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Abstract

Compositional generalization benchmarks seek
to assess whether learning agents can success-
fully combine familiar concepts in novel ways.
COGS (Kim and Linzen, 2020) provides a suite
of such tasks in the area of interpretive seman-
tics (mapping sentences to logical forms). A
noteworthy finding for COGS is that model per-
formance varies widely across tasks. In this
paper, we argue that these performance dif-
ferences reflect deep properties of these tasks.
We focus on two COGS tasks: an easy task
(models are generally successful) and a hard
task (no present-day models get any traction).
Using both experiments and conceptual analy-
sis, we argue that the easy task requires only a
single distributional generalization that is well-
supported by the training data, whereas the hard
task involves a learning target that is ambigu-
ous or even contradicted by the training data.
We additionally argue that pretraining can dis-
ambiguate the hard task without compromising
the goal of testing compositional generalization.
Overall, our findings offer practical guidance
to designers of compositional generalization
benchmarks and also yield new insights into
the nature of compositionality itself.

1 Introduction

Humans routinely produce and interpret novel sen-
tences. The principle of compositionality (Mon-
tague, 1970; Halvorsen and Ladusaw, 1979; Dowty,
2007) seeks to explain this productivity by hypoth-
esizing that the meanings of complex expressions
are determined by the meanings of their parts, res-
cursively down to primitive lexical meanings. Thus,
even novel combinations of familiar elements have
predictable and stable meanings.

Do language models (LMs) process language in
a similarly systematic way? Compositional gener-
alization benchmarks (Lake and Baroni, 2018; Kim
and Linzen, 2020; Wu et al., 2021) seek to address
this question by creating train–test splits in which

Figure 1: GenPROPER: The training data holds out a cer-
tain distribution for Paula, as depicted by the missing
red and green dotted lines for Paula. Evaluating on the
held-out distribution, as in Generalization Target, leads
to failure—unless the lexicon (Prim-LF pairs) contains
information that the learner can use for categorizing the
distributionally constrained item with other distribution-
ally free items in the training data.

specific combinations of elements are held-out for
testing. One of the most influential benchmarks in
this space is COGS (Kim and Linzen, 2020), which
tests models on their ability to map simple English
sentences to logical forms (LFs). COGS offers a
suite of tasks designed to test different kinds of
compositional generalization. At a high-level, the
tasks all seem conceptually similar. However, the
literature suggests that they must in fact differ from
each other in significant ways: some of the tasks
are easily solved by present-day models, while oth-
ers lead to effectively 0 accuracy for all models, as
documented by Wu et al. (2021, Table 1). What is
the underlying cause of these dramatic differences?

In the present paper, we argue that at least
some of these performance differences are the re-
sult of fundamental differences in how the tasks
themselves are designed. To develop the argu-
ment, we focus on two COGS tasks: PRIMITIVE
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Figure 2: GenPP: The train set holds out the distribution
for PPs as modifiers of subjects, depicted by the discrep-
ancy in the training and generalization distribution. PPs
can be categorized together by using the information
in the lexicon (PP-LF pairs). This is not enough for
generalization, for no PP has the distribution which can
be used to learn that PPs can occur within subjects.

TO SUBJECT/OBJECT (PROPER NAMES) and OB-
JECT PP TO SUBJECT PP. In the first (henceforth
GenPROPER), a subset of proper names P appear
only as lexical primitives during training, while
others appear as both subjects and objects. The
test-time generalization task is to handle names
in P as subjects and objects. This task proves to
be straightforward for present-day models that are
trained from scratch. In the second (henceforth
GenPP), PP modifiers appear only inside direct ob-
jects during training. The test-time generalization
task is to handle PP modifiers inside subjects. This
task is one where all present-day models, trained
from scratch, score about 0.

Our core claim is that GenPROPER is a well-posed
generalization task in a way that GenPP is not.
Figures 1 and 2 summarize the key difference.
For GenPROPER, the primitive LFs for the held-out
names convey to the model that they are members
of the broader class of proper names. The train
distribution covers all the test-time environments
for names, and so the compositional generaliza-
tion task essentially reduces to the category mem-
bership inference, for which LFs for the held-out
names serve as evidence. For GenPP, no specific
PPs are held out for testing, but the train distri-
bution covers only a subset of the test-time envi-
ronments for PPs. This is where models fail to
generalize in the intended ways.

In our experiments, we reproduce the core find-
ings about performance disparity across tasks. We

also substantiate our assessment of the differences
with new experiments. In particular, we show that
removing the LFs for the held-out names in the
GenPROPER task leads to failures at roughly the same
level as for GenPP; the LFs are what support the
category membership inference, and without them
models cannot make that inferential leap. We also
show that the inferential leap is supported by the
comprehensive distribution of other proper names,
which, if held-out, also independently leads to gen-
eralization failure. Our findings also explain why
the use of pretrained models results in substan-
tial performance improvement on GenPP, a find-
ing we reproduce for ReCOGS. Pretrained mod-
els effectively fill in the distributional gap for PPs,
which disambiguates the learning target and pro-
vides models with the needed distributional evi-
dence. To further corroborate our assessment, we
show that performance on GenPP can also be im-
proved by minimally introducing the test-time dis-
tribution for a subset of PPs (those headed by be-
side), which brings GenPP on a par with GenPROPER

in terms of the evidence available to the learner.
Kim and Smolensky (2024) (henceforth K&S)

is an experimental investigation of a task built in
analogy with GenPP. Focusing on human subjects,
K&S seek to vindicate GenPP as a well-posed gen-
eralization task for LMs. To create a productive
dialectic, we carefully engage with K&S’s findings.

2 Background and Related Work

Compositionality. In informal terms. the princi-
ple of compositionality says “The meaning of an
expression is a function of the meanings of its parts
and of the way they are syntactically combined”
(Partee, 1984). The principle has been central to
linguistic semantics since the work of Montague
(1970), who formalized it as a requirement that
there exist a homomorphism (structure-preserving
mapping) between the syntactic and semantic gram-
mars. While it remains an open question whether
the principle can be given in a way that is truly
formally restrictive (Zadrozny, 1992, 1994; Kazmi
and Pelletier, 1998; Dever, 1999; Dowty, 2007),
there is no doubt that it has profoundly shaped lin-
guistic semantics (Partee, 1997, 1984; Kamp and
Partee, 1995; Dever, 1999; Werning et al., 2012)
as well as the broader study of language and cogni-
tion (Fodor et al., 1975; Fodor and Pylyshyn, 1988;
Piantadosi et al., 2016; Steinert-Threlkeld, 2020;
Nefdt, 2020; Nefdt and Potts, 2024).
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Compositional Generalization Benchmarks.
Compositional semantic theories are generally ex-
pressed as formal semantic grammars. The ques-
tion naturally arises of what is required to learn
such grammars from data. This is the focus of re-
search on compositional generalization. An early
exploration of this question is SCAN (Lake and Ba-
roni, 2018), which defines a simple task mapping
natural language instructions to action sequences.
The train set holds out specific classes of expres-
sion for testing, and success or failure is taken as
evidence for the model having learned a latent com-
positional grammar. Since SCAN, a wide variety
of such tasks have been proposed to explore more
complex language (Geiger et al., 2019, 2020; Kim
and Linzen, 2020; Wu et al., 2023; She et al., 2023)
and more complex notions of grounding (Ruis et al.,
2020; Wu et al., 2021; Lake and Baroni, 2023).

Structural generalization and symbolic mod-
els. Kim and Linzen (2020)’s COGS benchmark
features subtasks that require generalizing to new
structures, as opposed to just new words. It has
been noted that the structural subtasks are harder
for LMs (Yao and Koller, 2022; Wu et al., 2023).
To achieve better performance on structural tasks,
researchers have developed symbolic biases within
LMs that encourage abstraction and algebraic com-
bination (Liu et al., 2021; Weißenhorn et al., 2022).
While such algebraic neural models explore a
promising intersection, the hardness of the tasks
that they seek to overcome can itself be studied
(Yao and Koller, 2022; Wu et al., 2023). Such hard
tasks also provide a valuable opportunity to explore
normative questions about task fairness.

Assessing Task Fairness. A pressing concep-
tual question for compositional generalization is
whether the tasks they create are fair in the sense
that the generalization target is unambiguously
specified by the training data (Geiger et al., 2019).
The distribution of adjectives in English is instruc-
tive here. For the most part, if an adjective can ap-
pear in a predicational position (The cat is sleepy),
it can also appear in attributive position (the sleepy
cat). Thus, one might pose a generalization task
in which specific adjectives appear only predica-
tionally during training and in attributive position
at test time. Adjectives like asleep raise concerns
about this. They appear only predicationally in En-
glish (the asleep cat is ill-formed). Thus, a train set
containing only predicational uses of an adjective
is consistent both with it being allowed in attribu-

tive position and with it being restricted to predica-
tional positions. Without additional assumptions,
the train set is simply underpecified in this regard.
Our central claim (anticipated by Wu et al. 2023) is
that some COGS tasks are ambiguous in this sense.

2.1 COGS and ReCOGS

The focus of our work is COGS (Kim and Linzen,
2020). COGS inputs are synthetically generated
sentences, and its outputs are logical forms (LFs),
inspired by event semantics (Parsons, 1990). The
ReCOGS dataset of Wu et al. (2023) seeks to ex-
tend and improve COGS by removing confounds
in the LFs while maintaining the same evalua-
tion goals. Example (1) illustrates the COGS and
ReCOGS formats using a simple example.

(1) a. The lion smiled .
b. COGS LF: * lion ( x _ 1 ) ; smile

. agent ( x _ 2 , x _ 1 )
c. RECOGS LF: * lion ( 19 ) ; smile

( 10 ) AND agent ( 10 , 19 )

Both COGS and ReCOGS provide standard IID
train–test splits as well as compositional general-
ization tasks that, at test time, either place lexical
items in novel roles or introduce novel structures.
As Wu et al. (2023) document (see their Table 1),
performance varies widely across these tasks but is
strikingly consistent across different models. For
the lexical tasks, present-day models easily achieve
about 90% accuracy. For the structural tasks, the
same models score at or near 0% accuracy. Wu
et al. (2023) show that they can improve scores by
removing spurious biases in the COGS data and
addressing superficial weaknesses in present-day
LMs, but the gap between the lexical and structural
tasks remains very large even after these changes.
Our overarching goal is to explain this persistent
discrepancy. For this, we focus on two representa-
tive tasks, one lexical and the other structural. Next,
we discuss and analyze the tasks in detail.

3 Generalization Task Analysis

In this section, we analyze our two target tasks,
seeking to articulate the core hypotheses that we
test experimentally in Section 4.

GenPROPER. Figure 1 summarizes GenPROPER.
The set of proper names is split into two groups:
names in the distributionally-free group appear as
both subjects and objects in the train set, while
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names in the held-out group appear only as primi-
tives. The test-time task is to handle names from
the held-out group as both subjects and objects.

We hypothesize that this task involves only one
compositional generalization step: inferring that
the held-out names are in the same category as the
distributionally-free ones. The lexical entries for
proper names help to convey why this is achievable
for models in practice:

(2) a. Ava.
b. COGS LF: Ava
c. RECOGS LF: LAMBDA a . Ava ( a )

For ReCOGS, all names (and common nouns) have
LFs of the form LAMBDA a . α ( a ) where α is
the name. For COGS, all names are simply single
tokens α, and they are the only entries with this
format. We know that present-day LMs are highly
sensitive to such distributional alignment, and so
we hypothesize that models successfully catego-
rize all names together using these LF regularities.
In Section 4.2, we support this by showing that
models completely fail at the task if we break the
distributional alignment by giving held-out names
a different LF.

Once a model has made this category inference
for the held-out names, the generalization task is
essentially an IID one, as no new structural envi-
ronments are introduced at test time. In Section 4.3,
we show that performance drops to near 0 if we
modify the task to include a structural generaliza-
tion component as well (by having proper names
appear only as objects during training and testing
on subject occurrences).

GenPP. As Figure 2 indicates, the GenPP task is
very different from the GenPROPER in terms of the
generalization challenge it poses. For this task, as
in the previous one, models do need to infer that
all PPs are distributionally alike. Here, they get
evidence from the relevant segments of LFs for
sentences featuring PPs.

The much more significant challenge relates to
the fact that an entirely new environment for PPs –
the subject position – is introduced at test time. In
other words, the (Re)COGS training data contains
a distributional gap for this task. This gap has no
analogue within the GenPROPER task. Part of our
claim is that the constrained distribution of PPs
affects model performance. This can be thought
of in terms of syntactic parsing. A learner that
doesn’t see Subject PPs doesn’t know how to parse

Task COGS ReCOGS

GenPP 0.00 0.01
GenPROPER 0.98 0.92
IID split 0.99 0.95

Table 1: Baseline experiment results.

a sentence with Subject PPs. In Section 4.5, we
test this by building on work linking surprisals with
syntactic parsing (Hale, 2001; Levy, 2008).

4 Experiments

4.1 Baseline Experiments

We begin by reproducing basic results for our main
ReCOGS tasks. For these experiments, we use the
standard COGS and ReCOGS data splits.

Models We use the encoder–decoder Trans-
former architecture (Vaswani et al., 2017) from
Wu et al. (2023). This architecture has a hidden
dimension size of 300, with absolute positional em-
beddings, two 2-layer Transformer blocks, and 4
attention heads. The model is trained from scratch
on COGS and ReCOGS using the HuggingFace
transformers library. We trained the model for
40 epochs with a learning rate of 3× 10−4, using
a single NVIDIA A100 GPU. The training time
was around 2 and 4 hours for COGS and ReCOGS,
respectively.

Results Table 1 summarizes our findings for
COGS and ReCOGS, which align with those
from the literature: performance on GenPP is
only slightly higher for ReCOGS compared to
COGS. For GenPROPER, our models perform well
on both COGS and ReCOGS. The difference be-
tween COGS and ReCOGS here likely traces to the
fact that COGS LFs disambiguate between proper
names and common nouns (Section 3), aiding the
model in classifying all the proper names together.
The IID splits show that the tasks themselves are
easy where no systematic train–test gaps are in-
volved. The accuracies on GenPROPERare compara-
ble to those on the IID splits.

4.2 Proper Name LF Manipulation

In this experiment, we seek to test the hypothesis
that the LFs for proper names provide the distribu-
tional link for model success at GenPROPER.

Design As we noted in Section 3, all proper
names have identical LF formats/types in both
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Sub-Task Cond 1 Cond 2

PRIM TO SUBJ (PROPER) 0.92 0.03
PRIM TO OBJ (PROPER) 0.81 0.19

Table 2: Proper name LF manipulation results, broken
out by Subject and Object. Cond 1 uses the standard
proper name LFs for the held-out name. Cond 2 uses
the nonstandard LF in (3).

COGS and ReCOGS. For the current experiment,
we create two conditions. In Condition 1, Paula
is associated with its default LFs just like all other
proper names. In Condition 2, we associate Paula
with the following LF, which is structurally like
that of an intransitive verb:

(3) LAMBDA a . LAMBDA e . Paula ( e )
AND theme ( e , a )

Models We use the same model architecture, hy-
perparameter settings, and GPUs as in Section 4.1.
In Condition 1, the model was trained on the de-
fault ReCOGS dataset with the default LF for Paula.
In Condition 2, the model was trained on the per-
turbed ReCOGS dataset with the only difference
that the LF for Paula was set to (3). All other
training details were identical.

Results Table 2 summarizes the results, broken
out into the subject and object generalization sub-
tasks. We see an 89-point drop in Condition 2 for
PRIM TO SUBJ and a 62 percentage point drop for
PRIM TO OBJ. This is very strong evidence that the
LFs are the distributional link that drives success
at this generalization task.

4.3 Proper Name Structural Manipulation
(Subject)

In Section 3, we hypothesized that there are two
crucial steps to successful generalization. The LFs
help with categorization of the distributionally con-
strained item with the distributionally free ones.
The free distribution is used to learn the held-out
distribution. We now seek to test this second part
of our hypothesis.

Design We modify the standard GenPROPER set-
up by holding out all subject occurrences of proper
names. All proper names, including Paula, have
their standard LFs.

Models We continue to use the same models and
hyperparameter settings as in our previous exper-
iments. However, the distributional change to the

Sub-Task Subjects Held-Out

PRIM TO SUBJ (PROPER) 0.22
PRIM TO OBJ (PROPER) 0.40

Table 3: Proper name structural manipulation results,
broken out by Subject and Object. The manipulation is
that we hold out all subject occurrences of names during
training. Compare with Cond 1 (the control) in Table 2.

train set reduces the train set size. To help address
this, we train models for 80 epochs rather than 40.

Results Table 3 reports our findings. For these,
we can use the Cond. 1 results from Table 2 as a
baseline point of comparison. For this manipula-
tion, PRIM TO SUBJ (PROPER) performance drops
from 0.92 to 0.22. For PRIM TO OBJ (PROPER),
the decrease is less severe, from 0.81 to 0.40. These
findings further support our hypothesis that dismal
performance on GenPP traces to holding out entire
distributional environments. As an analogue to the
experiment reported here, appendix A contains dis-
cussion of the condition with all object occurrences
of proper names held out.

4.4 Cosine Similarities for Proper Names

Methods Experiments in Sections 4.1, 4.2, and
4.3 provided us with three different models: (i) the
model trained on ReCOGS with the standard LF
for the distributionally constrained name Paula and
the full distribution of other names; (ii) the model
trained on ReCOGS with the modified LF for Paula
and the full distribution of other names; (iii) the
model trained on ReCOGS with the standard LF
for Paula and the constrained distribution of other
proper names, achieved by holding out their oc-
currences as subjects. The three models provide
us with the opportunity to test how three different
training conditions affect the representation that the
LM builds for Paula. More specifically, we were
interested in finding out how similar this represen-
tation was to those for other names in the dataset.
To do so, we calculated the mean cosine similarity
between Paula and all the other proper names.

Results The results for mean cosine similarities
for Paula with all other proper names, across train-
ing conditions, are summarized in Table 4.

4.5 Syntactic Challenges for Held-Out PPs

We turn now to GenPP. Following Wu et al. (2023),
we suspect that many of the challenges of this task
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STANDARD LF + FULL 0.068
STANDARD LF + PERTURBED 0.037
PERTURBED LF + FULL 0.009

Table 4: Mean cosine similarities for Paula with all
other proper names after training the model on different
conditions. The similarities drop most in the condition
where we associate Paula with an LF that differs in
form from the LFs for other proper names. This further
corroborates our hypothesis that the model learns the
similarity between Paula and other proper names with
the help of the LF for Paula.

are syntactic: the train set teaches models that PPs
are distributionally restricted to object position and
then surprises them with subject cases at test time.
The semantic representations across the two condi-
tions are not substantially different, but the parsing
task is likely made more challenging by this setting.

Design For human sentence processing, higher
surprisal is linked to syntactic parsing difficulties
(Hale, 2001; Smith and Levy, 2013), and this hy-
pothesis has frequently been extended to LMs. Our
primary question is whether a model trained only
on the input ReCOGS strings builds different rep-
resentations for Object PPs and Subject PPs. For
this, we evaluate whether the mean surprisal score
assigned to a chosen target site varies between sen-
tences involving PP-modification of subjects and
objects. The mean is calculated over 100 sentences,
constructed using ChatGPT, for each structure.

We choose and mask the target sites as in (4) and
(5). We obtain surprisal scores for the preposition
the model considers most likely for (4) and (5) for
the mask. Moreover, as we’re using a bi-directional
encoder model, the context after the [MASK] token
is available as well to enable the model to build
representations. This accounts for the confound
that autoregressive models do not provide as much
context to Subject PPs as they do to Object PPs.

(4) Emma ate the cake [MASK] the table.

(5) The cake [MASK] the table burned

Models Our aim here is to use a model that
closely resembles the architectures in Kim and
Linzen (2020) and Wu et al. (2023). Wu et al.
(2023) use an encoder–decoder model, where the
encoder is a BERT model with 2 hidden layers. For
these reasons, we use TinyBERT (Turc et al., 2019;
Bhargava et al., 2021) imported from the Hugging-
Face library, and randomly initialized. TinyBERT

Task T5-base Wu et al. (2023)

OBJPP TO SUBJPP 0.76 0.00
PRIM TO OBJ (PROPER) 0.91 0.50
PRIM TO SUBJ (PROPER) 0.96 0.87

Table 5: Pretraining results for selected ReCOGS tasks.
The pretrained T5-base model substantially overcomes
the challenge posed by both generalization tasks.

has 4.4M parameters, making it similar in size to
the model (4M) used in Wu et al. (2023).

As the aim here is to train the re-initialized Tiny-
BERT model on the unsupervised task of predict-
ing the next token in the dataset, we construct our
dataset from the input sequences of ReCOGS. This
enables the model to build a probability distribu-
tion over the input vocabulary of ReCOGS, from
which we can then retrieve surprisal scores. The
model is trained for a total of 5 epochs on 135,545
examples with a training-rate of 5× 10−4.

Results We found a difference in the mean sur-
prisal over 100 strings like (4) that instantiate the
ObjPP structure (surprisal: 0.89) and the average
surprisal over 100 strings like (5) that instantiate
the SubjPP structure (surprisal: 5.35). The sur-
prisal difference here—as a signal for syntactic
challenges for the held-out structure—is in tension
with a result from Yao and Koller (2022), who use
probes to argue that the encoder learns the held-out
structure. They conclude that it is the decoder that
fails to use the encoded syntactic representation.

4.6 Pretraining Experiments

The previous section suggests that much of the chal-
lenge for GenPP lies in dealing with unexpected
syntactic configurations. This suggests that using
pretrained models will boost performance, as it is
a safe bet that such models have seen sentences in
which PPs are in both subject and object position
(as well as many other positions).1 Our predic-
tion is that such models will do substantially better
at the structural tasks. Assuming the train set for
the model does not contain the COGS LFs, such
pretraining doesn’t compromise the COGS gener-
alization splits. This assumption is a safe one, as
the T5 paper (Raffel et al., 2020) was submitted to
arXiv in October 2019, while the COGS (Kim and
Linzen, 2020) submission date is in October 2020.

1While Yao and Koller (2022) use pretrained models on
COGS, we run our pretrained experiments on ReCOGS.
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Task Cond 1 Cond 2

OBJ PP TO SUBJ PP 0.04 0.87

Table 6: Introducing some distributional evidence in-
creases accuracy on GenPP. Cond 1 is the control con-
dition. In Cond 2, we introduce subject PPs headed by
the preposition beside.

Methods We imported T5-base (220M; Raffel
et al. 2020) from the HuggingFace transformers
library and kept its pretrained weights. We fine-
tuned T5-base on the ReCOGS training set for a
total of 4 epochs at a learning rate of 3× 10−4.

Results Table 5 compares our T5-base pretrained
results with those of Wu et al. (2023). As pre-
dicted, pretraining helps substantially for all our
tasks. What is most noteworthy for our purposes is
a drastic 76 percentage point improvement in per-
formance on OBJ PP TO SUBJ PP. This is in line
with our predictions and suggests that the primary
challenge posed by GenPP is syntactic rather than
semantic. This is consistent with the conclusions of
Wu et al. (2023) that the primary obstacles concern
form-based issues rather than interpretive ones.

Next, we try to bring GenPP on a par with
GenPROPER in terms of the available evidence sup-
porting the generalization target.

4.7 Minimally introducing subject PPs

Design We minimally introduce subject PPs into
the training data in our next data perturbation. This
introduction is minimal in that we only introduce
subject PPs where the PP is headed by the preposi-
tion beside. Other PPs headed by in and on are still
distributionally constrained to object modification
position in the training set.

Methods We kept the same hyperparameter set-
tings, models, and GPUs as in the experiments
reported in Sections 4.2 and 4.3.

Results Table 6 reports our findings. The model
performance on GenPP increases significantly by
showing the model a little more distributional evi-
dence. This evidence is still much more constrained
than in GenPROPER, as in GenPROPER, the model sees
multiple names which share their LF forms with
Paula in a wide distribution.

The sharp increase in accuracy on GenPP shows
that the path to generalization success that we had
outlined for GenPROPER is not peculiar to GenPROPER.

Instead, the same distributional evidence can be
leveraged for success on GenPP. If this information
is so crucial across generalizations, then holding it
out is manifestly unfair.

Through our analysis and results, we have es-
tablished an understanding of generalization as in-
ference over distributional evidence. We find that
models use particular clues and distribution in the
training data to reach the generalization target. A
task which by its design holds out these clues and
distributional evidence is not well-posed.

5 Discussion

In this section, in light of our analysis and results,
we try to answer the following questions: what
makes a structural generalization task well-posed,
why is pretrained model use important for a better
methodology, and can we reconcile our findings for
LMs with the human-subjects experiments of Kim
and Smolensky (2024)?

5.1 Well-Posed Structural Generalization
Tasks

In Section 3, we argued that GenPROPER essentially
reduces to a well-studied form of distributional
learning: the learner uses lexical regularities to
place held-out names into the same category as
other names, and it uses compositional regularities
to infer from the training data that all names can
appear as subjects and objects. These distributional
cues seem to determine outcomes; breaking the lex-
ical cues is catastrophic (Section 4.2), as is holding
out a distribution (Section 4.3).

For the structural generalization task GenPP, the
situation is quite different. The learner is placed in
a training environment in which PPs appear inside
objects but not subjects and then confronted with
test-time situations that are different in this regard.
Distributional learning as usual will likely push
the learner to infer that PPs are restricted to object
position. Holding out proper names from subject
position in that task leads to the same negative
outcome (Section 4.3). Moreover, introducing a
little distributional evidence for the target results in
a sharp increase in accuracy (Section 4.7).

Structural generalization tasks nonetheless seem
important to include in compositional generaliza-
tion benchmarks, and so we should ask: under what
circumstances can we fairly hold out entire struc-
tures from the training set? While we cannot give
a complete answer to this question, our results and
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analyses do suggest two productive steps.
First, we advocate for allowing researchers to in-

troduce specific structural learning biases into their
experimental procedures. For instance, in the case
of GenPP, it may suffice to tell the model, via some
mechanism, that phrases in subject and object posi-
tion are NPs rather than falling into subcategories
like NPSUBJ and NPOBJ. With this bias introduced,
we essentially push the model towards the intended
generalization target and away from others that are
equally supported by the training data. Examples
of such systems include Liu et al. (2021)’s LeAR
and Weißenhorn et al. (2022)’s AM parser. Such
work complements our efforts in this paper to de-
termine which tasks require such learning biases
for fairness and which do not.

Second, we advocate for making use of pre-
trained models in compositional generalization
tasks. The community might seek to create models
that are exposed to realistic samples of the target
language, as was done in the BabyLM challenge
(Warstadt et al., 2023). The goal here is to create a
realistic simulated learning environment.

We remain cognizant of Kim et al. (2022)’s con-
cerns about using pretrained models on COGS; pre-
training potentially exposes the held-out distribu-
tion of lexical items. However, as long as we ensure
that the pretraining data does not contain (in)direct
supervision about the task of mapping sentences to
LFs, we feel that the tasks are not compromised;
and indeed pretraining can help us isolate semantics
as separate from syntax (Section 4.5). In addition,
we do see value in training models from scratch
on these tasks. Our Proper Name LF experiments
(Section 4.2) and Structural Manipulation experi-
ments (Section 4.3) involved training models from
scratch, and these experiments helped us to identify
the key properties of the task itself.

In light of the above discussion, we propose that
it would be productive for benchmark designers
to outline routes to solving generalization tasks in
advance and make them available to users. Gen-
eralization is then the ability to figure out these
routes using distributional clues in the training data.
If there aren’t any routes available, or if different
routes lead to different outcomes, then the general-
ization task is not well-posed.

One might reply that humans possess the abil-
ity to generalize systematically and consistently in
absence of distributional cues supporting the exis-
tence of the held-out structure. Therefore, it is fair
to evaluate models on such human-like generaliza-

tion. Kim and Smolensky (2024) make exactly this
argument, with which we engage below.

5.2 Kim and Smolensky (2024)
Kim and Smolensky (2024) (henceforth K&S)
is an experimental investigation of the extent to
which human participants can solve COGS-like
tasks. K&S seek to create experimental situations
in which people are given the same kinds of distri-
butional evidence as is available to COGS models
trained from scratch. If humans respond systemati-
cally in such scenarios, then we can fairly expect
models to be able to do the same.

K&S report results of two experiments. Both ex-
periments have a training phase and a testing phase.
During training, participants are shown videos de-
picting scenes along with sentences that describe
the scenes. The sentences are constructed from the
vocabulary of a nonce VSO language that has five
nouns (N), one intransitive verb, one transitive verb
(V), and crucially a postnominal adjective (A). The
VSO order and postnominal adjectival modification
are intended to make the nonce language different
from English—the native language of the partic-
ipants. The rationale behind such differentiation
is to preclude participants from extending patterns
from English during testing.

During the training phase of Experiment 1, par-
ticipants saw scenes that are accompanied by sen-
tences of the form V N N-A involving adjectival
modification of the object. Successful completion
of the test-time task required participants to pro-
duce sentences of the order V N-A N. The train-test
distributional gap is supposed to be an analogue for
GenPP, where a new structure, PP-modification of
the subject, is introduced at test time.

Experiment 2 is motivated by two considerations:
the possibility that the participants may be general-
izing by extending the subject modification pattern
from English in Experiment 1; and the fact that, in
English, “a resultative phrase may be predicated
of the immediately postverbal NP, but may not be
predicated of a subject . . . complement” (Levin and
Hovav, 1994, 34). If the production of a resultative
construction is elicited and the participants produce
a V N-A N sentence of the VSO language, this can
be taken to suggest that the production is not an
extension of participants’ knowledge of English,
but an instance of genuine structural generalization.
K&S elicit the resultative construction via scenes
depicting one shape hitting another such that the
hitter gets cracked upon contact.
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In both Experiments 1 and 2, the production of
V N-A N sentences as the description of test-time
scenes is significantly above chance. K&S take this
to be evidence for the human bias for generalization
to a target in the presence of the same amount of
distributional evidence as is available for GenPP to
the COGS models.

First, it is important to note that human partic-
ipants come to these experiments in a highly pre-
trained state. Along with equipping the learner with
knowledge that can be extended in a wide variety
of ways in novel settings, pretraining on natural
language data also equips the learner with a rapid
in-context learning ability (Chan et al., 2022; Saf-
fran and Kirkham, 2018). Without pretraining, not
only do we rid the LM of a vast array of extendable
knowledge, but also of this rapid learning ability.
These are serious handicaps when comparing LM
performance with that of adult human participants.

Second, in taking the production of N-A in the
context of a particular scene to unambiguously have
a resultative semantics, K&S make an assumption
that requires further support. It is hard to pin down
what the participants in Experiment 2 take their
productions to express semantically, let alone cat-
egorically establish that the participants intend to
produce the analogue for the English resultative.
The production pattern V N-A N can very well cor-
respond to The circle that broke hit the triangle or
to The broken circle hit the triangle. These possi-
bilities highlight that the nonce language does not
have the expressive power such that we can reliably
associate the V N-A N pattern with a grammatical
translation of a resultative construction in English.
Therefore, it is not clear that English biases the par-
ticipants against the V N-A N production pattern
for test time scenes in Experiment 2. Successful
completion of the test time task in K&S’s Experi-
ment 2 cannot be taken to vindicate GenPP.

In sum, K&S’s findings, although interesting, do
not establish the claim that GenPP is a well-posed
task for LMs. In fact, we feel that K&S’s investi-
gation further reinforces our view: compositional
generalization tasks are made more realistic by the
use of pretrained models, since such models are
likely to embed realistic and useful biases critical
for solving such tasks.

6 Conclusion

We focused on two tasks in COGS, GenPROPER and
GenPP. We used our experiments to reveal the dis-

tributional cues and gaps that help and preclude
generalization for GenPROPER and GenPP, respec-
tively. Any compositional generalization task re-
quires enough distributional evidence to reach the
target generalization. In the absence of such ev-
idence, the task is ill-posed; this, we take to be
true for GenPP. Using our conceptual analysis and
results, we offered the methodological proposal of
using pretrained models when comparing neural
models with humans. A fair comparative study
of compositional generalization should lead to a
deeper understanding of compositionality and gen-
eralization separately as well.

7 Limitations

For our experiments and analysis, we used COGS
and ReCOGS datasets. Both COGS and ReCOGS,
while highly useful, feature idealized sentences of
the English language. Further, the LFs associated
with the sentences are also quite complicated, po-
tentially requiring the models to perform well on
auxiliary tasks, in addition to semantic parsing of
sentences. Future work can aspire to build COGS-
like splits for languages other than English, while
also building in Wu et al. (2023)’s vein to simplify
the LFs. Moreover, while we engage with Kim and
Smolensky (2024)’s findings and note their lim-
itations, it is true that we don’t yet have a good
understanding of what the extent of human-like
generalization really is when it comes to structural
tasks like GenPP. This can be attributed to the dif-
ficulty of creating experimental conditions where
human participants’ knowledge w.r.t. the general-
ization target is made to mimic the knowledge of
models trained from scratch. Therefore, it is too
early to draw the conclusion that models generalize
like humans or that they don’t. Further, we think
that there is a dearth of literature that explores the
normative properties, such as fairness of tasks or
legitimacy of the conclusions we draw from model
performance. Our paper uses notions like fairness
that will eventually get more precise as our method-
ologies around comparing human cognition with
neural models mature. All of these limitations sig-
nal great promise for future inquiry.
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Appendix

A Proper Name Structural Manipulation
(Object)

Design We hold out all object occurrences of
proper names during training. All proper names,
including Paula, have their standard LFs.

Models We use the same models and hyperpara-
mater settings as in the experiments in Section 4.

Results The consideration that guided this ma-
nipulation was to ensure that it was indeed the hold-
ing out of subject occurrences of names in Exper-
iment 4.3, and not just any chunk of the training
data, that led to the drop in accuracies as recorded
in Table 3. Then, holding out object occurrences
of names should not affect accuracies on PRIM TO

SUBJ (PROPER). This is indeed what we see, as
reported in Table 7.

Sub-Task Objects Held-Out

PRIM TO SUBJ (PROPER) 0.85
PRIM TO OBJ (PROPER) 0.62

Table 7: Proper name structural manipulation results,
broken out by Subject and Object. The manipulation is
that we hold out all object occurrences of proper names
for testing. These results can be compared with those in
Table 2 and Table 3.

Comment It is worth noting that the drop in accu-
racy on PRIM TO OBJ (PROPER) is higher when we
hold out subjects as reported in Table 3, compared
to when we hold out objects as recorded in Table 7.
Currently, we don’t have an explanation for why
subjects are more crucial for the more general in-
ference about the free distribution of the held-out
name.

License of use. We abide by the licenses of
use for both COGS (Kim and Linzen, 2020) and
ReCOGS (Wu et al., 2023). We use the models
used in Wu et al. (2023), and use and modify
the datasets in Kim and Linzen (2020) and Wu
et al. (2023), which is in line with the permissions
granted in the licenses of use.
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