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Abstract

Large Language Models (LLMs) are widely
used for a variety of tasks such as text gen-
eration, ranking, and decision-making. How-
ever, their outputs can be influenced by var-
ious forms of biases. One such bias is posi-
tional bias, where models prioritize items based
on their position within a given prompt rather
than their content or quality, impacting on how
LLMs interpret and weigh information, poten-
tially compromising fairness, reliability, and ro-
bustness. To assess positional bias, we prompt
a range of LLMs to generate descriptions for
a list of topics, systematically permuting their
order and analyzing variations in the responses.
Our analysis shows that ranking position af-
fects structural features and coherence, with
some LLMs also reordering or omitting top-
ics. Nonetheless, the impact of positional bias
varies across different LLMs and topics, indi-
cating an interplay with other related biases.

1 Introduction
Large Language Models (LLMs) are widely used
for text generation, ranking, and evaluation tasks.
However, they exhibit distinct biases that can im-
pact their reliability, fairness, and robustness (Shi
et al., 2024). One such bias, positional bias, oc-
curs when the placement of information within a
prompt influences the model’s output (Shi et al.,
2024). This bias can lead to systematic prioritiza-
tion of inputs based on order rather than content.

Specifically, an item’s position within a list given
as part of a prompt may influence how LLMs de-
scribe, emphasize, or interpret its importance, lead-
ing to inconsistent judgments. For example, in
content generation tasks like summarization, ques-
tion answering, and text completion, LLMs may
disproportionately prioritize information appear-
ing earlier in a prompt, affecting coherence and
informativeness (Ko et al., 2020; Tian et al., 2024).
In ranking and scoring applications, such as ma-
chine translation assessment or essay grading, bias

toward the first or second option can result in un-
fair rankings (Wang et al., 2023). Similarly, in
structured tasks (like chain-of-thought reasoning),
positional bias may distort logical consistency by
prioritizing certain steps (Liu et al., 2024).

Positional bias not only undermines the fairness
of LLM-generated assessments but also raises con-
cerns about their robustness across contexts and
domains. Moreover, understanding biases in LLMs
is critical given their increasing role in generating
educational (Moore et al., 2023; Tan et al., 2024),
informative (Muñoz-Ortiz et al., 2024; Fang et al.,
2024), and decision-support content. When mod-
els systematically favor items based on position
rather than content, they may subtly shape human
preferences, judgments, and beliefs in ways that go
unnoticed. For instance, biased ordering in gener-
ated summaries, comparisons, or lists could mis-
lead users about what is most relevant or important
(e.g., as shown for decision making tasks (Rey et al.,
2020)). While some studies have revealed ranking
biases in LLMs, the study of positional effects in
list-based prompts has received less attention. To
address this gap, we conduct a systematic eval-
uation of positional bias in LLM-generated lists,
aiming to answer the following research questions:

• RQ1: How do positional effects manifest in
terms of structural and coherence features in
LLM-generated descriptions of listed items?
• RQ2: To what extent do the observed posi-
tional effects stem from the LLM’s biases rather
than the inherent characteristics of topics?

Our study contributes to addressing this gap by
providing a systematic, cross-model analysis of
how topic order affects generation outcomes across
different families of LLMs. To this end, we prompt
LLMs to generate descriptions for a list of topics,
systematically varying their order to analyze how
the generated descriptions change as a function of
position, aiming at uncovering patterns of topic pri-
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Figure 1: Schematic steps of the applied method

oritization, structure and coherence shifts linked
to position, or the specific characteristics of the
selected topics themselves. We not only quantify
structural and content-level variations but also sur-
face qualitative differences in how models treat
position-sensitive inputs. Our findings reveal that
positional bias affects not only the structure and
coherence of outputs but also the relative attention
and completeness of item descriptions, with varia-
tions across models and topics.

2 Related Work
While LLMs have gained popularity, research on
positional bias is still limited. Prior studies have
demonstrated that LLMs exhibit positional bias
in decision-making tasks, often favoring options
based on their placement rather than intrinsic qual-
ity (Li et al., 2024; Shi et al., 2024; Zheng et al.,
2023; Wang et al., 2023; Koo et al., 2023; Pan-
ickssery et al., 2024), for example, by prioritizing
early and, to a lesser extent, late information, while
overlooking the middle (Liu et al., 2023; Ravaut
et al., 2024).

This bias has been shown to be not random, and
to vary across tasks, LLMs, and candidate simi-
larity, with inconsistencies in how LLMs assess
options (Shi et al., 2024). Also, while prompt
length has been shown to have small effects on
bias, bias direction has been inconsistent across
tasks (Shi et al., 2024). Beyond positional bias,
research has also identified verbosity bias (favoring
longer responses) and self-preference bias (Zheng
et al., 2023; Panickssery et al., 2024), while Koo
et al. (2023) introduced a benchmark identifying
six types of biases, including selection preferences
based on response length, author and order.

Our study extends prior work on positional bias,
which has largely focused on selection tasks and
pairwise comparisons with direct/reverse order-
ings (Wei et al., 2024; Pezeshkpour and Hruschka,
2023). Rather than selecting items from a list, in
our study, LLMs generate responses for each item
in a list, enabling analysis of both selection ten-
dencies and quality-related metrics. We systemat-
ically evaluate all possible permutations of items,

offering a more comprehensive view of positional
effects. Additionally, our analysis spans a broad
set of LLM families, allowing us to assess whether
these effects generalize across architectures.

3 Task and Methodology
Figure 1 provides a schematic overview of the ap-
plied method for evaluating positional biases in
LLMs’ responses, illustrating topic selection, de-
scription generation (along with the prompt used
for each LLM) and description evaluation1.

Topic selection. We selected six diverse topics,
Albert Einstein, World War II, Quantum Comput-
ing, Climate Change, Blockchain, and the James
Webb Telescope, covering historical, scientific, and
technological domains or categories. These topics,
commonly found in trivia games, represent gen-
eral knowledge and public interest while varying
in complexity and controversy. Selection criteria
included relevance in scientific discourse, presence
in widely available training data, and potential to re-
veal variations in response quality. This approach
follows prior studies on LLM biases (Hu et al.,
2024; Tao et al., 2024), which highlighted the role
of topic diversity in assessing LLM behavior, as
they may exhibit varying biases across subject ar-
eas, which might reflect underlying cultural values.

Description generation. To study LLMs in their
natural setting, we prompted each model with the
list of selected topics and asked it to generate a
short description for each2. We did not enforce
a structured output (e.g., numbered lists or bullet
points), allowing the models to generate responses
in their own natural style. This choice follows re-
cent findings that enforcing specific output formats
can significantly impact LLM performance (Long
et al., 2024; Tam et al., 2024) biasing model be-
haviour, and may degrade reasoning (Tam et al.,
2024). While our approach better captures the
model’s natural decision-making, also introduced
variability in how descriptions were formatted and

1Additional details can be found in Appendix A.
2We refer to these descriptions as "list-based descriptions".
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separated, creating challenges for downstream ex-
traction. Given this variability in structure and
length, we opted for a cosine similarity–based ap-
proach using sentence and topic embeddings rather
than fixed criteria to reliably identify and extract
individual topic descriptions3.

We evaluated 12 LLMs from 5 different
providers, including open-source and commercial,
ensuring a diverse range of architectures and appli-
cation domains. The evaluation included4 OpenAI
(GPT-3.5 Turbo, GPT-4o, GPT-4o mini), Meta
(LLaMA 3.2 1B, LLaMA 3.2 3B), Google (Gemma
2 2B, Gemma 2 27B, Gemini 1.5 Flash, Gemini
1.5 Flash-8B, Gemini 2.0 Flash), UpstageAI
(Solar 10B), and Mistral AI (Mistral).

Description evaluation. As part of our evalua-
tion, we considered two temperature settings: each
model’s default value (ranging between 0.5 and 1)
and a fixed temperature of 0.5. To account for re-
sponse variability due to inherent randomness, we
ran each model on all topic permutations 3 times,
generating 2,160 topic descriptions per model.
Comparison to reference descriptions. We defined
reference descriptions as those generated by each
LLM when prompted with a single topic in isola-
tion rather than in a list. These serve as baselines to
assess how descriptions generated from topic lists
differ due to positional bias. Evaluation is based on
percentile ranks, TF-IDF cosine similarity, BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004) to
measure lexical and structural alignment. TF-IDF
is preferred over embeddings (e.g., BERT) as it
better captures phrasing and word choices, while
embeddings focus on semantics, meaning descrip-
tions could be highly similar even if using entirely
different words or structures.
Characterization of descriptions. We examined
LLM-generated descriptions’ positional effects by
analyzing the distribution of key structural and co-
herence metrics across ranking positions. These
included5 readability (Flesch Reading Ease (FRE)
(Flesch, 1948)), information content (Kolmogorov
Complexity - compression ratio (KC) (Ming Li,

3We validated our automated splitting strategy (Ap-
pendix A.1.2) against a manual segmentation approach, find-
ing high similarity. This supports the method’s reliability and
scalability. Further details in Appendix B.2.

4We also considered 3 additional models that were ex-
cluded during evaluation: WizardLM-2 (answered in lan-
guages other than English), Qwen 2.5 (inconsistent answers),
and Phi-3 (incoherent answers).

5A description of these metrics and others included in the
analysis can be found in Appendix A.2.2.

2019)) and lexical properties (String Length and
Named Entity Density). We also assessed whether
LLMs omitted or reordered topics. For evaluating
topic reordering we computed the Kendall’s Tau
corelation. We tested for significant differences
across ranking positions using unpaired sample
tests (with α = 0.01), to identify whether spe-
cific positions consistently resulted in lower or
higher-quality descriptions, potentially revealing
positional biases in LLM outputs.
Correlation of description characteristics. We as-
sessed description stability using Spearman corre-
lations across ranking positions and topics based
on their input positions across multiple runs, as-
sessing the model’s consistency in handling infor-
mation order. High correlations suggest consistent
description characteristics regardless of position.
Low correlations suggest that positions influence
descriptions unevenly, meaning some topics are
more sensitive to positional changes than others,
hinting at a topic-dependent rather than uniform
positional bias.

4 Experimental Analysis

RQ1: Positional effects in descriptions.
Characterization of descriptions per ranking posi-
tion. Figure 2 shows score distribution for a selec-
tion of metrics and LLMs across ranking positions
and topics6. FRE scores varied significantly across
ranking positions, particularly for LLaMA, GPT, and
Gemini 1.5 Flash-8B, with higher scores at
the top positions. Despite these variations, top-
ics maintained a consistent relative readability or-
der across positions, indicating that while position
influenced readability, relative differences across
topics remained stable, suggesting that LLMs’ re-
sponses were primarily affected by position. LLaMA
and Gemma showed the most significant differences
across all positions, whereas GPT models exhib-
ited differences mainly at the top and last positions.
Topics followed a consistent ranking pattern for
KC, even more pronounced for FRE. Named En-
tity Density was less affected by ranking position,

6We report results obtained with the default tempera-
ture setting because they might better reflect realistic us-
age scenarios in which some degree of randomness is ex-
pected and desirable to avoid overly deterministic outputs.
While temperature 0.5 led to slightly lower variability and
fewer outliers, the overall trends, correlations, and distri-
bution shapes were consistent across both configurations.
A more detailed analysis, a comparison with the results
observed for temperature 0.5 and additional charts can be
found in Appendix C. Code and more charts can be found in
https://github.com/hcai-mms/positional-bias-llms
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Figure 2: Score distribution per position across topics

with variations mainly at the last position, partic-
ularly for LLaMA 3.2, GPT-4o, and Gemma 2 2B.
GPT-4o mini was the only model displaying sig-
nificant differences across all positions. In con-
trast, String Length followed a U-shaped pattern,
with longer responses at the first and last positions
and shorter ones in between. Solar produced no-
tably shorter responses than the other LLMs while
maintaining Named Entity Density, suggesting a
distinct summarization approach7. Unlike other
metrics, for String Length, the lack of clear topic-
based separation hints that ranking position, rather
than topic, plays a dominant role in determining
response length.
Topic ordering. Most models preserved input order,
with Kendall’s Tau values close to 1, except for
LLaMA 3.2 1B, Gemma, and Mistral. Gemma 2
2B displayed the most reordering, often inverting
ranks and clustering related topics (e.g., science).
Mistral and Gemma 2 27B made occasional swaps,
while LLaMA 3.2 1B showed moderate reordering,
particularly in middle to last positions.
Missing topics per position. Figure 3 shows the
missing topics per position8. LLMs primarily omit-

7More qualitative examples can be found in Appendix C.4.
8Although the metrics results for the three runs of each

permutation were averaged, for this analysis they were not
summarized, hence the maximum number of missing topics is
720× 3× 6. The Figure includes models missing positions.

Figure 3: Percentage of missing positions per LLM.

ted topics at the last position, with Gemini 1.5
Flash-8B and Gemma 2 2B missing topics across
all positions, and LLaMA 3.2 1B also missing top-
ics at the top. Gemini 1.5 Flash-8B exhibited
a uniform omission pattern (i.e., it consistently
missed topics at all positions, even missing all top-
ics altogether), while LLaMA 3.2 3B showed varied
last-position omissions, with certain topics omitted
more frequently than others.

Key findings. Ranking position affected readabil-
ity, complexity, and response length, with earlier
positions being generally more readable and more
complex (higher KC), and later positions more
prone to truncation or omission. While readabil-
ity shifts reflected presentation style rather than
changes in topic difficulty, response complexity
and length showed strong position-based patterns,
often resembling primacy/recency effects. The
strength and form of these effects varied across
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models, with some showing clearer neglect of mid-
dle positions, pointing to architecture (or training)
specific biases rather than a universal behavior.

RQ2: LLM bias vs. topic influence in positional
effects.
Comparison with reference descriptions. The anal-
ysis showed misalignments, with the reference
descriptions scores often being statistical outliers
when compared to the list-based output, and rarely
aligning with median position scores. While
list-based descriptions showed moderate/high TF-
IDF similarity to reference ones, they primarily
rephrased content rather than replicating it, as indi-
cated by low BLEU and moderate ROUGE scores9.
Position influenced word choice and phrasing with-
out altering core content.

Reference descriptions were consistently longer
reflecting models’ preference for brevity in multi-
description outputs. Topic treatment varied, with
some models showing position-dependent align-
ment (e.g., Mistral aligned inconsistently across
positions, while Gemini 2.0 Flash showed no
alignment). Most models favored first and last po-
sitions over middle ones. The stronger alignment
of reference descriptions with certain positions sug-
gested that LLMs adjusted linguistic features differ-
ently for single versus list-based outputs, highlight-
ing the complexity and variability of these biases.
Characterization of topic descriptions across rank-
ing positions. Both ranking position and topic influ-
enced scoring, though effects varied across LLMs.
While general ranking scoring effects appeared in
some models (e.g., GPT-3.5 Turbo assigned lower
FRE scores to later positions, while LLaMA 3.2 did
so for top positions), other models displayed topic-
specific trends, such as Gemini 1.5 Flash assign-
ing lower KC scores to top positions for Climate
Change and Quantum Computing. Correlations
were inconsistent, with some models maintaining
stability while others fluctuated by topic. FRE
score dispersions were generally similar, except for
LLaMA 3.2, showing greater variation for Quan-
tum Computing, Albert Einstein, and World War II,
indicating uneven sensitivity to ranking position.

Named Entity Density preserved relative topic
relationships but showed little ranking scoring in-
fluence, aside from some position-specific trends
in Gemini (e.g., Gemini 1.5 Flash-8B assigned
lower scores to top positions and higher to mid-
dle ones). String Length exhibited the strongest

9Charts can be found in the Appendix C.2.

ranking scoring effects, with Solar showing near-
perfect correlations and Gemini displaying strong
but slightly varied patterns. These results reinforce
how positions and topics shape LLM behavior, with
biases differing across models and metrics.
Key findings. Positional bias was confirmed, but
its effects were not uniform and interacted with
topic-related priors. Certain topics showed stronger
variation across positions, while others remained
stable, indicating that training data or preconcep-
tions shape how LLMs encode content. Some top-
ics were also more likely to be simplified or omitted
at later positions, suggesting implicit prioritization.
While core content was usually preserved, as TF-
IDF similarity suggested, surface-level phrasing
and ordering varied, showing that positional bias
often affects how information is framed rather than
its semantics. Moreover, no topic behaved consis-
tently across models, highlighting that both archi-
tecture and data influenced positional sensitivity.

5 Conclusions
This study shows that positional bias in LLM-
generated responses is real and multifaceted.
Across metrics and models, we found that ranking
position systematically influenced structural and
lexical features of outputs, including readability,
complexity, and length. While some models also
reordered or omitted topics, others produced consis-
tent outputs, highlighting that positional effects are
not universal but instead vary across architectures
and families.

Moreover, our study shows that positional bias
does not operate in isolation. It interacts with
model-specific training patterns and topic-specific
priors, meaning that variation arises not only from
list position but also from how models encode and
prioritize different kinds of content. Some models
exhibited clear position-based scoring trends, while
others showed topic-dependent shifts in framing or
emphasis. This variability suggests that mitigation
strategies may need to be tailored to models rather
than assuming a single correction method.

Overall, understanding and mitigating positional
bias is critical for fairness, transparency, and re-
liability in LLM applications. Left unaddressed,
these biases could distort information presentation,
subtly shaping user perceptions and decisions. By
surfacing both systematic patterns and model- or
topic-specific nuances, our work contributes empir-
ical evidence to guide the evaluation and mitigation
of positional bias in large language models.
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Limitations

We acknowledge several limitations that should
be addressed in future works. First, we focused on
lists of length six, which, while reasonable, may not
capture how positional biases manifest in shorter
or longer lists. Second, our topic selection was
limited primarily to technical and natural-scientific
subjects, potentially limiting the generalizability of
our findings. Future work could explore a broader
range of topics, including mainstream and obscure
subjects and assessing how similar topics (e.g.,
Blockchain vs. distributed ledger technology) are
treated in different positions in the same list. Ad-
ditionally, mixing real and fake topics could pro-
vide further insights into LLM behavior. Third,
we did not test prompt variations, such as explic-
itly instructing the model to follow the input or-
der, prioritize or focus on specific positions, or
include unrelated instructions to examine potential
confusion effects (e.g., ask the LLM about the rela-
tionship between the topics in the second and last
position). Fourth, we relied solely on automated
metrics. Nonetheless, human evaluations could of-
fer deeper insights into the perceived quality and
fairness of responses. Fifth, we did not account
for temporal or iterative effects, though real-world
interactions of users and LLMs often involve users
refining their inputs or reordering lists, potentially
influencing positional biases over multiple turns.
Exploring these aspects could offer a more compre-
hensive understanding of positional bias in LLMs.

Finally, while our study faced some threats to
validity, we explicitly addressed them through ad-
ditional analyses. First, although the temperature
of LLMs was not fully standardized across all mod-
els, potentially introducing variation in response
randomness, we mitigated this limitation by con-
ducting an evaluation at two different temperature
settings, and providing an analysis of the variabil-
ity of responses across multiple runs. Our anal-
ysis showed that trends and relative differences
remained consistent across configurations, suggest-
ing that our findings are robust to temperature-
induced variability. Nonetheless, some models
still exhibited greater variability, which should
be considered when interpreting individual results.
Second, we allowed LLMs to structure responses
freely, which may have introduced variability in for-
matting and made it harder to isolate positional bias.
To address this, we conducted an additional evalua-
tion using a more manual segmentation approach

based on lexical splitting. We then compared these
partitioned descriptions to the similarity-based par-
titions using Jaccard and Ratcliff-Obershelp simi-
larity. Overall, the results supported the reliability
of the similarity-based strategy, which provided a
more consistent and automated method of response
extraction.

Ethical considerations. Understanding and miti-
gating biases in LLMs is crucial for fairness, relia-
bility, and trust. If LLMs systematically favor cer-
tain inputs, they may reinforce unintended biases in
decision-making tasks, such as content moderation,
automated grading, or hiring. Moreover, biases in
response generation could influence public percep-
tion, particularly in applications like news summa-
rization or recommendation systems, where mis-
representing information could distort narratives.
Addressing these biases is essential to prevent mis-
leading or unfair outcomes and to ensure that LLMs
support ethical and transparent applications.
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A Task and methodology

A.1 LLM description generation
A.1.1 Model Selection
We originally selected 15 LLMs of 7 different
providers, ensuring a wide variety of employed
architectures and application domains.

LLaMA 3.210. We selected LLaMA 3.2 1B and
LLaMA 3.2 3B of the LLaMA model family with
one and three billion parameters, respectively. This
models are adequate for application domains with
limited computational resources.

Qwen25 7B and Qwen25 32B11. The 7B variant
represents a mid-sized model and the 32B variant
offers significantly greater capacity. The larger
model demonstrates enhanced capability for han-
dling complex language tasks and provides more
precise and detailed outputs. These models were
discarded as they tended to provide inconsistent
answers.

WizardLM-2 7B12. This is a model specifically op-
timized for reasoning and logical inference tasks.
With 7 billion parameters, it is particularly effective
in multi-turn dialogue scenarios and applications
requiring detailed, step-by-step explanations. This
model was discarded due to its tendency to answer
in languages other than English, skewing results.

Gemma 2 2B and Gemma 2 27B13. The Gemma
2 series includes models with 2 and 27 billion
parameters, offering scalability to meet different
performance requirements. The smaller model is
lightweight and resource-efficient, while the larger
variant excels in processing complex and nuanced
language tasks.

Solar14. Solar is a versatile general-purpose lan-
guage model with 10 billion parameters, balancing
efficiency and complexity. It is designed to handle
diverse text-processing tasks with a strong focus
on accuracy and contextual relevance.

Gemini 1.5 Flash, Gemini 1.5 Flash-8B and
Gemini 2.0 Flash15. These models are de-
signed for high-speed processing, as indicated by
the “flash” designation. The 8B version provides

10https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/

11https://qwenlm.github.io/blog/468qwen2.5/.469
12https://huggingface.co/WizardLM
13https://ai.google.dev/gemma
14https://huggingface.co/upstage/SOLAR-10.

7B-Instruct-v1.0
15https://deepmind.google/technologies/gemini/

flash/

additional capacity, enabling it to handle larger
and more demanding tasks while maintaining the
model’s optimized speed. Gemini 2.0 Flash in-
corporates advanced architectural features that aim
to improve both efficiency and accuracy. It repre-
sents ongoing innovation in language model devel-
opment.

GPT-3.5 Turbo, GPT-4o and GPT-4o mini16.
GPT-3.5 Turbo is a widely used model, valued
for its balance between cost efficiency and perfor-
mance. It is known for its versatility, making it suit-
able for tasks such as text generation, summariza-
tion, and conversational AI. GPT-4o and GPT-4o
mini are optimized iterations of the GPT-4 archi-
tecture, with enhancements for performance and
resource efficiency. The “mini” variant is a com-
pact version.

Mistral17. Mistral is a model with 7.3 Billion
parameters engineered for superior performance
and efficiency. It offers great performance for its
size.

A.1.2 LLM output splitting
We chose not to enforce a structured output for-
mat in our study to allow LLMs to generate re-
sponses in their natural style, minimizing potential
biases introduced by format constraints. Recent
research has shown that requiring LLMs to follow
specific output formats can significantly impact
their performance. For instance, format restrictions
can introduce biases due to the models’ varying
familiarity with different structures, as some for-
mats (e.g., Python lists) are more commonly en-
countered during training than others (Long et al.,
2024). Furthermore, strict adherence to structured
formats has been found to degrade LLMs’ reason-
ing abilities, as it constrains their generation space
and can interfere with their ability to produce high-
quality, contextually appropriate responses (Tam
et al., 2024). By allowing free-form responses, we
aimed to capture LLMs’ natural decision-making
process without introducing artificial constraints
that could skew our analysis of positional bias.
However, this choice also introduced challenges
in ensuring comparability across responses, which
we acknowledge as a limitation.

There was no consensus on how LLMs struc-
tured their responses. For example, some pro-
vided numbered lists, while others introduced each

16https://openai.com/news/
17https://mistral.ai/en
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description with the topic name or used a more
free-flowing format. Given this variability in struc-
ture and length, we opted for a cosine similarity-
based approach using sentence and topic embed-
dings rather than fixed criteria. We used Sentence-
BERT18 to generate the individual sentence (ES)
and topic (ET ) embeddings. Similarity was com-
puted as shown in Eq. 1.

cos(θ) =
ES · ET

∥ES∥ · ∥ET ∥
(1)

To refine similarity scores, we applied an un-
weighted moving average, incorporating one neigh-
boring value on each side (i.e., the similarity with
the previous and following sentences). Each sen-
tence was then assigned to the topic with the high-
est average similarity, and the longest consecutive
sequence of sentences for each topic was selected
as its corresponding description.

A.2 Description evaluation

A.2.1 Comparison to reference descriptions
To compare the reference descriptions with the list-
based ones, we used percentile rank to determine
where the reference description fell within the dis-
tribution of list-based descriptions for each metric.
A high or low percentile rank indicates whether
the reference description aligns more with extreme
or median-ranked outputs, revealing potential bi-
ases in how LLMs prioritize information. We also
considered statistical analysis such as t/Wilcoxon
tests to assess whether differences between refer-
ence and list-based descriptions were statistically
significant.

For the similarity analysis, we chose TF-IDF
over semantic embedding (e.g., BERT) represen-
tations because TF-IDF directly captures lexical
similarity, allowing us to analyze structural simi-
larities between reference and list-based descrip-
tions. Since TF-IDF relies on exact word matches
weighted by importance, it reflects how closely
the wording is preserved. This is crucial for our
study, as we are interested in whether list-based
descriptions maintain the same structural and lex-
ical choices as the reference ones. In contrast,
BERT-based embeddings primarily capture seman-
tic similarity, meaning two descriptions could have
high similarity even if they use entirely different
words or structures. While high lexical overlap (as

18We used the model ’all-MiniLM-L6-v2’ https://
sbert.net/

measured by TF-IDF) often implies high semantic
similarity, the reverse is not necessarily true, two
semantically similar descriptions can have differ-
ent structures, making it harder to assess whether
LLMs maintain original phrasing or reorder infor-
mation. Thus, TF-IDF is better suited for analyzing
how positional effects influence structural consis-
tency in LLM-generated descriptions.

A.2.2 Characterization of descriptions
To investigate positional bias in a multifaceted way,
we selected a diverse set of metrics. These metrics
cover various aspects, such as readability, informa-
tion content and lexical metrics. In all cases, text
processing was implemented using NLTK19.

Flesh Reading Ease (FRE). FRE (Flesch, 1948)
aims to measure the readability of text by consid-
ering the total number of words, sentences, and
syllables. Higher FRE scores indicate easier read-
ability, while lower scores indicate a more complex
text. Given that this score is defined based on con-
stants, it can be negative when sentence length and
word complexity are extremely high. Since the
formula subtracts both factors from 206.835, long
sentences and multisyllabic words can drive the
score below zero. This typically occurs in dense
academic, legal, or technical texts with highly com-
plex language.

Kolmogorov Complexity (KC). Kolmogorov
Complexity (Ming Li, 2019) estimates the complex-
ity of a string by determining the length of its short-
est possible description, often approximated using
data compression. An approximation of KC can
be calculated using zlib20 by obtaining the length
of the compressed data in bytes. Input strings with
higher complexity result in a longer compressed
data length, while strings with lower complexity or
redundant structure result in a shorter estimation.
We considered KC in the form of its compression
ratio, i.e., the compressed length divided by the
original string length.

Named Entity Density (NED). It tries to explain
the density of all named entities (proper nouns in
singular or plural form). A higher proportion of
proper nouns may indicate that the text contains
more specific information. This metric can be cal-
culated as follows:

NED =
total proper nouns

total words
(2)

19https://www.nltk.org/
20https://www.zlib.net/
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String length. It is measured as the total number
of characters, including punctuation and special
symbols. It serves as an approximation for the
amount of context in a given LLM response, since
longer texts usually contain more detailed explana-
tions.

Missing Topics. This metric evaluates if all topics,
as defined in the input prompt, are present in the
LLM response. It is computed as the number of
missing topics per position.

A.2.3 Correlation of descriptions
We assessed description stability using Spearman
correlations between topics based on their input po-
sitions across multiple runs, assessing the model’s
consistency in handling information order. High
correlations might indicate stable description char-
acteristics across positions, suggesting minimal po-
sitional influence. In contrast, low correlations im-
ply that positional effects vary by topic, meaning
some topics are more sensitive to ordering changes
than others. This variability suggests an interaction
between positional and topic-specific biases rather
than a uniform positional bias.

B Methodological robustness validations

B.1 Analysis of variability of results due to
LLM temperature Settings

To assess the consistency of LLM-generated de-
scriptions across multiple runs, we computed the
coefficient of variation (CV) for the 3 runs of each
prompt, for each position and metric. The CV pro-
vides a standardized measure of dispersion by nor-
malizing the standard deviation relative to the mean,
with higher values indicating greater variability and
lower values indicating more consistency. This ap-
proach allows to compare the variability of met-
rics across different ranking positions and prompts
while accounting for differences in scale, enabling
a fair comparison of the consistency of model re-
sponses regardless of the specific score (unlike the
standard deviation).

B.1.1 Default LLM temperature setting
Gemini 1.5 Flash demonstrated the most con-
sistent results, exhibiting low variation across KC,
Named Entity Density, and String Length. Gemini
2.0 Flash also showed strong stability, with
slight fluctuations but generally stable performance.
GPT-4o mini and GPT-4o maintained moderate sta-
bility across the metrics, with some fluctuations,

especially in complexity measures, but still offer-
ing relatively consistent outputs. Gemma 2 27b
provided stable results across positions, though
with slightly more variation than the Gemini mod-
els. GPT 3.5-Turbo exhibited moderate stability,
with noticeable variability in certain metrics, par-
ticularly in KC and String Length. LLaMa 3.2 was
the least stable, showing significant variation, espe-
cially in complexity and length measures. Mistral
and Solar showed mixed stability, with Solar ex-
hibiting more inconsistency in Named Entity Den-
sity, but both still maintained reasonable perfor-
mance in the other metrics. Based on the observed
trends, the stability of the metrics can generally be
trusted, particularly for the Gemini models, which
exhibited consistent results across various metrics.
However, variability in models like LLaMa 3.2
and Mistral suggested that careful consideration
is needed when making conclusions for these less
stable models.

B.1.2 LLM temperature set to 0.5
At a temperature setting of 0.5, overall variabil-
ity across models was slightly reduced compared
to the default setting. While minimum CVs were
generally higher, maximum CVs were consistently
lower, indicating a more compact distribution of
variation. On average, for the 0.5 temperature, CVs
were lower, reflecting increased overall stability.
For up to 25% of the permutations, CVs across
positions remained largely similar across both tem-
perature settings, with differences under one abso-
lute unit for up to 75% of the samples in several
cases, suggesting that most variation was concen-
trated in a small portion of the samples. Mean
scores were also comparable between settings, with
slightly lower values (by 1–2 units) for the 0.5 tem-
perature, indicating slightly more stable outputs
while still capturing natural variability. Notably,
the most consistent behavior was again observed
for the Gemini family and GPT-4o. In contrast,
Mistral and Solar showed more pronounced dif-
ferences across several metrics, though Solar in
particular became significantly more stable at the
0.5 temperature, especially in Named Entity Den-
sity and complexity-based metrics. These trends
were consistent across positions.

B.2 Validation of the response extraction
method

To verify the reliability of the similarity-based par-
titioning method used, we conducted an additional
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evaluation using a more manual approach. Specifi-
cally, we segmented the LLM-generated responses
based on newline characters (\n) and markdown-
style markers (e.g., *, -, **), which indicated the
structural boundaries in unformatted text for the
selected LLMs. We then compared these manually
derived splits to the similarity-based partitions by
computing Jaccard similarity, which measures set
overlap, and Ratcliff-Obershelp similarity, which
detects shared subsequences. In some cases, re-
sponses exhibited structures that warranted further
adjustments to improve segmentation.

Across all LLM and topic combinations, over
90% of prompts yielded similarities above 0.87.
For Solar and Mistral, more than 95% of
prompts had similarities exceeding 0.99. In all
cases, the CV remained below 10%, and the mean
similarity across prompts for each topic was con-
sistently above 0.94, with standard deviations be-
low 0.08. A few outliers with lower similarities
(minimum similarities ranged from 0.14 to 0.72)
were manually reviewed. These cases resulted from
incorrect lexical splitting caused by inconsistent
separations between descriptions or non-relevant
phrases inserted by some LLMs (e.g., "Each in-
dividual’s story offers valuable insights into their
life, work, and contributions to society."). After
adjusting these descriptions, similarities exceeded
0.98. Minor discrepancies remained due to vari-
ations in extra spaces and markdown characters.
Overall, these results demonstrate the reliability of
the similarity-based split strategy, which allowed
for a more robust and automated extraction than
the lexical-based extraction.

C Experimental analysis

As previously mentioned, we considered two tem-
perature settings for the LLMs: the default con-
figuration and 0.5. We chose to report results ob-
tained with the default temperature setting because
they might better reflect realistic usage scenarios
in which some degree of randomness is expected
and desirable to avoid overly deterministic outputs.
While temperature 0.5 led to slightly lower vari-
ability and fewer outliers, the overall trends, cor-
relations, and distribution shapes were consistent
across both configurations. Therefore, the default
setting offers a valid and representative baseline
without compromising reliability. Nonetheless, we
also provide a summary of the results for the 0.5
setting to support transparency and facilitate com-

parison.

C.1 RQ1. Positional effects in descriptions

Figure 421 shows the score distributions per each
ranking position across all topics for the evaluated
metrics.

Flesch Reading Ease (FRE). Several LLMs ex-
hibited statistically significant differences in read-
ability depending on topic’s position. Specifi-
cally, the Dunn test identified significant differ-
ences for the LLaMA and GPT families and Gemini
1.5 Flash-8B. The most common pattern was
higher readability scores for topics in the first two
positions, compared to later positions. LLaMA 3.2
3B and Gemma 2 2B showed the largest number of
significant differences, including variations in mid-
dle to last positions, while GPT-4o mini exhibited
differences only for the top position.

One interesting finding is the relative consistency
of topic rankings across models. Regardless of
position, certain topics consistently received the
highest readability scores, followed by a middle
tier of topics, while others were typically assigned
the lowest scores. This suggests that while rank-
ing position affects readability scores, the relative
difficulty of topics is largely preserved across mod-
els, which hints that the observed effects are likely
tied to how each LLM processes and structures re-
sponses rather than fundamental changes in topic
complexity.

Across model families, LLaMA models showed
the largest number of statistically significant differ-
ences, particularly with the last positions. Gemini
models varied, with some (e.g., Gemini 1.5
Flash-8B) showing differences between the top
and last positions, while others (e.g., Gemini 1.5
Flash) had none. GPT models exhibited differences
for the top position with respect of the others, with
additional variations in lower-ranked positions for
smaller variants. Gemma models followed a similar
pattern, with Gemma 2 2B displaying differences
for more positions than Gemma 2 27B.

Kolmogorov Complexity - Compression ratio
(KC). This analysis revealed statistically signif-
icant differences for almost all evaluated LLMs,
with most differences occurring between the top
position and the others. Additionally, Gemini
1.5 Flash-8B, GPT-4o mini, Solar, GPT-4o,

21In all cases, full size charts can be found in the companion
repository.
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Figure 4: Score distribution per ranking position across topics

GPT-3.5 Turbo, and Mistral showed significant
differences between all positions and the last, sug-
gesting that responses at the last position tended
to have notably different complexity patterns com-
pared to earlier positions.

While topics again appeared to be sorted in terms
of complexity, differences were less pronounced
compared to FRE. This suggests that while certain
topics consistently yielded more or less complex
outputs, the contrast is subtler. Overall, these re-
sults suggest that complexity patterns differ across
LLMs, with some showing broader distributions
and others generating more compressed outputs.
The findings also highlight that the last position
frequently deviated from the rest, potentially indi-
cating that responses generated for lower-ranked
topics tend to be structurally simpler or less varied.

LLaMA and Gemini models followed similar
trends. GPT models showed some variations, par-
ticularly in GPT-3.5 Turbo, which exhibited
significant differences also between the middle
and second-to-last positions. Also GPT-4o mini
showed significant differences between the two top
positions. Gemma models differed in scope, with
Gemma 2 27B exhibiting a larger number of sig-
nificant differences than Gemma 2 2B across all
positions.

Named Entity Density (NED). For this metric,
there were fewer significant differences across rank-
ing positions compared to the previous metrics,
suggesting that the presence of named entities in
responses remained stable across ranking position,
with fewer models displaying significant differ-
ences compared to complexity-based metrics. The
most common pattern of variation was observed
between the last position and the others.

While some variations were still observed at the
lower-ranked positions (particularly last position),
the general consistency suggests that named entity
usage is less affected by ranking position than other
text properties such as readability or complexity.

String length. Clear scoring patterns across rank-
ing positions were observed for this metric, with
Solar standing out as the model generating sig-
nificantly shorter responses compared to all oth-
ers, suggesting that this LLM may apply a more
aggressive summarization strategy. Nonetheless,
despite these shorter responses, Solar’s Named
Entity Density remained in line with other models,
indicating that it maintained entity inclusion even
with fewer characters.

A notable visual trend in most LLMs was the
formation of a U-shape across ranking positions.
Responses tended to be longer for the first position,
decrease for intermediate positions, and then in-
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crease again for the last position. In GPT-4o mini
and Solar, however, the trend appeared different,
as the length mainly increased at the last position
without an initial drop.

Most models showed significant differences be-
tween every position and the last one, particularly
in the Gemini, GPT, Solar, and Mistral families.
GPT-4o and GPT-3.5 Turbo shared similar pat-
terns, while GPT-4o mini exhibited fewer differ-
ences for the top position. Gemma and Gemini mod-
els exhibited consistent differences within their
families, and LLaMA 3.2 1B showed fewer overall
significant differences.

In summary, String Length hinted at the exis-
tence of bias, as LLMs tended to generate shorter
responses in intermediate positions and longer re-
sponses for the top and last ones. The exceptionally
short outputs from Solar stood out as an outlier,
suggesting potential qualitative differences in re-
sponse generation. The lack of clear topic-based
separation in this metric further emphasizes that
ranking position, rather than topic, plays a domi-
nant role in determining response length.

Topic ordering. To assess whether LLMs pre-
serve the input ordering of topics in their generated
descriptions, we computed Kendall’s tau correla-
tion between the input and output rankings, con-
sidering only runs where all topics were present.
Overall, most models maintained the original or-
der, with only four models exhibiting noticeable
deviations: LLaMA 3.2 1B, Gemma 2 2B, Gemma
2 27B, and Mistral. Among these, Gemma 2 2B
showed the most significant changes, often reorder-
ing topics in an inverse manner. A qualitative exam-
ination revealed that this behavior was caused by
the model’s tendency to group topics belonging to
similar domains or categories, such as science and
technology, regardless of their original positions.

For Mistral, and Gemma 2 27B, the lower cor-
relations appeared to be isolated outliers, rather
than a systematic effect. This suggests that, in
general, LLMs tended to respect the input order
of topics. Examining the specific positions that
were exchanged, Gemma 2 2B displayed the highest
number of swaps, particularly in middle to last posi-
tions, whereas LLaMA 3.2 1B exhibited a moderate
level of reordering. Interestingly, some models also
swapped the first position. These findings indicate
that while most LLMs adhere to the given order, a
few models exhibited systematic biases in how they
organize descriptions, with Gemma 2 2B standing

out as the most prone to reordering topics.

Missing topics per position. In most cases, miss-
ing topics most often occurred at the last position,
suggesting that LLMs tended to truncate topics
rather than skip topics from the middle or top po-
sitions. Only two models (Gemini 1.5 Flash-8B
and Gemma 2 2B) missed topics at all positions,
with Gemini 1.5 Flash-8B displaying a relatively
uniform distribution of missing topics across po-
sitions. LLaMA 3.2 1B also occasionally missed
a topic in the first position, while other models
only began missing topics from middle positions
onward.
Gemini 1.5 Flash-8B and Gemma 2 2B exhib-

ited relatively low standard deviations in their omis-
sion patterns, meaning they missed topics more
evenly across different positions. Other models,
however, followed a tailed distribution, with a pro-
nounced tendency to drop topics at the end. Among
the models that omitted topics most frequently,
LLaMA 3.2 3B and LLaMA 3.2 1B stood out. While
LLaMA 3.2 1B showed a relatively consistent omis-
sion frequency in the last position (ranging between
252 and 289 times per topic), LLaMA 3.2 3B dis-
played a wider dispersion (from 60 to 150 times
per topic), suggesting that certain topics were dis-
proportionately omitted.

C.1.1 Comparison with results observed for
LLM temperature of 0.5

We further evaluated the impact of temperature on
the consistency of our findings by comparing the
distribution of results across models, metrics, and
positions using the Wilcoxon signed-rank test and
Spearman correlation. This analysis aimed to verify
whether setting the temperature to 0.5 altered the
tendencies observed with the default setting.

Across most models, we found moderate to
strong Spearman correlations (often between 0.5
and 0.9) indicating that the relative ranking of val-
ues was largely preserved. For several LLM–metric
combinations, particularly involving Named Entity
Density and String Length, the Wilcoxon test re-
vealed no statistically significant differences, sug-
gesting that the central tendencies of the distribu-
tions remained stable. While a few metrics (e.g.,
KC and String Length for some models) showed
weaker correlations, these were often due to the
distributions being tightly clustered around zero
differences, making correlations less informative
despite overall consistency. Taken together, these
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results suggest that the tendencies observed in the
default temperature configuration are largely pre-
served when lowering the temperature, supporting
the robustness and validity of our findings across
different sampling conditions.

When comparing the boxplots of metric scores
across positions22, we observed that the overall
shapes of the distributions were largely preserved
between the default and 0.5 temperature settings,
indicating that position-based tendencies remained
stable across configurations. Similarly, in those
cases in which a topic order was observed in the
boxplots (e.g., the scores of a certain topic were
concentrated on the top of the boxplot, whereas
the scores of another topic were concentrated on
the bottom of the boxplot) for the default temper-
ature setting, such relative ordering of topics was
also observed for the 0.5 temperature setting. A
notable difference, however, was the presence of
outliers: at the default temperature, outliers were
more frequent in some metrics, such as Named En-
tity Density for LLaMa 3.2, whereas for the 0.5
temperature, outliers were considerably reduced.
When analyzing metric behavior per topic across
positions, only one deviation from general trends
was observed, again with LLaMa 3.2 and Named
Entity Density, where the pattern across topics di-
verged from those at the default temperature.

Regarding missing topics, the same general trend
was found, with position 6 leading the occurrence
of missing topics for most models. Gemma 2 27B
and Gemini 1.5 Flash continued to exhibit miss-
ing outputs in a broader set of positions, though the
overall number of missing topics was reduced for
the 0.5 temperature.

C.2 RQ2. LLM bias vs Topic Influence in
Positional Effects

Comparison with reference descriptions. Fig-
ure 523 shows the score distributions of the compar-
isons between the reference descriptions and the
list-based descriptions in terms of BLUE, ROUGE
and TD-IDF cosine similarity. This comparison
revealed significant differences, suggesting that the
ranking process of LLMs does not fully align with
the characteristics of the reference descriptions (i.e.,
individually generated descriptions). Across dif-
ferent models and topics, the scores observed for

22The full set of boxplots can be found in the companion
repository.

23In all cases, full size charts can be found in the companion
repository.

the reference descriptions were often statistical out-
liers, as indicated by t/Wilcoxon tests. The per-
centile ranks further showed that the reference de-
scriptions rarely fell within the median range of
ranked scores.

As regards lexical similarity metrics, BLEU
scores were generally low across all models, in-
dicating minimal exact word or phrase overlap
between ranked and reference descriptions. This
suggests that LLMs rephrased content rather than
replicating specific sequences. The penalty for text
length may have further lowered scores, as refer-
ence descriptions tended to be longer. No consis-
tent relative relations among topics emerged across
models. However, some ranking scoring effects
were observed. For example, Gemini 1.5 Flash
and Gemma 2 27b showed a tendency for the first
position to achieve higher scores, particularly for
Blockchain, Climate Change, Quantum Comput-
ing, and James Webb Telescope. Dispersion pat-
terns also varied, reinforcing the inconsistency in
how LLMs handle topics across rankings.

ROUGE scores were higher than BLEU. This
suggests that while list-based descriptions retained
some words and phrases from the reference de-
scriptions, their overall structure differed. As
with BLEU, relative relations among topics var-
ied across LLMs, indicating differences in topic
treatment. Some ranking scoring effects were ob-
served for Gemini 1.5 Flash, for which the high-
est scores were observed for the top ranking posi-
tion for James Webb Telescope, Blockchain, Cli-
mate Change and Quantum Computing (at a lesser
extent). On the other hand, Gemini 1.5 Flash-8B
showed a more consistent ranking effect across all
topics, while GPT-4o mini tended to exhibit lower
scores for World War II and Albert Einstein, while
no clear patterns emerged for the other topics.

Finally, TF-IDF similarities were moderate, im-
plying that while exact phrasing varied, core con-
cepts remained consistent, suggesting that list-
based descriptions retained similar lexical elements
to the reference descriptions but with different
structure or emphasis/frequency. Across LLMs,
Quantum Computing consistently showed the high-
est similarities, with stable relative differences
across topics. Dispersion was generally uniform,
except for Gemini 1.5 Flash-8B, which exhib-
ited some outliers. Unlike other metrics, clear rank-
ing scoring effects were not observed, except for
Gemini 1.5 Flash in Climate Change, where the
top position showed the highest scores.
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Figure 5: Score distribution per topic across ranking positions of the comparison with reference descriptions

A closer look at individual metrics highlighted
different trends. For KC, reference descriptions
consistently had lower scores than ranked ones
across all models and topics, suggesting that list-
based descriptions tended to be more structurally
compact or predictable in their information distri-
bution. Similarly, String Length showed a clear
discrepancy, reference descriptions were always
longer than list-based descriptions, indicating a
possible preference for brevity when models are
asked to generate multiple descriptions at the same
time. For NED, some models showed more align-
ment with reference descriptions than others, but
even in these cases, alignments were not uniform
across topics or positions. For example, for LLaMA
3.2 1B James Webb Telescope was aligned for
all positions but the third one, while Albert Ein-
stein was aligned for the top and last positions, and
Blockchain and Climate Change only showed align-
ment for the last position. On the other hand, GPT
models only showed alignment for the top position.

While some LLMs displayed topic preferences
(with certain models consistently aligning with ref-
erence descriptions for specific topics and metrics)
this alignment was inconsistent across different po-
sitions. For example, for Mistral the reference
description for Quantum Computing was aligned
with the descriptions of all positions, but the last,
while Climate Change was aligned with all but
the top position. On the other hand, reference de-
scriptions for Gemini 2.0 Flash did not align

with any position. Many models also showed a
neglect of middle-ranked positions, favoring ex-
treme positions (either top or low), as showed in
(Liu et al., 2023; Ravaut et al., 2024). The overall
lack of agreement between reference and list-based
descriptions suggested that the ranking biases were
not purely random, but rather driven by specific
characteristics that LLMs prioritize differently than
the criteria underlying the reference descriptions.
This misalignment hinted at the presence of bias
in how LLMs evaluate and rank textual descrip-
tions. The tendency for reference descriptions to be
treated as outliers (often aligning more with lower-
ranked positions rather than the top) suggests that
models systematically favor certain linguistic fea-
tures differently based on the task at hand. The
variability across models and topics further empha-
sized that these biases are not uniform, meaning
that different LLMs likely apply different implicit
criteria when generating descriptions in a ranking.

C.2.1 Characterization of topic descriptions
across ranking positions

Figure 624 shows the score distributions per each
topic across all ranking positions for the evaluated
metrics.

Flesch Reading Ease (FRE). Across LLMs,
World War II and Albert Einstein consistently re-

24In all cases, full size charts can be found in the companion
repository.
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Figure 6: Score distribution per topic across ranking positions

ceived the highest FRE scores. Some models ex-
hibited ranking scoring patterns. For example,
GPT-3.5 Turbo showed lower scores for the last
two positions, particularly for World War II and
Albert Einstein, while LLaMA 3.2 demonstrated a
clearer trend where the highest scores appeared in
the top-ranking positions. No consistent ranking
pattern emerged for other models.

For LLaMA 3.2 and GPT-3.5 Turbo, correla-
tions were generally high across ranking positions,
though Blockchain, Albert Einstein, and Quantum
Computing introduced some variability. Mistral
exhibited negative correlations for Blockchain and
all other topics, while Solar showed negative cor-
relations for Quantum Computing and low posi-
tive correlations for Blockchain. GPT-4o mini
and GPT-4o had mixed results for World War II,
with low positive and negative correlations, respec-
tively. Gemini models displayed more diverse be-
haviours, with different topic preferences, Gemini
1.5 Flash showed stronger patterns for Quan-
tum Computing and Blockchain, while Gemini
2.0 Flash showed two groups of topics, one
with positive and high correlations (Albert Einstein,
Blockchain, Climate Change) and other with low

positive/negative correlations (James Webb Tele-
scope, Quantum Computing and World War II).
This suggests that both ranking position and topic
influenced LLM behavior, with different families
showing distinct topic biases.

Most LLMs displayed similar score dispersions
(in terms of the standard deviation) across topics.
However, LLaMA 3.2 exhibited greater variation
in scores for Quantum Computing, followed by
Albert Einstein and World War II, indicating that
ranking positions had a stronger effect for these
topics. In contrast, GPT-4o showed low, consistent
dispersions, meaning it treated all topics similarly
in terms of FRE scores.

Kolmogorov Complexity - Compression ra-
tio (KC). Some models, like GPT-4o mini
and GPT-4o, showed a slight ranking scoring ef-
fect, where middle ranking positions consistently
achieved high scores across topics. Other models
displayed different tendencies: LLaMA 3.2 placed
the top position among the lower scores for World
War II, while Mistral and Gemini 2.0 Flash con-
sistently assigned lower scores to the last two posi-
tions across all topics. Gemini 1.5 Flash showed
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a distinct ranking effect for Climate Change, where
the first position showed low scores while the last
ones showed higher ones. For Quantum Comput-
ing, the top position tended to show low scores,
while middle positions showed higher ones. No-
tably, Gemini 1.5 Flash-8B produced outliers for
Blockchain and World War II, suggesting irregular
behavior for these topics.

Correlations varied across models and topics, re-
inforcing the idea that LLMs treated at least one
topic differently, but not consistently across models.
Solar showed strong positive correlations across
rankings except for James Webb Telescope, which
was not the case for FRE. LLaMA 3.2 showed
strong correlations for all topics except for Albert
Einstein. Similarly, Albert Einstein stood out as the
uncorrelated topic for Gemini 1.5 Flash. GPT-4o
and GPT-4o mini exhibited weaker correlations
specifically for Quantum Computing, though the
differences were less pronounced than for the other
LLMs. Gemini 1.5 Flash-8B showed low or
no correlations for Blockchain and World War II,
while GPT-3.5 Turbo treated James Webb Tele-
scope as the outlier. This suggests that while all
models exhibited topic-specific biases, they did not
consistently focus on the same topics, even within
the same LLM family.

Unlike FRE, there were no significant differ-
ences in dispersion across ranking positions, with
a relatively stable score range across topics. How-
ever, the variations in correlation patterns sug-
gested that ranking positions still influenced topics
differently, though not necessarily through greater
or lower score variability.

Named Entity Density (NED). These scores
exhibited similar topic-based patterns across all
LLMs, indicating that relative relationships be-
tween topics were preserved even as the overall
score ranges varied. Unlike the previous met-
rics, no strong ranking scoring effects were ob-
served. However, two cases stood out. Gemini
1.5 Flash-8B, where the top position consistently
appeared among the lower scores while middle po-
sitions achieved the highest scores across all topics;
and Gemini 1.5 Flash, which showed contrast-
ing topic-specific ranking score tendencies. For
Blockchain, last positions had lower scores and the
top position had the highest, while World War II
showed the opposite behaviour.
Solar displayed strong negative correlations for

World War II but had nearly perfect correlations

across rankings for all other topics, except Cli-
mate Change, which had moderate correlations
with all topics. LLaMA 3.2 3B exhibited high cor-
relations among Blockchain, Climate Change, and
James Webb Telescope, while the other three top-
ics (World War II, Albert Einstein, Quantum Com-
puting) showed consistently negative correlations
with the other topics. Similarly, LLaMA 3.2 1B
also showed high correlations between Quantum
Computing and Blockchain). For GPT-3.5 Turbo,
Albert Einstein was the outlier topic with differ-
ent correlation behavior. GPT-4o showed slightly
weaker correlations for Climate Change and Albert
Einstein compared to other topics.

There was a noticeable dispersion in scores,
particularly for World War II, which consistently
showed the largest one, followed by James Webb
Telescope. This suggests that certain topics inher-
ently generated more variation in Entity Density
across ranking positions.

String length. This metric exhibited the most no-
ticeable ordering effects across ranking positions,
with varying effects across models, and consis-
tent trends across nearly all topics. Solar exhib-
ited perfect correlations across all topics, indicat-
ing that its ranking-based length adjustments were
highly consistent. Gemini 1.5 Flash and Gemini
1.5 Flash-8B also showed strong positive corre-
lations, though with slight variations. This sug-
gests that while Gemini models treated different
topics slightly differently, the effect, for this met-
ric, was subtle. GPT-3.5 Turbo revealed a cluster
of four highly correlated topics (Albert Einstein,
Blockchain, Climate Change, and Quantum Com-
puting), which were weakly correlated with the
remaining two. Mistral showed the lowest corre-
lations for James Webb Telescope and Quantum
Computing. Among all models, Solar showed the
lowest dispersion, with a maximum of 8 characters.
This suggests that Solar maintained more uniform
string lengths across ranking positions compared
to other models.

C.3 Summary of findings

Findings that varied across models (but not nec-
essarily topics). These indicate architecture- or
training-specific behaviors and help explain incon-
sistency in outcomes.

• Most models preserved topic order, but some
reordered or omitted them based on position.
Position affected not only content quality but also
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content inclusion. Last topics risked being under-
developed or dropped altogether.

• Middle positions were systematically disadvan-
taged.
Multiple models (particularly Gemini and
Mistral) tended to neglect middle-ranked topics,
both in alignment with reference descriptions and
in complexity. This aligns with prior findings
(e.g., (Ravaut et al., 2024; Liu et al., 2023)) and
suggests that models tended to over-prioritize the
start and end of the list, making middle items more
susceptible to being different.

• Response complexity and length showed strong
positional effects.
Models tended to compress mid-position items and
elaborate on extremes, potentially mimicking cog-
nitive primacy/recency effects.

• Differences across models pointed to divergent
handling of position.
While positional effects were observed, they man-
ifested differently across model families, hinting
at architecture-specific biases rather than universal
LLM behavior.

• Readability was impacted by position, but topic
difficulty remained consistent.
Positional bias affected presentation style, not just
content complexity.

Findings that varied across topics (but not neces-
sarily models). These underscore the importance
of topic-dependent priors in model outputs.

• Topic characteristics shaped how positional
bias manifests.
Certain topics showed more variations across po-
sitions, especially in readability and complex-
ity. This suggests that latent topic-related precon-
ceptions or training-data patterns influenced how
LLMs encode and prioritize content when gener-
ating multiple outputs. Some topics received con-
sistent structural treatment regardless of position,
while others (e.g., Climate Change) shifted in fram-
ing or lexical emphasis.

• Certain topics were more prone to omission or
simplification.
Especially in lower-ranked positions, indicating
that LLMs apply implicit prioritization depending
on perceived topic importance or familiarity.

Findings that varied across both models and
topics. These highlight nuanced interactions.

• Models diverged in their treatment of topics.
There was no universal topic that behaved the same
across models. For example, Climate Change may

be aligned with reference descriptions at all posi-
tions but the first for one model but not for another.
This divergence highlights how both model-specific
architectures and pretraining data can shape posi-
tional sensitivity differently.

• TF-IDF suggested content preservation, but
BLEU/ROUGE differences in word ordering.
Although BLEU scores were low, TF-IDF simi-
larity was moderate, indicating that while LLMs
did not replicate phrasing, with some exceptions,
they preserved core content across positions. This
supports the claim that position influences surface-
level features (like word choice) rather than seman-
tic substance, except in edge cases where descrip-
tion length or structure may impair information
delivery.

C.4 Qualitative Examples of Positional Bias
To complement the quantitative analysis, we exam-
ined selected outputs to qualitatively illustrate how
positional bias manifests in practice. These exam-
ples show that ranking position not only influences
structural features (e.g., length, readability) but
also affects topical framing, emphasis, and stylistic
tone. Such observations highlight that positional
bias extends beyond surface-level metrics and can
shape the way information is contextualized and
presented.

First, we observe variation in how models al-
locate length and detail across positions. Table 1
presents two example descriptions of the Climate
Change topic, highlighting differences in length
and detail for two models. Unlike most mod-
els, which tend to elaborate more on earlier items,
Solar produced longer descriptions for the last po-
sitions and noticeably compressed content in earlier
ones. By contrast, Gemini 1.5 Flash followed
the more common pattern of providing richer out-
puts at the top of the list. This contrast illustrates
that positional bias can manifest in opposite ways
across models

Further evidence comes from LLaMA 3.2 on the
World War II topic (Table 2). Descriptions at the
top positions emphasized key events, prominent
leaders, and general consequences (e.g., number
of casualties). In contrast, middle positions shifted
the focus toward geopolitical consequences and
the restructuring of international order. By the last
position, the model repeated some of the earlier
information but with reduced detail and a lower
density of named entities. A similar positional
pattern was observed for the Climate Change topic
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with LLaMA 3.2.
Finally, outputs from Gemma 2 2B on the

Blockchain topic (Table 3) revealed shifts not only
in topical framing, alternating between perspectives
such as “Technology,” “Finance,” “Information Net-
work,” and “Cryptocurrency”, but also in stylistic
tone. For example, the description at position 3
adopted a more enthusiastic style, with repeated
use of exclamation marks, whereas later positions
presented a more neutral, formal tone.
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Gemini 1.5 Flash: Climate change
(Position 1: 1296 chars)
Importance: Climate change, driven primarily by human activities, is arguably the most signif-
icant environmental challenge facing humanity. Its effects include rising global temperatures,
melting glaciers and ice sheets, sea-level rise, more frequent and intense extreme weather events
(heatwaves, droughts, floods, hurricanes), biodiversity loss, and disruptions to ecosystems. These
changes pose significant threats to human health, food security, water resources, and economic
stability. Background: The scientific understanding of climate change emerged gradually over
decades, building upon research in atmospheric physics, chemistry, and biology. The burning of
fossil fuels (coal, oil, and natural gas) for energy, deforestation, and industrial processes have
dramatically increased the concentration of greenhouse gases in the atmosphere, trapping heat
and causing a warming effect. Qualities: Climate change is a complex, multifaceted problem with
global implications. It requires international cooperation to mitigate its effects through emissions
reductions and adaptation strategies. The challenge lies in balancing economic growth with
environmental sustainability and ensuring equitable solutions that address the disproportionate
impacts on vulnerable populations.
(Position 6: 878 chars)
Importance: Climate change, driven primarily by human activities, represents a major existential
threat to the planet. Its consequences include rising sea levels, more frequent and intense extreme
weather events, biodiversity loss, and disruptions to global food systems. Background: The
scientific consensus on climate change is that it is largely caused by the increase in greenhouse gas
emissions due to the burning of fossil fuels, deforestation, and other human activities. This leads
to a warming of the planet and significant changes in global climate patterns. Qualities: Climate
change is characterized by its global scale, its long-term consequences, and its complex interplay
of natural and human factors. Addressing it requires international cooperation, technological
innovation, and significant changes in societal practices and energy systems.

Solar: Climate Change
(Position 1: 411 chars)
Climate Change - Also known as global warming, climate change is a long-term alteration in
Earth’s climate patterns caused by several factors like greenhouse gas emissions from human
activities, deforestation, land use changes, etc. Rising global temperatures have led to severe
consequences such as melting ice caps and glaciers, rising sea levels, intensifying weather events,
and shifts in wildlife habitats.
(Position 6: 666 chars)
Climate Change: This term refers to long-term shifts in Earth’s climate systems caused by
changing weather patterns interwoven with human activities contributing to altered global
temperatures (global warming) and ecosystem transformations. The primary triggers include
greenhouse gas emissions, deforestation, industrial developments, and unsustainable agricultural
practices leading to rising sea levels, increased frequency of extreme weather events (droughts,
hurricanes), melting glaciers, and loss/displacement of flora-fauna species. Combating climate
change requires concerted global efforts in promoting sustainable practices and environmental
conservation.

Table 1: Qualitative response examples exemplifying the variations in String length across models and positions
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Position 1
World War II (1939-1945) was a global conflict between the Axis powers (Germany, Italy, Japan)
and the Allied powers (primarily the United States, Great Britain, France). It resulted from the
complex web of alliances and rivalries that had formed in the aftermath of World War I.
Key Events: Germany invaded Poland (1939) and France (1940). Japan launched surprise attacks
on Pearl Harbor (1941), Australia, New Zealand, and the Philippines. The United States entered
the war after the Japanese attack followed by Germany’s invasion of France and Britain. The
Allies won major battles at Midway, Stalingrad, D-Day, and Iwo Jima. Atomic bombings of
Hiroshima and Nagasaki led to Japan’s surrender (1945).
Consequences: World War II was the deadliest conflict in human history, resulting in over 50
million deaths. It significantly reshaped the international order, redrew national borders, and
marked a turning point in modern politics.
Important leaders: Winston Churchill, Franklin D. Roosevelt, Adolf Hitler, Joseph Goebbels,
Joachim von Ribbentrop Key outcomes: establishment of NATO, European Economic Com-
munity (precursor to the EU), rise of international organizations such as the United Nations,
development of nuclear technology and atomic bombings.

Position 3
World War II was a global conflict that lasted from 1939 to 1945, involving most countries in the
world at some point. It began with the invasion of Poland by Nazi Germany and Italy, which led
to the United Kingdom, France, and the Soviet Union declaring war on Germany. The war had
far-reaching consequences:
Global devastation: Millions of people lost their lives, cities were destroyed, and economies
suffered.
New World Order: The international system was fundamentally transformed, with the emergence
of the United States and the Soviet Union as superpowers.
Rise of the United Nations: In response to the devastation of World War I and II, a new global
organization aimed at promoting peace and security.

Position 6
World War II (1939-1945) was a global conflict that involved most of the world’s nations. It
began when Nazi Germany, under Adolf Hitler, invaded Poland, prompting Britain and France to
declare war.
Background: The war was fought between two main alliances: the Allies (including the United
States, the Soviet Union, and the United Kingdom) and the Axis powers (Germany, Italy, and
Japan).
Qualities:
- Massive devastation of entire nations and cities
- Industrial-scale use of atomic bombs by both sides
- Implementation of strategic bombing campaigns, including firebombing of civilian areas
- Daring military maneuvers, such as Operation Overlord (D-Day Invasion)
Importance: World War II had a profound impact on world history:
- Led to the defeat of Nazi Germany and Imperial Japan
- Shaped the modern global order with the establishment of the United Nations
- Spurred technological innovations in computing, radar, and plastics
- Had significant social and cultural implications due to mass destruction and genocide, particu-
larly during the Holocaust.

Table 2: Qualitative response examples exemplifying changes of focus in the descriptions across positions for LLaMa
3.2 and the topic World War II
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Position 3
Blockchain (Technology)
Importance: Blockchain technology, first developed as the ledger system used in Bitcoin, is
rapidly changing the way finance and various industries operate!
Background: The concept originated in 2008 with a white paper by Satoshi Nakamoto. A
decentralised database allows for efficient record-keeping, transparency, and security when it
comes to transactions like currency or other data! This decentralized ledger, while built on
cryptography and math, can help eliminate fraud and theft of assets!
Qualities: Secure transactions, transparent data, decentralization for power shift.

Position 6
Blockchain (Finance)
Importance: A revolutionary technology that enables secure, transparent, and decentralized
records of transactions. It has found widespread application in revolutionizing various sectors
like finance, supply chain management, and governance.
Background: Popularized by Bitcoin as a way to record transactions without the reliance on
intermediaries, blockchain technology offers decentralized systems where information is recorded
in "blocks" verified by a network consensus through cryptography and complex mathematical
protocols.
Qualities: The core principle of blockchain lies in its use of a public, decentralized ledger system
(like a secure digital "notebook") that prevents tampering and allows for verifiable transparency.
This technological advancement holds vast potential.

Table 3: Qualitative response examples exemplifying changes in the focus of descriptions and the usage of
punctuation symbols for Gemma 2 2B and the topic Blockchain
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