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Abstract
Small Language Models (SLMs) are becom-
ing increasingly popular in specialized fields,
such as industrial applications, due to their
efficiency, lower computational requirements,
and ability to be fine-tuned for domain-specific
tasks, enabling accurate and cost-effective so-
lutions. However, performing complex reason-
ing using SLMs in specialized fields such as
Industry 4.0 remains challenging. In this pa-
per, we propose a knowledge distillation frame-
work for industrial asset health, which transfers
reasoning capabilities via Chain-of-Thought
(CoT) distillation from Large Language Mod-
els (LLMs) to smaller, more efficient mod-
els (SLMs). We discuss the advantages and
the process of distilling LLMs using multi-
choice question answering (MCQA) prompts
to enhance reasoning and refine decision-
making. We also perform in-context learn-
ing to verify the quality of the generated
knowledge and benchmark the performance
of fine-tuned SLMs with generated knowledge
against widely used LLMs. The results show
that the fine-tuned SLMs with CoT reason-
ing outperform the base models by a signifi-
cant margin, narrowing the gap to their LLM
counterparts. Our code is open-sourced at:
https://github.com/IBM/FailureSensorIQ.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional proficiency in both generic and
specialized domains due to their extensive pre-
training on vast amounts of text data from di-
verse sources, that enables strong contextual under-
standing and reasoning. Small Language Models
(SLMs), on the other hand, while perform well in
common NLP tasks (Wang et al., 2024) such as
text classification, sentiment analysis, their limited
parameter capacity (≤8B) constrains their ability
to store extensive knowledge and perform complex
reasoning, making them less effective for special-
ized domains without substantial modifications.

Recent studies on Knowledge Distillation from
industries and academics have shown that Small
Language Models (SLMs) hold great potential
in specialized domains, such as math reasoning
(Shridhar et al., 2023). The reduced computational
requirements of SLMs allow for faster inference
and deployment on resource-constrained devices.
Also, SLMs can be fine-tuned, hosted and oper-
ated locally on computing machines, minimizing
the need for sensitive user data and domain infor-
mation to be exposed or leaked. The benefits of
SLMs bring opportunities to the manufacturing in-
dustries, including maintenance and monitoring,
process optimization, and quality control.

Failure Mode Sensor/Parameter Reading
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Bearing wear ✓ ✓ ✓
Gear Defect ✓ ✓
Unbalance ✓ ✓
Shaft Misalignment ✓ ✓ ✓
Overheating ✓ ✓

Table 1: Expert Knowledge: Failure Faults ↔ Sen-
sors/Parameters: ✓indicates that parameter or sensor
change if failure occurs

In this paper, we focus on the adoption of small
language models in Industrial Asset Health applica-
tions, which involve monitoring the health of assets
using sensor data. Typically, Internet of Things
(IoT) devices collect data from a variety of sensors,
including those that measure temperature, power,
and pressure. The sensor data is then analyzed to
predict potential failures, such as “overheating”,
and to recommend proactive maintenance before
breakdowns occur. To improve failure detection,
Failure Modes and Effects Analysis (FMEA)
used in reliability engineering is commonly applied
to both sensor data and failure modes (see Table 1).
This method establishes connections between an
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Question Cate-
gory

Example Question

Asset to Sen-
sors

What are the sensors that could be use-
ful in monitoring the condition of an
asset?

Failure Mode to
Class

Given a failure description, which fail-
ure mode class does it belong to?

Failure Mode to
Sensor

To prevent an occurrence of a failure,
what are the sensors that can be used
to detect it early?

Sensor to Fail-
ure Mode

When anomalies are detected in a sen-
sor reading, what failure modes can be
the root cause?

Table 2: Example FMEA Questions by Category in
Asset Health Monitoring Application

asset’s potential failures and the monitored sensors
that can signal these failures when anomalies are
detected. Such analysis is a core component of
industrial asset health monitoring.

Can a Large Language Model (LLM) act as a
potential knowledge generator (see Table 1), offer-
ing insights into the relationships between failure
modes and sensor parameters? An LLM-based
workflow could enhance decision-making by pro-
viding contextual understanding and reasoning for
FMEA-related questions, as outlined in Table 2.

1.1 SLM Challenges for Asset Health
Monitoring

Scarcity of high-quality, labeled data. The gen-
eral guidelines of FMEA in industrial asset mainte-
nance was published by ISO Standards1 that cover
only 10 assets. For emerging technologies or newer
machinery that hasn’t yet gone through extensive
operational lifecycles, there may be limited data or
documents on failure modes. This scarcity makes it
difficult to perform a thorough FMEA and predict
potential failures accurately, as historical failure
data simply doesn’t recorded yet.

Genericness of LLM response to a specific do-
main. LLMs are trained on vast, general datasets
that cover a wide range of topics. A domain-
specific context (e.g., FMEA) is usually underrep-
resented in the training data and the model may
generate more generic answers, lacking the deep
domain expertise when reasoning.

Complexity and heterogeneity of industrial
entities. Industrial systems often consist of highly
complex and heterogeneous assets, each with

1https://www.iso.org/standard/71194.html

unique sensors and failure modes. LLMs are ex-
pecting to tell the difference between Compressor
fouled and Compressor stalled. Distilling expert
knowledge about such varied and intricate concepts
into a smaller model is difficult.

1.2 Contributions
To tackle all the challenges above, we propose a
knowledge distillation framework for industrial as-
set health monitoring applications. The paper will
cover contributions listed as followed:

1. We present a novel distillation framework de-
signed to semi-automatically transfer Chain-
of-Thought reasoning on multi-choice ques-
tion answering tasks from LLMs to SLMs.

2. We introduce a novel KnowledgeGraph-
inspired method to generate synthetic instruc-
tions including pseudo label for industrial do-
main completely without seed documents.

3. We perform a thorough qualitative evalua-
tion of in-context learning and fine-tuning
using domain knowledge generated by the
framework, concluding that the student mod-
els achieve substantial performance improve-
ments, ranging from 11% to 23%, depending
on the base models.

2 Related Work

Chain-of-Thought (CoT) prompting has signifi-
cantly improved interactions with large language
models (LLMs), leading to better results across var-
ious datasets, such as MathQA (Wei et al., 2023).
This success has inspired research focused on uti-
lizing CoT traces from larger models to distill in-
formation, knowledge, and reasoning (Mitra et al.,
2023) (Zelikman et al., 2022). The core premise of
this research is that information for a target domain
can be either pre-existing in the form of question-
answer pairs or generated using an additional LLM.

Aligning an LLM to a specific skill has recently
emerged as another area of focus. Knowledge gen-
eration from a teacher LLM typically begins by
leveraging documents or seed instructions (Wang
et al., 2022), (Sudalairaj et al., 2024). More re-
cently, the Magpie-based approach has gained in-
terest, allowing LLMs to generate alignment data in
an instruction-free manner (Xu et al., 2024). How-
ever, extracting domain-specific knowledge from
LLMs remains a challenge. Various attempts have
been made to generate domain-specific aligned
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models, such as MediTron-70B for the medical
domain (Chen et al., 2023) and EntiGraph CPT for
long-passage question answering on articles (Yang
et al., 2024), among others. These approaches
typically rely on large-scale corpora with billions
of tokens or begin with a few million tokens to
generate additional synthetic data using a teacher
model. However, they largely overlook the Indus-
try 4.0 domain. One primary reason for this may
be the lack of a qualitatively constructed valida-
tion dataset such as other domains PubMedQA (Jin
et al., 2019)) and chemical safety (e.g., ChemSafety
(Zhao et al., 2024)) as examples.

3 Methodology

We present our proposed Knowledge Distillation
framework in Figure 1, which transfers FMEA
knowledge from a teacher model to a student model.
The process for generating synthetic multiple-
choice question answering (MCQA) data using
Chain of Thought (CoT) prompting is described
step-by-step in the following sections. Notably, the
generation process is seed-free, meaning it does
not rely on an initial dataset.

3.1 KG-based Instruction Generation
In manufacturing, Knowledge Graphs (KGs) are
commonly used to organize relationships and de-
rive domain knowledge (PCA Reference Data and
Services, 2025). Each edge in a knowledge graph
can be represented as a collection of relational
triplets (s, o, r), where s denotes the subject en-
tity, o represents the object entity, and r defines the
relation between these entities. Within the context
of FMEA, three critical relations, as identified by
domain experts, are:

• mountedOn: indicates that a physical sensor
is mounted on an industrial asset for the pur-
pose of monitoring or tracking.

• experiencedBy: indicates that a failure mode
is experienced by an industrial asset.

• detectedBy: indicates that a failure mode can
be detected by a sensor associated with the
industrial asset.

When the subject (s) or object (o) of a triplet
T (s, o, r) is omitted, the remaining element be-
comes a seed for generating LLM instructions. Ta-
ble 3 illustrates an example of how such a seed can
be transformed into a question. To facilitate the

generation of these questions, we have designed a
variety of handcrafted seed templates for each node
type. In total, we have 23 distinct seed templates
(See Appendix 11), which covers all four question
categories, as shown in Table 2.

triplet (T ) ( , Wind Turbine, mountedOn)

question (Q) Which sensor is mounted on
Wind Turbine for monitoring perfor-
mance of the asset?

Table 3: Mapping: a seed to a natural language question

3.2 Options Generation

Generating the correct option and multiple distrac-
tors is crucial for the effectiveness of a question (Q).
Since the data used is entirely synthetic, we rely on
teacher LLMs to generate potential answer choices
for a given Q. Let U represent the universal set of
available options in our study, where the content
is determined by the type of node, which is omit-
ted at the time of generating Q. We then prompt
the LLM to rank candidate options based on their
correctness criteria and extract the top K options
from the universal set U (as specified in the prompt
Appendix Table 12). For each of these K options,
we treat each as a correct answer and generate a
distinct problem with a slightly rephrased instruc-
tion. This approach not only introduces diversity
in the correct answers but also reduces the risk of
bias by preventing reliance on a single, potentially
erroneous, option.

To generate distractors, we retain the bottom 2K
options (i.e., less relevant) from the generated re-
sponse which are those with the least correctness
and use them as candidates for the distractors. To
further avoid patterns, we randomize the positions
of the answers. In summary we generated K in-
stances of original question Q with option.

The use of correctness criteria is our contribution.
For example, for a question in Table 3, “the sensors
that can be installed on asset” is an example of
criteria in order to obtain the relevant set of K
options from U . We have defined criteria for each
question category in Table 2. We set K = 5.

3.3 Pseudo Ground Truth Labelling

After constructing the prompt with the instruction,
question q, and the options denoted as A, B, C, D,
E, ..., the LLM is prompted to generate an answer.
The labeling process involves selecting the best
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Figure 1: Proposed Knowledge Distillation Framework: Workflow leading to Fine-Tune

option from the available choices. We implement
a majority voting mechanism using three LLMs
(Mixtral Large, Llama-3.1 405b, and ChatGPT) to
produce the final answers.

For each multiple-choice question generated, we
assign a label if there is clear consensus among the
voters. If two voters agree on a particular answer,
we evaluate the LLM generated confidence scores
and assign a label only if both confidence scores
exceed 90. We have used a “self-guess” prompt
to interact with LLM for generating final answer
(Appendix - Table 13).

3.4 Rationale Generation

To distill knowledge from Large Language Models
(LLMs), we implement Chain of Thought (CoT)
based prompting. CoT prompting aids reasoning
in multiple-choice question answering by breaking
down the process into step-by-step logical steps as
well as taking into account the available options.
This approach reduces reliance on shallow heuris-
tics and enhances accuracy when tackling complex
problems. We selected three variations of trigger
statements, as shown in Table 4. The question,
along with its options, is used with the CoT trigger
to generate an LLM-based answer and its rational.
If the LLM-generated answer matches the pseudo-
label, a rationale is subsequently applied.

CoT Stype Trigger Statement
Standard Let me think step by step

Inductive Let me think step by step as a
reliability engineer

Expert Let’s use step by step inductive
reasoning, given the domain
specific nature of the question

Table 4: Chain-Of-Thought Trigger Statements

For CoT Expert, the approach mimics expert-
level thinking by structuring reasoning around en-
gineering principles and best practices in FMEA.
This method aids the model in prioritizing key fac-
tors such as failure modes, causes, effects, and
detection methods. On the other hand, CoT Induc-
tive allows LLMs to derive conclusions by iden-
tifying patterns and relationships within the text.
This is particularly useful for handling unfamil-
iar scenarios or edge cases (e.g., unknown sensors
or failure modes), where expert knowledge alone
may not suffice. Research suggests that these two
CoT variations could potentially outperform CoT
Standard in certain situations (Liévin et al., 2023).

3.5 Quality Filtering
We apply several heuristics from (Xu et al., 2024) to
select high-quality generation for down-streaming
fine-tuning. Here are the proposed metrics and the
empirical thresholds:

• Input and Output Length: the total number of
characters combining input and output. We
filter those generations exceeding max context
length of LLMs.

• Minimum Neighbor Distance: The embed-
ding distance to the nearest neighbor. Filter
the lowest 5% of generations based on scores.

• Input Difficulty: LLM-as-a-Judge to deter-
mine the difficulty of question on 5 scales
(very easy, easy, medium, hard and very hard).
Remove very easy generations.

• Output Quality: LLM-as-a-Judge to deter-
mine the quality of output on 5 scales (very
poor, poor, average, good and excellent). Re-
move very poor and poor generations.
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Although these quality control methods effec-
tively filter out clearly flawed generations, it re-
mains necessary to assess the quality of the gener-
ated data using the teacher model, as discussed in
Section 4.2.

4 Experiments

In this section, we conduct extensive experiments
to evaluate the effectiveness of the FMEA-related
QA data generated by FailureSensorIQ (Ap-
pendix: Table 14). FailureSensorIQ is a new
dataset we introduced to the community for testing
LLM’s ability to reason about sensor and failure
mode relation. Our goal is to enhance the student
model’s performance by leveraging knowledge dis-
tilled from the teacher model. In other words, we
aim to improve SLMs so they can achieve reason-
ing capabilities comparable to LLMs in the scope
of FMEA.

4.1 Generated Data Statistics

We use Mistral Large as the teacher model for CoT
reasoning generation and rely on Mistral Large,
Llama-3.1-405B-Instruct, and GPT-4 as the mod-
els for majority voting. The choice of teacher
models follows prior research findings (Constan-
tinides et al., 2025). We have collected 54 candi-
dates for assets, 66 for sensors, and 59 for failure
modes from ISO standards (iso, 2018; ISO, 2016).
For each seed question, we generate 5 variations
(with K = 5), each featuring different rephrased
questions and correct options. By applying three
different Chain of Thought (CoT) prompts for
reasoning and filtering, the final number of genera-
tions is 6.2k, 6.1k, and 6.2k for CoT-Expert, CoT-
Inductive, and CoT-Standard, respectively. We
denote the generated datasets as DCoT-Std

gen , DCoT-Exp
gen ,

and DCoT-Ind
gen . The distribution of assets in the gen-

erated data is uneven, with the percentage of each
asset ranging from 1% to 5%.

4.2 Generated Data Factuality Analysis

To assess the factual consistency of the teacher
model-generated data, we conducted an evaluation
using an extended version of FActScore (Min et al.,
2023), a recent metric that measures the percentage
of atomic facts from LLM generations supported
by a trusted source, e.g. Wikipedia, Arxiv. We
sampled 700 examples from D

CoT-Exp
gen , ensuring

even distribution across 54 industrial asset types.
We run FActScore script with Llama-4-Maverick.

The results in Table 5 indicate that the teacher-
generated data achieves a FActScore of 70.8%,
which is slightly higher than the 69.8% achieved
by the FailureSensorIQ benchmark, which means
nearly 70% of facts of our teacher LLM genera-
tions are backed by trusted source. Additionally,
the responding rate remains high at 89.6%, rein-
forcing the usability of the generated samples, as
the model provides substantive responses rather
than abstaining.

Responding (%) FActScore (%)

FailureSensorIQ 94.7 69.8
Generated data 89.6 70.8

Table 5: FActScore: Factuality Comparison Between
FailureSensorIQ and Teacher Generated Data

4.3 Benchmark Dataset
We select the FailureSensorIQ2 dataset (Constan-
tinides et al., 2025) derived and curated from ISO
Standards which contains 2667 multi-choice single-
true questions with ground truths. The dataset is
designed to access the ability to reason and un-
derstand the relations between sensor/parameter
and failures/faults for assets in Industry 4.0. This
dataset covers 10 assets and Table 6 lists some dis-
tributional information of the dataset.

Distribution
Type

Distribution Value

Asset
Distribution

Electric Motor (234), Steam Turbine
(171), Aero Gas Turbine (336), In-
dustrial Gas Turbine (240), Pump
(152), Compressor (220), Reciprocat-
ing IC Engine (336), Electric Gener-
ator (234), Fan (200), Power Trans-
former (544)

Option
Distribution

Option A: 752, Option B: 729, Option
C: 491, Option D: 408, Option E: 208

Distribution
of Questions

2-options: 487, 3-options: 266, 4-
options: 389, 5-options: 1525

Table 6: Distribution Types and Their Values for Fail-
ureSensorIQ MCQA dataset

4.4 Evaluation Metrics
Accuracy is the most commonly used metric for
tests on MCQA tasks. However recent study (Li
et al., 2024) demonstrates a collection of metrics

2https://huggingface.co/datasets/ibm-
research/assetopsbench
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that comprehensively examine the performance of
LLMs on MCQA tasks based on response pattern.
The proposed metrics are the percentage of LLM
responses patterns as followed with denotation:
(1) Psingle-correct - single correct selection (accu-
racy); (2) Psingle-wrong - single wrong selection; (3)
Pinvalid - invalid selection (none of answers in the
response); (4) Pmul-correct - multiple selections with
the correct one; (5) Pmul-wrong - multiple selections
w/o the correct one.

4.5 In-Context Learning
In-context learning (ICL) is a technique that al-
lows Large Language Models (LLMs) to adapt to
new tasks during inference by providing a prompt
containing task examples. Recently, with the in-
creasing context length of LLMs (≥ 128K), re-
searchers have explored the impact of many-shot
learning versus fine-tuning the model (Agarwal
et al., 2024). In this experiment, we evaluate the ef-
fects of incorporating examples from Dgen into the
prompt when performing inference on the bench-
mark dataset FailureSensorIQ. We experimented
with three options: (1) Zero-shot learning, which
tests LLMs with no external knowledge during in-
ference; (2) Few-shot learning, using 5 expert-
curated examples. These examples are carefully
handpicked to demonstrate the FMEA task, includ-
ing reasoning processes. The quality of the exam-
ples is evaluated by domain experts; (3) Many-shot
learning using examples from D

CoT-Exp
gen .

In the case of many-shot learning, we use the all-
MiniLM-L6-v2 model (Reimers and Gurevych,
2020) to compute the embeddings (vector repre-
sentations) of each question in the synthetic data.
During inference, we also convert each query from
the benchmark dataset into an embedding using the
same embedding model. We utilize cosine similar-
ity to select the top N relevant generations from
D

CoT-Exp
gen to use as context for the query. Here,

N ∈ {1, 5, 10, 20}. It is important to note that the
out-of-the-box all-MiniLM-L6-v2 is specifically
optimized for speed and memory efficiency.

We randomly sample 500 questions from the
2667-question FailureSensorIQ dataset. The num-
ber of correct inferences made by LLMs from three
open-source LLM families : Llama, Mistral, and
Granite, are shown in Table 7. The results demon-
strate that performance generally improves when
transitioning from zero-shot to few-shot learning.
Llama-3.1-70B-Instruct shows a substantial in-
crease, reaching 303 correct inferences with 5

curated examples, while Mistral-Large-Instruct
achieves 320 correct inferences, maintaining strong
performance across various few-shot setups. Larger
models tend to consistently outperform smaller
models within the same family, primarily due to
their larger parameter space. Larger language mod-
els also tend to have longer context lengths, which
enables them to consume more context and knowl-
edge from additional examples, thereby boosting
performance. However, the performance gains be-
gin to plateau when the number of generated exam-
ples exceeds 20. Interestingly, larger model tend
to perform with less samples whereas the smaller
model tend to perform better with more examples.

The performance improvement from zero-shot
to curated few-shot learning is more significant
than the improvement from curated few-shot to
generation-based few-shot. This is because the
model effectively “learns” the task when adding
curated few-shot examples, whereas the transition
from curated few-shot to generation-based few-shot
does not introduce a substantial learning step. Ad-
ditionally, many-shot learning using N = 5 gener-
ally outperforms curated samples based example,
clearly demonstrating the advantage of in-context
learning, where samples are dynamically selected
based on the input query.

In conclusion, the generated data from our pro-
posed framework provides a noticeable improve-
ment in contextual understanding during the infer-
ence. However, due to model saturation and the
noise introduced by potentially low-quality genera-
tions, in-context learning may not fully capitalize
on the distilled knowledge from the teacher model.

4.6 Model Fine Tuning
With Chain of Thought (CoT) knowledge distilla-
tion, the goal of fine-tuning the student model is
not only to produce accurate predictions but also
to internalize the reasoning behind those predic-
tions in asset health monitoring. Our experimental
setup uses QLoRA with 4-bit precision for model
fine-tuning. The model leverages FlashAttention2
for efficient attention computation and supports
mixed precision training with bf16 and tf32. The
maximum sequence length is set to 2048 tokens,
and packing is enabled to optimize memory usage.
The training runs for 1 epoch, with a batch size
of 8 and gradient accumulation over 2 steps. The
learning rate is set to 2.0× 10−4, with a constant
learning rate scheduler and a warmup ratio of 0.1
to gradually ramp up the learning rate. Training is
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LLM Zero-Shot
Few-Shot Many-Shot (generation-based)
5 curated N = 5 N = 10 N = 20 N = 50

Llama-3.1-70B-Instruct 249 303 316 304 313 310
Llama-3.1-405B-Instruct 251 313 317 315 316 317

Mistral-Large-Instruct 248 298 320 315 310 315
Llama-3.2-90B-Vision-Instruct 249 300 317 304 318 312

Ministral-8B-Instruct 218 245 262 275 275 278
Llama-3.1-8B-Instruct 220 277 288 292 294 287
Granite-3.1-8B-Instruct 187 196 206 206 209 210

Table 7: Correctness of LLM inference on 500 FailureSensorIQ questions. This comparison examines the zero-shot
baseline against few-shot/many-shot learning, using expert-curated examples vs. examples from DCoT-Exp

gen .

Model Experiment Settings Evaluation Scores

(baselines) Synth. Data Prompting Psingle-correct Pinvalid Pmul-correct Psingle-wrong Pmul-wrong

Llama-3.1-405B-Instruct N/A CoT Std 0.5126 0.0019 0.1691 0.258 0.0585

Llama-3.1-8B-Instruct N/A direct 0.4012 0.012 0.1991 0.3048 0.0829

Mistral-Large-Instruct N/A direct 0.5009 0.0244 0.186 0.2295 0.0592

Ministral-8B-Instruct N/A direct 0.264 0 0.4113 0.1894 0.1354

Granite-3.1-8B Instruct N/A direct 0.2411 0.0015 0.4046 0.1916 0.1612

FT on DCoT-Std
gen direct 0.5111 0.0071 0.1095 0.3116 0.0607

Llama-3.1-8B-Instruct D
CoT-Exp
gen direct 0.4698 0.0049 0.0979 0.375 0.0525

DCoT-Ind
gen CoT Ind 0.4387 0.0165 0.1365 0.3168 0.0915

FT on DCoT-Std
gen direct 0.4402 0 0.144 0.3573 0.0585

Ministral-8B-Instruct D
CoT-Exp
gen direct 0.4623 0.0004 0.1301 0.3495 0.0577

DCoT-Ind
gen direct 0.4938 0 0.1537 0.2913 0.0611

FT on DCoT-Std
gen CoT Std 0.3813 0.0427 0.1552 0.3142 0.1065

Granite-3.1-8B-Instruct D
CoT-Exp
gen direct 0.4083 0 0.2583 0.2163 0.117

DCoT-Ind
gen CoT Std 0.4062 0.006 0.1407 0.3952 0.0519

Table 8: Evaluation scores of base models and fine-tuned models on FailureSensorIQ dataset. Column Synth. Data
represents the generated dataset used for fine-tuning, and Column Prompting shows the best prompting technique
with the highest accuracy. "N/A" indicates that the experiment does not involve fine-tuning.

conducted on 2 NVIDIA A100 80GB GPUs. We
provide additional discussion on the selection of
fine-tuning specifications in the Appendix A.1.

The three student models focused on in this ex-
periment are all 8B small language models: Llama
3.1 8B Instruct, Mistral 8B Instruct, and Granite
3.1 8B Instruct. We compare the performance of
these student models after knowledge distillation
with the baseline models, as shown in Table 8.

4.6.1 Baselines

Llama-3.1-405B-Instruct model achieves the
highest Psingle-correct (0.51) among the baselines.
Mistral-Large-Instruct model also performs well

with Psingle-correct = 0.50, but it has a higher
Pinvalid = 0.024, suggesting it generates more in-
valid responses. Both Mistral-8B-Instruct and
Granite-3.1-8B-Instruct perform the worst among
the baselines, with much higher Pmul-correct values,
indicating they often predict multiple correct an-
swers rather than providing a single precise answer.

4.6.2 Impact of Fine-Tuning

In general, fine-tuning on DCoT-Std
gen , DCoT-Std

CoT-Exp, and
DCoT-Ind

gen leads to notable changes in performance
across all three student models, with 0.11, 0.23,
0.16 Psingle-correct gain respectively. Fine-tuning
Llama-3.1-8B-Instruct on DCoT-Std

gen shows a compa-
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Figure 2: Real knowledge capacity measurement with two knowledge-invariant perturbations: Option ID Shifting
(Perturb-OIDS), and Knowledge-Invariant Question Paraphrasing (Perturb-KIQP).

rable Psingle-correct = 0.51 to Llama-3.1-405B, indi-
cating the SLM, when fine-tuned, achieves a level
of performance that is close to that of its larger
counterpart. In terms of the choice of CoT style
during distilling large models, there is not clear
winner among the three. We could argue that CoT-
Expert has a slight edge since it has a low change
to generate invalid responses, and maintain higher
scores in both Psingle-correct and Pmul-correct.

4.6.3 Impact of CoT Fine-Tuning
During inference, we apply prompt engineering to
each queries including direct prompting, and three
CoT variations listed in Table 4. Then we record
the best prompting style with highest Psingle-correct
in Column Prompting in Table 4. We notice that
direct prompting is the best one in most experi-
ment settings. This proves the direct prompting
is effective enough after student models learn the
CoT-style reasoning via knowledge distillation.

Observations on Failure Types. Pinvalid re-
mains low across most models, except for the base-
line Mistral-Large-Instruct and fine-tuned Llama-
3.1-8B-Instruct (CoT-Inductive). Fine-tuning gen-
erally reduces Pmul-correct, meaning models are
more confident in selecting a single correct answer
instead of multiple. Psingle-wrong increases for fine-
tuned models, suggesting fine-tuning makes mod-
els more decisive but also slightly increases the risk
of choosing incorrect answers.

4.7 Ablation Study

We conducted two ablation studies that isolates the
impact of individual components in the framework.
Specifically, we evaluate:

1. Without rationale (direct answer only): In

this setting, we fine-tuned the student model
using only the final answers from the teacher
without any accompanying chain-of-thought
(CoT) rationales.

2. Incorrect pseudo-labeling (mismatched
answer-rationale pairs): Here, we deliberately
introduced noise into the pseudo-labeling
process by pairing rationales with incorrect
final answers where the rationale and answer
do not align.

We compare the Psingle-correct of the two experi-
ments with the baseline (Table 9). All fine-tuning
is conducted with QLoRA and the rationale gener-
ation is based on CoT Standard. The ablation study
results reveal the dramatic performance degrada-
tion under incorrect pseudo-labeling, with drops
ranging from 13.3% to a severe 21.4%. This sug-
gests that students learn not just the reasoning
patterns but also the consistency between think-
ing process and outcome. Interestingly, the im-
pact of removing rationales varies significantly
across models: while Llama-3.1-8B shows a mod-
erate 5.2% performance drop without rationales,
Ministral-8B actually improves slightly. This het-
erogeneous response suggests the capacity to effec-
tively utilize CoT reasoning during fine-tuning is
model-dependent. For practical applications, these
findings suggest practitioners should first evaluate
model performance with direct answer fine-tuning
before implementing more computationally expen-
sive CoT reasoning approaches.

4.8 Perturbation Study

One significant challenge in evaluating the per-
formance of Large Language Models (LLMs) on
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Model Baseline Without Incorrect
Rationale Pseudo-labeling

Llama-3.1-8B 0.5111 0.4593 0.3780
Ministral-8B 0.4402 0.5182 0.2265
Granite-3.1-8B 0.3813 0.3296 0.1429

Table 9: Psingle-correct of Ablation Studies vs. Baseline

multiple-choice question answering (QA) bench-
marks is determining how accurately the scores
reflect the model’s true reasoning ability and knowl-
edge capacity. To address this issue, a recent evalu-
ation framework, PertEval (Li et al., 2024), intro-
duces a suite of tests that apply various knowledge-
invariant perturbations to benchmarks. We utilize
two of these perturbations to assess the perfor-
mance of our fine-tuned student models:

1. Option ID Shifting (OIDS): This tech-
nique substitutes the original option IDs
(A/B/C/D/E) with new identifiers (P/Q/R/S/T).
OIDS explores potential LLM selection bi-
ases in question answering, a phenomenon
observed in certain models. By applying this
perturbation to the dataset, we can assess
whether the choice of option IDs influences
the model’s performance.

2. Knowledge-Invariant Question Paraphras-
ing (KIQP): The questions in the original Fail-
ureSensorIQ dataset are concise and straight-
forward. We apply paraphrasing using Llama-
3.0-70B to reword these questions while pre-
serving their intended meaning.

These two perturbations allow us to evaluate
our models on both format and content levels. In
Figure 2, we compare the Psingle-correct scores of
the fine-tuned Llama-3.1-8B-Instruct and Ministral-
8B-Instruct models across three datasets: the orig-
inal FailureSensorIQ, Perturb-OIDS, and Perturb-
KIQP. We observe a significant performance drop
after applying the perturbations. Specifically, fine-
tuned Llama-3.1-8B-Instruct shows greater insta-
bility under perturbations, with an average drop of
0.19 per perturbation (Pbefore perturb − Pafter perturb),
compared to a 0.14 drop for Ministral-8B-Instruct.
The KIQP perturbation leads to a more substantial
decline in reasoning ability than the OIDS pertur-
bation, indicating that LLMs often rely on mem-
orized patterns and heuristics rather than a deep
understanding of the context.

We find that the KIQP perturbation not only al-
ters the questions but also affects the structure of
the MCQA task itself, as it causes the options to
appear before the question. Additionally, when
applying the base model for the same set of exper-
iments, the accuracy of the Perturb-KIQP dataset
was notably lower (close to 0.14 for Llama-3.1-8B-
Instruct). In summary, even with fine-tuning, small
language models (SLMs) improved their grasp on
key concepts (e.g., failure modes, sensors). The
performance drop across the three types of CoT
fine-tuning remains similar, underscoring the chal-
lenges LLMs face when the task context is altered.

5 Conclusion

We present an innovative knowledge distillation
framework designed for asset health monitoring
tasks. Our framework generates high-quality syn-
thetic data using LLMs without relying on initial
knowledge documents for assets. By fine-tuning
small language models (SLMs) with this domain-
specific data, the models exhibit reduced hallucina-
tion, improved reasoning accuracy, and enhanced
consistency in responses. CoT distillation on multi-
choice QA tasks further strengthens the SLM’s
contextual understanding of industrial entities. The
low cost of SLM QLoRA fine-tuning (less than 1
hour per experiment, under 4GB adapter for 8B
models) makes it a practical solution for adapting
models to industry tasks while maintaining scal-
ability and efficiency. Despite these advantages,
challenges remain, particularly in handling pertur-
bations, suggesting that future work could focus on
perturbation-aware training or incorporating more
diverse perturbation scenarios into the synthetic
data generation process.

Limitations

Our approach leverages a larger teacher model
to generate rationales and question-answer pairs
for fine-tuning a smaller student model. Given
the domain-specific nature of the task, ensuring
the factual accuracy and faithfulness of the gen-
erated content is essential. However, large-scale
human validation is infeasible, and existing auto-
mated methods for verifying scientific truthfulness
remain limited in both reliability and domain cover-
age. Consequently, the student model may inherit
subtle inaccuracies from the teacher model, partic-
ularly in cases involving less-documented or highly
specialized knowledge.
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Additionally, this work focuses on three proto-
typical and high-frequency Failure Mode and Ef-
fect Analysis (FMEA) relations : mountedOn, ex-
periencedBy, and detectedBy, as an initial proof of
concept to demonstrate the viability of CoT-based
distillation in this context. While our framework
is modular and readily extensible to accommodate
more complex relationships, the current limited re-
lational coverage may affect generalizability to the
full FMEA relational space.

Future work should focus on developing more
robust, domain-sensitive evaluation techniques for
low-resource and high-precision scientific applica-
tions, as well as expanding the framework to en-
compass a broader range of FMEA relationships to
enhance the model’s comprehensive understanding
of complex industrial systems.
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A Appendix

A.1 Fine Tuning: Full FT vs. LoRA vs.
QLoRA

In this section, we compare the performance of
three fine-tuning approaches: Full Fine-Tuning
(Full FT), Low-Rank Adaptation (LoRA), and
Quantized LoRA (QLoRA), on the tasks described
in Section 4.6. We further discuss the rationale
behind ultimately selecting QLoRA.

Our results in Table 10 show that Full FT fre-
quently degrades performance relative to LoRA,
largely due to a high proportion of invalid or in-
complete responses. This degradation likely arises
from the model overfitting to surface-level patterns
in the training data while failing to preserve the
intended reasoning behaviors.

Both LoRA and QLoRA preserve response qual-
ity, producing substantially more valid and rea-
soned outputs, with comparable performance on
FailureSensorIQ benchmark tasks. Between the
two, LoRA and QLoRA achieve similar accuracy,
but QLoRA provides real-world advantages, includ-
ing a lower memory footprint, faster training time,
and more efficient inference.
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Table 10: Performance Comparison Across Different Fine-tuning Methods

LLM Prompting Full FT: Full FT: LoRA: QLoRA:
Technique Psingle-correct Pinvalid Psingle-correct Psingle-correct

Llama-3.1-8B
CoT standard 0.1005 0.4229 0.4796 0.5111
CoT expert 0.1080 0.4421 0.4743 0.4698
CoT inductive 0.0829 0.4631 0.4747 0.4387

Ministral-8B
CoT standard 0.0937 0.5692 0.4214 0.4402
CoT expert 0.0960 0.5816 0.5088 0.4623
CoT inductive 0.0956 0.5681 0.4627 0.4938

Granite-3.1-8B
CoT standard 0.2343 0.0907 0.4143 0.3813
CoT expert 0.2373 0.0900 0.4526 0.4083
CoT inductive 0.2295 0.0885 0.4128 0.4062
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Seed Templates for Sensor and Failure Mode Inquiry

Category Example Templates

Sensor
Asset to Sensor Which sensor could be installed on this asset {asset_class}?

Is there a sensor that can be mounted on this asset {asset_class}?

Can you identify a sensor that could work with this asset {asset_class}?

Which sensor is recommended to track performance and identify anomalies for
this asset {asset_class}?

Failure Mode Inquiry
Templates

Which is the most common failure mode associated with the asset {asset_class}?

Asset to Failure Mode Which failure mode should be monitored for the asset {asset_class}?

Which failure mode can occur in the asset {asset_class} during operation?

Which is the failure scenario that the asset {asset_class} might encounter?

Which failure mode is most likely to occur with the asset {asset_class}?

Sensor to Failure Mode In the context of {asset_class}, which failure mode is most relevant when {rele-
vant_sensor} shows abnormal readings?

Which is the most relevant failure mode for {asset_class} if {relevant_sensor}
exhibits abnormal readings?

Which failure mode should be considered for {asset_class} when abnormal
readings are detected by {relevant_sensor}?

When {relevant_sensor} in {asset_class} displays abnormal readings, which
failure mode is the most applicable?

For {asset_class}, what is the key failure mode when {relevant_sensor} has
abnormal readings?

What is the most likely failure mode for {asset_class} when {relevant_sensor}
indicates abnormal behavior?

Sensor Selection for Failure
Mode Templates

Failure Mode to Sensor
Which sensor can be used to monitor asset {asset_class} for failure mode {rele-
vant_failure_mode}?

What sensor is suitable for monitoring {asset_class} to detect {rele-
vant_failure_mode}?

What sensor can be utilized to monitor {asset_class} for signs of {rele-
vant_failure_mode}?

Which sensor is best suited to monitor {asset_class} for the occurrence of
{relevant_failure_mode}?

In an {asset_class}, which sensor is designed to track {relevant_failure_mode}?

In the context of {asset_class}, which sensor can help in identifying {rele-
vant_failure_mode}?

Which sensor would you recommend for monitoring {asset_class} to detect
{relevant_failure_mode}?

Which sensor can effectively monitor {asset_class} for potential {rele-
vant_failure_mode}?

Table 11: Template for Question Generation
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Question
template

Divide the following choices into two groups. First group is
{relevance criteria}. Second group is {irrelevance criteria}.
Here are a list of choices: {choices}. Output the first group
in the first line. Output the second group in the second line.
Format of the output should be:
First group: ["choice1", "choice2", "choice3", ...]
Second group: ["choice4", "choice5", "choice6", ...]

Relevance
criteria

failure modes that are the most common failure modes associated
with {asset class} sorted by relevancy

Irrelevance
criteria

the failure modes that are most unlikely to occur with {asset
class} sorted by unlikelihood

Choices fail to start, failure to stop, ..., bearing wear, unbalance,
...

Table 12: Example of question template that groups and ranks the options in options generation process.

Here is the question:
Question: {question}
{options}

Please provide your best guess for the answer to the following
question and include a confidence score between 0 to 100, an
explanation, and a rationale for your answer in the following
JSON format:
“‘json
{
"answer": "Your answer here",
"explanation": "Your explanation here",
"confidence_score": "Your score here",
"rationale": "Your answer here",
}
“‘

Table 13: Self-guess prompting to extract confidence score and rationale from the response

Failure Mode
to Sensor

For electric motor, if a failure event rotor windings fault
occurs, which sensor out of the choices is the most relevant
sensor regarding the occurrence of the failure event?

A. partial discharge
B. resistance
C. oil debris
D. current
E. voltage

Answer: D
Sensor to
Failure Mode

Which failure mode is most relevant for steam turbine if there
are abnormal readings from coast down time?

A. unequal expansion
B. misalignment
C. bearing damage
D. unbalance
E. damaged labyrinth

Answer: C

Table 14: Examples of FailureSensorIQ: a multi-choice question-answering dataset for failure mode and sensor
relations
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