively focus on relevant vi-
sual details, handling image quality variations and
enriching visual feature representation. For cross-
modal alignment, CAT filters informative image-
text pairs to reduce noise (Radenovic et al., 2023).
Oscar (Li et al., 2020) improves image-text pairing
by using object tags as anchor points, facilitating
semantic alignment across modalities and achiev-
ing state-of-the-art results in vision-language tasks.
Similarly, BLIP (Li et al., 2022a) removes noisy
data by filtering image-text pairs based on simi-
larity, followed by recaptioning to enhance data
quality for downstream tasks.

In MMKG, few studies adapt visual integration
to the unique characteristics of knowledge graphs,
such as entity diversity, relationship complexity,
and varying visual relevance across entities. Fur-
thermore, knowledge graphs often contain entities
that differ significantly in visual relevance, which
means a one-size-fits-all approach to visual inte-
gration may introduce noise or dilute essential tex-
tual and structural information. This underscores
the need for targeted methods like our DVMKG
model, which adjusts visual integration based on
entity-specific attributes to enhance knowledge rep-
resentation.

B Prompts of LLM

In this study, we employed the prompt illustrated in
Figure 7 to input key entity information, including
Entity Name, Entity Description and the Entity
Triple, into a large language model.

Entity Textual Descriptions: The first compo-
nent includes the textual description of the entity
in a template format, designed to convey the en-
tity’s defining characteristics. The template used
for this purpose is: "[Entity]: [Definition Text]."
This template standardizes the description input
to the LLM, facilitating its interpretation of the

Description:

Given the entity name, textual description, and its
triple structure information from a multimodal knowl-
edge graph, evaluate how easily the entity can be vi-
sually represented. Use the following criteria when
assigning a visualization score:

NVE (Non-visualizable Entity): Entities that do not
have a discernible visual form and cannot be repre-
sented visually, lacking a direct visual equivalent.
VE (Visualizable Entity): Entities that are easily vi-
sualized and have a distinct, concrete visual represen-
tation.

Scoring: 1. Assign a score ranging from O to
1, where O indicates a strong alignment with Non-
visualizable Concepts and 1 indicates a strong align-
ment with Visualizable Concepts.

2. The score should reflect the degree to which an
entity can be visually represented or conceptualized.

Input Format:

1. Entity Name: {entity_name}

2. Entity Description: {entity_description}

3. Entity Triple: {triple_structure}

Output Format:

Output should include the entity name followed by
its visualizability score, formatted as:

1. Entity Name: {entity_name}

2. Score: {score}

Figure 7: Prompt for generating an Entity Visualizability
Score.

entity’s visualizability.

Triple Structure Information: Each entity’s
contextual relationships within the knowledge
graph are also considered, as these relationships
often reveal the role and characteristics of the en-
tity. To enhance the LLM’s comprehension, we
transform structured triples into natural language
sentences using templates designed for each rela-
tion. For instance, the relation “current_team’ is
expressed in natural language as: "[X] plays for
[Y]". This conversion enables the LLM to better
interpret the entity’s role within its relational con-
text. For example, the triple "<Orlando_Engelaar
current_team FC_Schalke 04>" is converted to:
"Orlando Engelaar plays for FC Schalke 04."

C Experiments Setup

C.1 Datasets

To validate the performance of the proposed model,
we set three widely public datasets: DB15K(Liu
et al., 2019), YAGO15K(Liu et al., 2019) and
FB15K-237(Mousselly-Sergieh et al., 2018), all
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Datasets #Ent. #Rel. #Train #Valid #Test
DB15K 12,842 279 79,222 9902 9904

YAGO15K 15,404 32 86,020 12,289 24,577
FB15K-237 14,541 237 272,115 17,535 20,466

Table 4: Datasets statistics.

of which contain three types of modal data related
to their entities: structural information, images and
text. Table 4 summarizes key dataset statistics, in-
cluding entity and relation counts, and the sizes of
the training, validation, and test sets.

Selection of the typical image (I,,,) in section
2.3.1. We prioritize using the entity’s main cover
image from its Wikipedia page. If such a cover
image is not available for an entity (the entity is
not on Wikipedia or lacks a cover image there),
Iy, 1s then chosen through manual selection from
the images associated with that entity within the
dataset, picking the one deemed most visually rep-
resentative.

C.2 Evaluation Indicators

To ensure consistency with previous studies and
evaluate the performance of the DVMKG model,
we select four common MKGC evaluation metrics:
Mean Reciprocal Rank (MRR) and Hits@k (k =1,
3, 10).

C.3 Baselines

To evaluate the DVMKG model, we compare
it against SOTA methods from both KGC and
MKGC domains. For unimodal methods, we se-
lect several key baselines, including TransE (Bor-
des et al., 2013), DistMult (Yang et al., 2015),
ConvE (Dettmers et al., 2018), TuckER (BalaZe-
vi¢ et al., 2019), KC-GenRe (Wang et al., 2024)
and MPIKGC (Xu et al., 2024a). For the multi-
modal methods, which serve as the main focus of
comparison, we evaluate our model against several
representative approaches, including IKRL (Xie
et al., 2016), TransAE (Wang et al., 2019), RSME
(Wang et al., 2021), VISTA (Lee et al., 2023), IMF
(Lietal., 2023b), SNAG (Chen et al., 2024a) and
AdaMF (Zhang et al., 2024b).

C.4 Implementation Details

All the experiments are run on a 125 G RAM
computer with CPU Intel(R) Xeon(R) Silver 4110
CPU at 2.10 GHz and NVIDIA V100 GPU. All
the reported results are the average of three dif-
ferent runs following the current practice. For

the baselines in the main experiment, we ensured
consistency by uniformly tuning hyperparameters,
tuning the embedding dimension in {64, 128,
256, 512} and the number of negative samples
in {16, 32, 64}. We optimize the model with
Adam(Diederik, 2014) and the learning rate is
tuned from {1e=3, 1le~%, 1e75}..

C.5 Multiple Modality Feature Encoding

We encode each modality in the MMKG to capture
their unique characteristics, resulting in rich and
complementary representations that serve as a ro-
bust foundation for subsequent fusion and learning
processes.

Structural Modality. We employ the Long-
CLIP (Zhang et al., 2024a) encoder to obtain the
initial embeddings for both entities and relations
based on their respective names. To fully exploit
the graph’s structural information, we enhance
these embeddings with a Graph Attention Network
(GAT) (Goodfellow et al., 2014), which aggregates
information from neighboring nodes and relations,
enriching them with higher-order dependencies and
relational context.

Visual Modality. All images associated with
each entity are encoded using the Long-CLIP en-
coder. Since entities may have multiple images,
we aggregate these embeddings into a single vi-
sual representation per entity according to the RDS,
ensuring that the selected images reflect both rele-
vance and quality.

Textual Modality. We extract embeddings from
textual descriptions using the Long-CLIP encoder,
leveraging its ability to align visual and textual
modalities within a shared embedding space.

D Effectiveness of Components in
Representativeness Scoring
Mechanisms.

To evaluate the effectiveness of each component
in Equation 1 for calculating image representative-
ness scores, we defined a ranking task that assesses
the extent to which the selected images represent
the entity. In this task, for a given entity, the vi-
sual representation formed by its selected images
was used as the query. The correct answer is the
representation of the entity’s name, which serves
as the positive sample, while representations of 99
other randomly selected entity names were used
as negative samples. The similarity between the
entity’s visual representation and each of the 100
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| Representative Task | Diversity Task

Model | Hits@1 MRR | Scene Diversity ~ Object Diversity
baseline 0.685 0.744 23.95 16.11
w/o Spv v 0.717 0.773 25.39 16.16
w/o Sop 0.741 0.796 - -
w/o Sun - - 26.42 16.31
DVMKG 0.774 0.825 27.06 16.35

Table 5: Results for the representative image selection
ranking task and diverse score task on YAGO15K.
—-Hit@1 —~-MRR

Scene Diversity Object Diversity
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0.78 - 1 081 275 16.5
27 16.4

0.76 + 079
y 26.5 o + 163

0.74 1+ 0.77
26 - + 16.2
0.72 075 pee 1/ 1 161

0.7 073 25 16
0 02 04 06 08 1 0 02 04 06 08 1

a B

Figure 8: Hyperparameter for the representative im-
age selection ranking task and diverse score task on
YAGO15K.

entity representations (one positive, 99 negative)
was computed, converting the problem into a rank-
ing task. Key metrics include Hits@1 and MRR.
The goal is to see how well the selected images
allow the visual representation to rank the correct
entity name representation higher than the negative
samples.

Table 5 presents the performance of different
methods on the representative image selection task.
The Sop represents the object detection in Equa-
tion 1. Compared to the baseline of averaging all
available images (without selection), all selection
methods show improved results. Object detection
and PVLM individually enhance image selection
quality, while the combined method achieves the
highest scores on Hits@1 and MRR. The experi-
mental results of the hyperparameter oz combining
Object Detection and PVLM are shown in Figure 8.
By combining object detection and vision-language
alignment, our method provides a more representa-
tive visual representation of entities.

E Effectiveness of Components in
Diversity Scoring Mechanisms.

To evaluate the effectiveness of each component
in calculating image diversity scores, we introduce
two metrics: Object Diversity and Scene Diversity.
This is derived based on scene distributions and KL
divergence calculations.

Scene diversity is derived from scene classifica-
tion probabilities for each image, obtained through

a pretrained ResNet50 model (He et al., 2016) fine-
tuned on the Places365 dataset (Zhou et al., 2017).
Places365 provides a broad classification of 365
scene categories, including environments like bed-
rooms, restaurants, and beaches, which are used
to represent diverse contexts. For each image, we
compute a scene distribution p(y|x), where p(y|x)
represents the probability of the image belonging
to each scene category. This distribution is calcu-
lated by applying a softmax function to the raw
output logits of ResNet50. To determine the diver-
sity across all images associated with an entity, we
calculate the average scene distribution p(y) for
the entity’s image set. The diversity score is then
quantified by computing the Kullback-Leibler (KL)
divergence between the scene distribution of each
image p(y|x) and the average scene distribution
p(y). The final Diverse Score is obtained by tak-
ing the exponential of the expected KL divergence,
expressed as:

IS = exp (Ex [KL(p(ylz)|p(y))]).  (15)

Object diversity follows a similar procedure, ex-
cept that instead of scene classification, we use an
object detection model to identify objects within
each image.

As shown in Table 5, the combined method
Sun + Spv s outperforms all other methods in
both Scene Diversity and Object Diversity. The
experimental results of the hyperparameter S5 are
shown in Figure 8. The synergy between the Sy,
and Spy 1y methods effectively captures a wider
range of scenes and objects. The experimental
results confirm the effectiveness of the proposed
diversity scoring mechanisms.
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