@inproceedings{ji-etal-2025-generalizable,
title = "A Generalizable Rhetorical Strategy Annotation Model Using {LLM}-based Debate Simulation and Labelling",
author = "Ji, Shiyu and
Hashemi, Farnoosh and
Chen, Joice and
Pan, Juanwen and
Ma, Weicheng and
Zhang, Hefan and
Pan, Sophia and
Cheng, Ming and
Mohole, Shubham and
Hassanpour, Saeed and
Vosoughi, Soroush and
Macy, Michael",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.1117/",
pages = "20482--20503",
ISBN = "979-8-89176-335-7",
abstract = "Rhetorical strategies are central to persuasive communication, from political discourse and marketing to legal argumentation. However, analysis of rhetorical strategies has been limited by reliance on human annotation, which is costly, inconsistent, difficult to scale. Their associated datasets are often limited to specific topics and strategies, posing challenges for robust model development. We propose a novel framework that leverages large language models (LLMs) to automatically generate and label synthetic debate data based on a four-part rhetorical typology (causal, empirical, emotional, moral). We fine-tune transformer-based classifiers on this LLM-labeled dataset and validate its performance against human-labeled data on this dataset and on multiple external corpora. Our model achieves high performance and strong generalization across topical domains. We illustrate two applications with the fine-tuned model: (1) the improvement in persuasiveness prediction from incorporating rhetorical strategy labels, and (2) analyzing temporal and partisan shifts in rhetorical strategies in U.S. Presidential debates (1960{--}2020), revealing increased use of affective over cognitive argument in U.S. Presidential debates."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ji-etal-2025-generalizable">
<titleInfo>
<title>A Generalizable Rhetorical Strategy Annotation Model Using LLM-based Debate Simulation and Labelling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shiyu</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Farnoosh</namePart>
<namePart type="family">Hashemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joice</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juanwen</namePart>
<namePart type="family">Pan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weicheng</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hefan</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Pan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shubham</namePart>
<namePart type="family">Mohole</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saeed</namePart>
<namePart type="family">Hassanpour</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soroush</namePart>
<namePart type="family">Vosoughi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Macy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Rhetorical strategies are central to persuasive communication, from political discourse and marketing to legal argumentation. However, analysis of rhetorical strategies has been limited by reliance on human annotation, which is costly, inconsistent, difficult to scale. Their associated datasets are often limited to specific topics and strategies, posing challenges for robust model development. We propose a novel framework that leverages large language models (LLMs) to automatically generate and label synthetic debate data based on a four-part rhetorical typology (causal, empirical, emotional, moral). We fine-tune transformer-based classifiers on this LLM-labeled dataset and validate its performance against human-labeled data on this dataset and on multiple external corpora. Our model achieves high performance and strong generalization across topical domains. We illustrate two applications with the fine-tuned model: (1) the improvement in persuasiveness prediction from incorporating rhetorical strategy labels, and (2) analyzing temporal and partisan shifts in rhetorical strategies in U.S. Presidential debates (1960–2020), revealing increased use of affective over cognitive argument in U.S. Presidential debates.</abstract>
<identifier type="citekey">ji-etal-2025-generalizable</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.1117/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>20482</start>
<end>20503</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Generalizable Rhetorical Strategy Annotation Model Using LLM-based Debate Simulation and Labelling
%A Ji, Shiyu
%A Hashemi, Farnoosh
%A Chen, Joice
%A Pan, Juanwen
%A Ma, Weicheng
%A Zhang, Hefan
%A Pan, Sophia
%A Cheng, Ming
%A Mohole, Shubham
%A Hassanpour, Saeed
%A Vosoughi, Soroush
%A Macy, Michael
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F ji-etal-2025-generalizable
%X Rhetorical strategies are central to persuasive communication, from political discourse and marketing to legal argumentation. However, analysis of rhetorical strategies has been limited by reliance on human annotation, which is costly, inconsistent, difficult to scale. Their associated datasets are often limited to specific topics and strategies, posing challenges for robust model development. We propose a novel framework that leverages large language models (LLMs) to automatically generate and label synthetic debate data based on a four-part rhetorical typology (causal, empirical, emotional, moral). We fine-tune transformer-based classifiers on this LLM-labeled dataset and validate its performance against human-labeled data on this dataset and on multiple external corpora. Our model achieves high performance and strong generalization across topical domains. We illustrate two applications with the fine-tuned model: (1) the improvement in persuasiveness prediction from incorporating rhetorical strategy labels, and (2) analyzing temporal and partisan shifts in rhetorical strategies in U.S. Presidential debates (1960–2020), revealing increased use of affective over cognitive argument in U.S. Presidential debates.
%U https://aclanthology.org/2025.findings-emnlp.1117/
%P 20482-20503
Markdown (Informal)
[A Generalizable Rhetorical Strategy Annotation Model Using LLM-based Debate Simulation and Labelling](https://aclanthology.org/2025.findings-emnlp.1117/) (Ji et al., Findings 2025)
ACL
- Shiyu Ji, Farnoosh Hashemi, Joice Chen, Juanwen Pan, Weicheng Ma, Hefan Zhang, Sophia Pan, Ming Cheng, Shubham Mohole, Saeed Hassanpour, Soroush Vosoughi, and Michael Macy. 2025. A Generalizable Rhetorical Strategy Annotation Model Using LLM-based Debate Simulation and Labelling. In Findings of the Association for Computational Linguistics: EMNLP 2025, pages 20482–20503, Suzhou, China. Association for Computational Linguistics.