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Abstract
Subword tokenizers trained on multilingual
corpora naturally produce overlapping tokens
across languages. Does token overlap
facilitate cross-lingual transfer or instead
introduce interference between languages?
Prior work offers mixed evidence, partly due
to varied setups and confounders, such as
token frequency or subword segmentation
granularity. To address this question, we
devise a controlled experiment where we train
bilingual autoregressive models on multiple
language pairs under systematically varied
vocabulary overlap settings. Crucially, we
explore a new dimension to understanding how
overlap affects transfer: the semantic similarity
of tokens shared across languages. We first
analyze our models’ hidden representations
and find that overlap of any kind creates
embedding spaces that capture cross-lingual
semantic relationships, while this effect
is much weaker in models with disjoint
vocabularies. On XNLI and XQuAD, we find
that models with overlap outperform models
with disjoint vocabularies, and that transfer
performance generally improves as overlap
increases. Overall, our findings highlight the
advantages of token overlap in multilingual
models and show that substantial shared
vocabulary remains a beneficial design choice
for multilingual tokenizers.

https://github.com/jkallini/
false-friends

1 Introduction

Multilingual tokenizers are commonly trained on
the concatenation of corpora from multiple lan-
guages (Conneau et al., 2020a; Xue et al., 2021),
resulting in subword vocabularies with naturally
overlapping tokens across languages. While some
of these shared tokens may correspond to semanti-
cally aligned units across languages (e.g., cognates,
named entities), others may arise from coinciden-
tal overlaps or have different meanings (e.g., false
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Figure 1: A visualization of the four overlap settings
used in our experiments. (a) Full Overlap: the two
languages share the original tokenizer’s native overlap-
ping subwords. These include true cognates and named
entities (e.g., actor, Batman) as well as false cognates or
coincidental overlaps (e.g., pie, of ). (b) High-similarity
Overlap: only tokens with the highest cross-lingual se-
mantic similarity are shared. (c) Low-similarity Over-
lap: only tokens with the lowest cross-lingual semantic
similarity are shared. (d) No Overlap: the two lan-
guages’ vocabularies are completely disjoint.

friends). Although prior work has demonstrated
that token overlap can enhance zero-shot cross-
lingual transfer (Pires et al., 2019; Conneau et al.,
2020b), others report adverse effects depending on
the end task (e.g., Limisiewicz et al., 2023). Some
tokenization approaches have aimed to reduce over-
lap altogether (Chung et al., 2020; Liang et al.,
2023). These contradictory studies lead us to ask:
when and how does the presence of overlapping
tokens improve cross-lingual transfer?

We answer this question by training bilingual
autoregressive models on data from six language
pairs, each under four controlled vocabulary
overlap settings (Figure 1). In contrast to prior
work, we distinguish different types of overlap
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based on semantic similarity of the tokens in the
two languages, as semantic alignment has been
shown to impact cross-lingual transfer (Cao et al.,
2020; Deshpande et al., 2022; Hua et al., 2024),
while holding subword segmentation granularity
and token frequency distributions fixed. Within
pre-trained models, we find that token overlap
enables the embedding spaces of the two languages
to capture cross-lingual semantic relationships—an
effect that is substantially weaker in models with
disjoint vocabularies. When testing zero-shot trans-
fer between languages on the XNLI and XQuAD
downstream tasks, models with any amount of
overlap consistently outperform models with
no overlap, and transfer performance generally
improves as overlap increases. We find that tokens
with shared meanings across languages contribute
most to transfer performance, though any overlap
is beneficial. Our findings offer practical guidance
on the design of future multilingual tokenizers.

2 Background and Related Work

Vocabulary Overlap. Research on cross-lingual
transfer has revealed both advantages and chal-
lenges of subword overlap in multilingual models.
On the positive side, prior work showed that to-
ken overlap provides moderate gains for zero-shot
transfer in multilingual BERT (mBERT) on lan-
guage understanding tasks (Pires et al., 2019; Wu
and Dredze, 2019; Dufter and Schütze, 2020). Con-
neau et al. (2020b) more closely examined token
overlap using three vocabulary-sharing schemes in
bilingual encoders and observed that overlap pro-
vided marginal improvements on XNLI, NER, and
parsing. K et al. (2020) similarly reported minimal
performance differences due to wordpiece overlap
in bilingual BERT models.

More recently, Limisiewicz et al. (2023) found
that while overlap can benefit sentence-level tasks
and NER, it may degrade performance on syntactic
tasks. Similarly, Zhang et al. (2023) show that
multilingual corpora contain unexpectedly high
levels of overlap, largely due to code-switching
and shared vocabularies, which may help explain
cross-lingual transfer in dense retrieval models.
Zhang et al. (2025) extend overlap by merging sub-
words with different forms but similar meanings
into “semantic tokens,” preserving downstream per-
formance with smaller vocabularies. Hämmerl et al.
(2025) show that similarity- or alignment-weighted
overlap correlates with cross-lingual transfer across

different scripts. Other related work shows that
multilingual tokenizers often over-segment low-
resource languages, artificially inflating subword
overlap (Rust et al., 2021; Petrov et al., 2023; Ahia
et al., 2023). This over-segmentation reduces effi-
ciency and degrades representation quality.

Taken together, these studies paint an unclear
picture: while vocabulary overlap can create cross-
lingual anchors that facilitate transfer, it may in-
troduce interference across languages that hinders
modeling. Moreover, the conditions under which
overlap is beneficial remain insufficiently explored.
Unlike prior work, we focus on how the seman-
tic similarity of shared tokens affects performance,
while carefully controlling for confounders like
subword segmentation granularity and token fre-
quency distributions.

Tokenizer Design. Vocabulary overlap has
likewise been a central consideration in tokenizer
design. Chung et al. (2020) and Liang et al. (2023)
use clustering methods to de-emphasize token
overlap between lexically distinct languages,
citing K et al. (2020) for the thesis that overlap
is not the principal factor in multilingual model
effectiveness. In contrast, Patil et al. (2022)
highlight the importance of overlap for transfer
and propose a method to promote token overlap
between high- and low-resource languages. At the
extreme, byte- and character-level models (e.g.,
CANINE, Clark et al., 2022; ByT5, Xue et al.,
2022; MrT5, Kallini et al., 2025; BLT, Pagnoni
et al., 2025; H-Net, Hwang et al., 2025) eliminate
subword tokenization altogether. This maximizes
vocabulary overlap but comes at a cost to efficiency,
presenting unique engineering challenges.

3 Approach: Controlled Overlap Settings

To systematically vary the vocabulary overlap be-
tween two languages according to our four exper-
imental settings (see Figure 1), we denote a base
tokenizer T with vocabulary V of size N . We as-
sume that V = {0, 1, . . . , N − 1}, i.e. that each
token in V is represented by an integer index from
0 to N − 1. Two languages L1 and L2 have cor-
pora C1 and C2, respectively, which we tokenize
using T . Let V1 = {unique tokens in C1} ⊆ V
and V2 = {unique tokens in C2} ⊆ V . In other
words, V1 and V2 are the individual vocabularies
of L1 and L2, respectively. Thus, when tokeniz-
ing C1 and C2, the native overlap of T is the set
O = V1 ∩ V2, and the effective vocabulary size of
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T is Neff = |V1|+ |V2| − |O|.
Given a token sequence X = [x1, x2, . . . , xn],

where xi ∈ V , from language ℓ ∈ {L1, L2}, we
define a modified tokenizer T ′ that produces X ′ =
[x′1, x

′
2, . . . , x

′
n], where each

x′i =

{
xi +N, ℓ = L2 and xi /∈ O′,

xi, otherwise.

Here, O′ ⊆ O denotes the subset of tokens we
choose to share under a given setting: for L1, all
tokens remain unchanged, and for L2, tokens in
O′ remain unchanged while all others are offset
by N . This guarantees that L1 and L2 only share
O′, and T ′ has a new effective vocabulary size
N ′

eff = |V1|+ |V2| − |O′|. The four choices of O′

define our four settings, listed below.

Full Overlap. O′ = O. Since this only renames
certain tokens xi /∈ O from L2, T ′ is behaviorally
equivalent to T , and N ′

eff = |V1|+ |V2| − |O|.
High-similarity Overlap. O′ = Ohi, where
Ohi ⊆ O is the set of tokens whose meanings align
closely between L1 and L2. Only these tokens
remain shared, so N ′

eff = |V1|+ |V2| − |Ohi|.
Low-similarity Overlap. O′ = Olo, where
Olo ⊆ O is the set of tokens whose meanings differ
across L1 and L2. Only these tokens remain shared,
so N ′

eff = |V1|+ |V2| − |Olo|.
No Overlap. O′ = ∅. Since no tokens are shared,
N ′

eff = |V1|+ |V2|.
The details for the semantic partitioning of O into
Ohi and Olo are presented in the next section.

4 Implementation Details

Datasets. We use CCMatrix (Schwenk et al.,
2021), a large collection of high-quality web-
mined parallel texts, for bilingual model pre-
training. This allows us to control for the
content and the approximate quantity of data
in each language. We train on six language
pairs: English–Spanish, English–German, English–
Turkish, English–Chinese, English–Arabic, and
English–Swahili. English is included in every pair
to reflect realistic training scenarios, as English is
typically the dominant language in multilingual pre-
training datasets. The second language is selected
to cover various language families, scripts, and ty-
pological distances from English. The pre-training
corpus for each pair is constructed by shuffling and
interleaving sentences from both languages.

Tokenizer and Overlap Partitioning. Our base
tokenizer T is the multilingual XLM-R tok-
enizer (Conneau et al., 2020a), which uses Sen-
tencePiece (Kudo and Richardson, 2018) with a
unigram LM (Kudo, 2018). We found that it offers
more effective compression across languages than
other tokenizers (see Appendix A). To divide the
native overlap O into high- and low-similarity sub-
sets (Ohi and Olo), we rank tokens in O by their
semantic similarity across languages. For each to-
ken t ∈ O, we extract 100 occurrences from C1

(the CCMatrix corpus for L1), pass the sentences
through XLM-R, and mean-pool the layer-l contex-
tual embeddings of t to obtain a static embedding
e1 (following Bommasani et al., 2020). The layer l
is pre-determined by a sweep we conducted on sets
of cognates and non-cognates, as detailed in Ap-
pendix B. We repeat this for C2 (the corpus for L2)
to compute e2. The cosine similarity between e1
and e2 serves as the token’s cross-lingual similarity
score. We rank tokens in O by these scores, assign-
ing the top half to Ohi and the bottom half to Olo.
For detailed corpus statistics and overlap metrics
for each setting, refer to Appendix C.

Models. For each language pair and vocabulary
setting, we pre-train a separate model, resulting in
24 bilingual models in total. All models are autore-
gressive Transformers (Vaswani et al., 2017) with
85M non-embedding parameters, equivalent in size
to GPT-2 Small (Radford et al., 2019). We train
these models due to their architectural similarity
with modern LLMs. See Appendix D for additional
architecture and optimization details.

5 Embedding Similarity Analysis

As a first step in analyzing our pre-trained mod-
els, we test how sharing semantically similar or
dissimilar tokens influences the model’s learned
representations. We take the 500 most and least
similar overlapping tokens for each language pair,
ranked using XLM-R as described in the previous
section. From a middle layer (l = 6) of our own
models, we extract contextual embeddings for each
token to construct a single static embedding of the
token for each language using the same method as
before. We then ask whether models learn more
similar representations for high-similarity tokens
and more distinct ones for low-similarity tokens.
Crucially, whether these tokens are shared depends
on the overlap setting: in the High-similarity Over-
lap condition, the top 500 tokens are shared; in the
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Figure 2: Embedding similarity analysis on pre-trained models for each language pair and vocabulary setting.
Cosine similarity is used to measure similarity of tokens in L1 and L2 for a given language pair. The high-sim.
token set (purple) should have similar meanings; the low-sim. token set (blue) should have dissimilar meanings; the
random token set (gray) should not share form or meaning, and are shown as a control for anisotropy.

Low-similarity Overlap condition, the bottom 500
are shared. To control for the high baseline cosine
similarities observed in Transformer embeddings
due to anisotropy (Ethayarajh, 2019), we addition-
ally measure similarity scores for 500 randomly
selected non-overlapping token pairs.

Results. Figure 2 summarizes the results across
all language pairs. With the exception of the Low-
similarity Overlap setting for English–Spanish and
English–German, the difference between the high-
and low-similarity token sets was statistically sig-
nificant for every language pair and overlap con-
dition (unpaired t-tests, all Bonferroni-corrected
p < .05). The effect size (Cohen’s d) varied with
the overlap condition (see Table 5 for all effect
sizes). In the Full Overlap and High-similarity
Overlap settings, high-similarity tokens consis-
tently scored higher than low-similarity tokens,
yielding very large effects (d ∈ [1.3, 5.1]). Even in
the No Overlap setting, the high-similarity tokens
scored higher than low-similarity tokens, though ef-
fect sizes were smaller (d ∈ [0.5, 1.0]), suggesting
that some degree of semantic alignment persists

even without shared lexical anchors.

In contrast, the Low-similarity Overlap setting
revealed a split in results based on language fam-
ily. For the closely related language pairs English–
Spanish and English–German, no significant differ-
ences were observed (Bonferroni-corrected p = 1,
d ≈ 0). However, for more typologically distant
language pairs (English–Turkish, English–Chinese,
English–Arabic, English–Swahili), the effect re-
versed: low-similarity tokens scored higher than
high-similarity tokens, with large negative effect
sizes (d ∈ [−1.6,−1.0]). These reversals indi-
cate that in the Low-similarity Overlap setting, to-
kens that do not share meaning become aligned
in the embedding space simply because they are
shared in the vocabulary, producing misleading or
inverted similarity effects. This demonstrates that
the type of overlap—whether it links semantically
similar or dissimilar tokens—critically shapes how
cross-lingual models align token representations.
Effects are especially pronounced for more distant
language pairs, where there is less contextual sig-
nal available to counteract the bias introduced by
shared but semantically unrelated tokens.
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Language
Pair

Overlap
Setting

XNLI Accuracy (%) XQuAD F1 / EM (%)

Test (L1) Test (L2) Test (L1) Test (L2)

English–
Spanish

Full 78.78 74.59 63.83 / 51.85 52.84 / 36.47
High-sim. 78.52 73.99 63.42 / 53.03 48.60 / 31.85
Low-sim. 79.18 74.55 63.52 / 51.93 51.57 / 36.13
No Overlap 76.73 42.67 62.66 / 51.43 7.45 / 0.59

English–
German

Full 77.49 69.44 62.09 / 50.42 45.06 / 31.18
High-sim. 78.40 69.98 62.24 / 51.43 45.32 / 32.52
Low-sim. 78.26 69.30 62.34 / 50.92 41.79 / 27.39
No Overlap 78.08 35.01 61.96 / 49.83 5.09 / 0.25

English–
Turkish

Full 77.54 49.46 61.03 / 49.75 22.16 / 11.85
High-sim. 78.56 56.11 61.75 / 50.50 21.20 / 12.69
Low-sim. 78.40 52.32 62.02 / 51.01 20.41 / 11.60
No Overlap 77.41 37.82 62.71 / 51.18 5.71 / 1.34

English–
Chinese

Full 78.48 63.29 62.07 / 50.42 26.10 / 16.39
High-sim. 77.15 60.42 62.75 / 50.50 23.56 / 16.30
Low-sim. 77.13 55.87 62.77 / 51.09 14.24 / 3.70
No Overlap 77.03 36.35 62.93 / 51.68 2.70 / 0.42

English–
Arabic

Full 77.41 61.32 62.52 / 50.25 29.58 / 17.65
High-sim. 77.70 61.14 63.31 / 51.51 28.96 / 16.64
Low-sim. 77.60 49.40 62.58 / 50.50 9.46 / 2.27
No Overlap 77.72 32.93 61.09 / 50.34 6.14 / 0.92

English–
Swahili

Full 75.11 48.24 — —
High-sim. 74.55 49.26 — —
Low-sim. 75.23 43.49 — —
No Overlap 75.69 33.75 — —

Table 1: Downstream performance across language
pairs and vocabulary overlap settings. For XNLI, we
report accuracy; for XQuAD, we report F1 and exact
match (EM). Settings significantly different from No
Overlap are in bold (see Table 6 for all p-values).

6 Downstream Task Performance

We further fine-tune and evaluate our models on
two downstream tasks, namely, natural language
inference (NLI) and question answering (QA), in
a standard zero-shot transfer setup. For NLI, we
train on English MultiNLI (Williams et al., 2018)
and evaluate on XNLI (Conneau et al., 2018).
For QA, we train on English SQuAD (Rajpurkar
et al., 2016) and evaluate on XQuAD (Artetxe
et al., 2020). Fine-tuning hyperparameters and
optimization details are provided in Appendix E.

Results. Results for both tasks are shown in Ta-
ble 1. To compare XNLI accuracies and XQuAD
exact match (EM) scores across models, we con-
ducted pairwise McNemar tests (see Table 6).
While L1 (English) evaluation results are reported
for completeness, we center the discussion here on
L2 transfer, which is the main focus of this work.

On L2 transfer, the No Overlap models per-
formed substantially worse than all other overlap
settings across every language pair for both down-
stream tasks (all p < .05). This confirms that some
degree of shared vocabulary is always beneficial
for cross-lingual transfer. Comparisons between
overlap types show more subtle patterns. Full
Overlap and High-similarity Overlap achieved the

strongest transfer performance overall: Full was
best in six of eleven L2 evaluations (both XNLI ac-
curacy and XQuAD F1/EM), while High-similarity
was best in four evaluations. However, differences
between these two settings were not significant in
seven of the eleven cases (all p > .05). By contrast,
both Full and High-similarity Overlap consistently
outperformed Low-similarity Overlap: Full was
stronger in ten of eleven evaluations (seven signifi-
cant; all p < .05), and High-similarity was stronger
in nine of eleven (seven significant; all p < .05).
This advantage is notable given that high-similarity
tokens make up only 10–20% of training and
evaluation corpora, whereas low-similarity tokens
account for as much as 80% (see Appendix C).

These results show that while any overlap helps,
sharing semantically similar tokens is far more
impactful. The language pair also matters: for
languages closely related to English, such as
Spanish and German, High- and Low-similarity
Overlap performed comparably, whereas for more
distant languages, High-similarity Overlap gave a
clearer advantage. In Chinese and Arabic, the use
of a different script from English reduces the value
of cross-lingual transfer in the Low-similarity
Overlap setting. Here, semantically aligned tokens
have an outsized impact, as they are often English
words introduced through code-switching. We
provide the full list of overlapping tokens with
their similarity scores in our repository.

7 Conclusion

In this paper, we present a detailed study of vocab-
ulary overlap in multilingual language models. Our
experimental design isolates the effect of overlap
by controlling for token frequency and subword
segmentation quality. We also uniquely disentan-
gle how semantically similar or dissimilar vocab-
ulary overlap affect multilingual representations
and task transfer. While prior work has raised con-
cerns that highly polysemantic tokens from vocab-
ulary sharing may hinder performance, we find that
overlap (1) promotes alignment of the embedding
spaces between languages in bilingual models and
(2) enables cross-lingual transfer on downstream
tasks. Overlapping tokens with the same mean-
ing across languages contribute most, though any
overlap proves beneficial. We therefore argue that,
rather than reducing overlap, tokenizer develop-
ment should focus on other determinants of quality,
such as per-language compression rates.
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9 Limitations

Our study analyzes six language pairs spanning
diverse language families. Each language pair re-
quires pre-training four models, which is compu-
tationally expensive. While our selection of lan-
guages provides meaningful breadth, with addi-
tional compute resources, future work could extend
the analysis to additional language pairs, particu-
larly more low-resource languages. We also focus
on English-centric pairs, reflecting common multi-
lingual pre-training scenarios where English is the
dominant language. Exploring overlap effects in
non-English pairings would complement our find-
ings. In addition, we use a single, widely adopted
tokenizer (XLM-R) to control for tokenizer qual-
ity across conditions. Although this choice allows
for a clean comparison of overlap settings, future
work could examine how overlap interacts with
tokenizers of varying quality or design choices to
further contextualize our results. Finally, follow-
ing Dufter and Schütze (2020), future work could
explore whether extended training or different pa-
rameter budgets further affect cross-lingual gener-
alization under the different overlap settings.
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A Tokenizer Compression Rates

We consider six multilingual tokenizers as candidates for our base tokenizer T : GPT-2 (Radford et al.,
2019), mBERT (Devlin et al., 2019), XLM-R (Conneau et al., 2020a), XLM-V (Liang et al., 2023), mT5
(Xue et al., 2021), and Llama 3 (Grattafiori et al., 2024). We compute byte-per-token and character-per-
token compression rates for the seven languages involved in our study, using samples from the multilingual
C4 corpus (Raffel et al., 2020). As shown in Figure 3, XLM-V achieves the best compression but has an
extremely large vocabulary (1M tokens), making it impractical for our setup. XLM-R’s compression is
competitive with XLM-V’s at a much smaller vocabulary size (250k tokens), making it a suitable choice
for our controlled experiments.
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(a) Byte-per-token compression rates.
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(b) Character-per-token compression rates.

Figure 3: Byte-per-token and character-per-token compression rates for English, German, Spanish, Turkish, Chinese,
Arabic, and Swahili, for six different tokenizers.

B Layer Selection

We select the Transformer layer that best distinguishes between semantically similar and dissimilar tokens
in a controlled setup. We use manually annotated data from the English–Dutch cognate detection dataset
of Lefever et al. (2020), as well as English–Dutch parallel texts from CCMatrix. From the cognate
detection dataset, we extract a list of both cognates and non-cognates, which we tokenize using XLM-R’s
tokenizer. We remove any words that are tokenized into more than one token, as well as non-overlapping
tokens and tokens that appear fewer than 100 times in the parallel texts. One author then manually
verified that no cognates remained in the non-cognate subset. For each remaining token, we sample 100
occurrences per language from the English–Dutch parallel texts. We then pass these tokens through
XLM-R’s layers l ∈ {1, . . . , 12} and average the layer-l embeddings to obtain a static embedding per
token for each language. We compute the cosine similarity between the static embeddings at each layer
and rank the tokens by similarity. To quantify the capacity of each layer to distinguish between cognates
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and non-cognates, we sweep through every possible threshold n in the ranked list. Specifically, we label
the top-n tokens as predicted cognates and the remaining tokens as predicted non-cognates, measuring the
classification accuracy against our gold labels. The highest classification accuracy over all n is taken as
the oracle score for layer l. As shown in Figure 4, the highest classification accuracy was obtained using
layer 5, and we therefore use layer 5 to rank tokens in O by their semantic similarity across all language
pairs.
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Figure 4: Results of our layer sweep on XLM-R using English–Dutch data from Lefever et al. 2020.

C Overlap Metrics for All Datasets

Below we report corpus statistics after applying the four overlap manipulations described in Section 3.
For each language pair L1 and L2, we start with corpora C1 and C2 taken from CCMatrix and tokenize
them with the XLM-R SentencePiece tokenizer T . This yields individual language vocabulary sets
V1 = {unique tokens in C1} and V2 = {unique tokens in C2}. An overlap setting remaps token indices,
producing new language vocabularies V ′

1 and V ′
2 , with |V ′

1 | = |V1| and |V ′
2 | = |V2|. Their intersection,

O′ = V ′
1 ∩ V ′

2 contains the tokens shared under that setting. Thus, the total effective vocabulary size of T ′

is N ′
eff = |V1|+ |V2| − |O′|. With these definitions in place, we now define two overlap metrics:

1. Type overlap (IoU). The Jaccard similarity of the setting-specific vocabularies V ′
1 and V ′

2 is

J(V ′
1 , V

′
2) =

|V ′
1 ∩ V ′

2 |
|V ′

1 ∪ V ′
2 |

=
|O′|

|V ′
1 |+ |V ′

2 | − |O′| =
|O′|
N ′

eff
.

2. Frequency-weighted overlap. To quantify how often the shared tokens are used in each corpus, we
compute, for i ∈ {1, 2},

Fi =

∑
t∈O′ counti(t)∑
t∈V ′

i
counti(t)

,

where counti(t) is the frequency of token t in corpus C ′
i, where C ′

i is the corpus Ci after applying
the token remapping under the given setting. Thus Fi is the proportion of running tokens in C ′

i that
belong to the shared vocabulary O′.

Table 2 presents these statistics in the tokenized CCMatrix pre-training data for every language pair under
each overlap condition. We also report frequency-weighted overlap metrics with respect to the XNLI
and XQuAD training and test datasets in Table 3. Remarkably, although the High- and Low-similarity
Overlap settings contain the same number of overlapping token types, the latter has substantially higher
frequency-weighted overlaps in the pre-training corpora as well as the downstream task datasets.
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Language Pair Setting |V1| |V2| |O′| N ′
eff IoU (%) F1 (%) F2 (%)

English–Spanish

Full Overlap

78,469 78,381

73,455 83,395 88.08 99.88 98.98
High-sim. Overlap 22,103 134,747 16.40 21.47 19.24
Low-sim. Overlap 22,101 134,749 16.40 77.32 66.80
No Overlap 0 156,850 0.00 0.00 0.00

English–German

Full Overlap

83,126 83,884

75,922 91,088 83.35 96.73 99.06
High-sim. Overlap 20,594 146,416 14.07 20.37 18.68
Low-sim. Overlap 20,592 146,418 14.06 75.82 68.05
No Overlap 0 167,010 0.00 0.00 0.00

English–Turkish

Full Overlap

65,665 69,703

58,724 76,644 76.62 99.99 86.58
High-sim. Overlap 13,906 121,462 11.45 19.92 17.20
Low-sim. Overlap 13,907 121,461 11.45 76.81 43.03
No Overlap 0 135,368 0.00 0.00 0.00

English–Chinese

Full Overlap

67,754 73,491

57,102 84,143 67.86 99.99 71.09
High-sim. Overlap 12,598 128,647 9.79 22.59 9.26
Low-sim. Overlap 12,599 128,646 9.79 73.04 19.20
No Overlap 0 141,245 0.00 0.00 0.00

English–Arabic

Full Overlap

69,129 68,975

57,084 81,020 70.46 96.11 61.02
High-sim. Overlap 9,963 128,141 7.78 20.39 9.87
Low-sim. Overlap 9,963 128,141 7.78 67.56 8.19
No Overlap 0 138,104 0.00 0.00 0.00

English–Swahili

Full Overlap

45,699 41,956

37,275 50,380 73.99 97.67 79.55
High-sim. Overlap 4,733 82,922 5.71 20.44 17.35
Low-sim. Overlap 4,734 82,921 5.71 51.36 39.90
No Overlap 0 87,655 0.00 0.00 0.00

Table 2: Token statistics for the CCMatrix pre-training corpora: native vocabulary sizes (|V1|, |V2|), overlap size
(|O′|), the resulting effective vocabulary size (N ′

eff ), and percentage-based overlap metrics (IoU, F1, F2) reported
for every language pair and overlap setting.

D Pre-training Experiment Details

D.1 Model Architectures
All of our models are autoregressive Transformers with a similar architecture to GPT-2 (Radford et al.,
2019) with 12 layers, 12 attention heads, dmodel = 768, and dff = 3072. The only change we make to
the standard GPT-2 architecture is the addition of rotary position embeddings (RoPE, Su et al., 2024),
since this is the positional encoding method most often used in modern LLMs. The total non-embedding
parameter count for all models is 85M, equivalent to the original GPT-2.

To isolate the effect of vocabulary overlap, we tokenize the data once and vary only which tokens
are shared, which necessarily results in different vocabulary sizes across settings. Thus, the total model
parameters varies based on the setting and language pair. To minimize unnecessary parameters, we prune
the vocabulary to only retain tokens that appear in the CCMatrix corpus. Table 4 reports the resulting
vocabulary sizes and total parameter counts for every setting and language pair. For the English–Spanish
and English–German pairs, the retained vocabularies are marginally larger than the effective sizes Neff

reported in Table 2. This discrepancy occurs because the full CCMatrix corpora—on which the pruning
was based—contain more tokens than the 6.6 billion tokens ultimately used for pre-training; consequently,
a small subset of the embedding matrix remained unused during training.

Here, we note that no single setting can claim an a priori advantage based solely on vocabulary size.
Larger vocabularies benefit from more model parameters but have higher upper bounds on perplexity and
receive fewer gradient updates per embedding.

D.2 Optimization
We train with an effective batch size of 64 sequences, each 1024 tokens long, for a per-step token count
216 = 65, 536 tokens. The device batch size is 8 sequences. Each model is trained for a total of 100,000
gradient steps using the AdamW optimizer. The learning rate linearly warms up to 2.5e−4 during the first
5,000 steps, then follows a cosine decay.
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Language Pair Setting XNLI XQuAD

Train (L1) Test (L1) Test (L2) Train (L1) Test (L1) Test (L2)

English–Spanish

Full Overlap 100.00 100.00 99.78 99.99 100.00 99.79
High-sim. Overlap 23.89 19.25 17.69 19.85 19.67 16.29
Low-sim. Overlap 75.16 79.81 69.71 79.06 79.19 72.20
No Overlap 0.00 0.00 0.00 0.00 0.00 0.00

English–German

Full Overlap 100.00 100.00 99.50 99.98 100.00 99.46
High-sim. Overlap 22.23 16.85 15.67 17.16 17.02 14.91
Low-sim. Overlap 77.26 82.65 71.09 82.13 82.32 73.23
No Overlap 0.00 0.00 0.00 0.00 0.00 0.00

English–Turkish

Full Overlap 99.99 99.99 86.35 99.95 99.95 87.06
High-sim. Overlap 22.97 17.48 14.90 16.77 16.77 13.61
Low-sim. Overlap 73.49 78.62 43.74 78.48 78.36 46.09
No Overlap 0.00 0.00 0.00 0.00 0.00 0.00

English–Chinese

Full Overlap 99.98 99.99 71.08 99.93 99.94 74.23
High-sim. Overlap 21.92 22.38 8.47 17.92 17.71 4.52
Low-sim. Overlap 73.46 72.85 18.35 76.38 76.57 18.46
No Overlap 0.00 0.00 0.00 0.00 0.00 0.00

English–Arabic

Full Overlap 99.96 99.95 61.19 99.93 99.94 61.60
High-sim. Overlap 21.52 21.54 10.39 18.03 18.32 6.73
Low-sim. Overlap 70.08 69.84 7.46 73.43 73.33 7.64
No Overlap 0.00 0.00 0.00 0.00 0.00 0.00

English–Swahili

Full Overlap 97.56 97.34 79.13 — — —
High-sim. Overlap 22.81 18.04 16.03 — — —
Low-sim. Overlap 48.01 51.34 41.00 — — —
No Overlap 0.00 0.00 0.00 — — —

Table 3: Frequency-weighted overlap in the XNLI and XQuAD datasets for each language pair and vocabulary
overlap setting. Higher values indicate a larger proportion of running tokens that come from the shared set O′.

Because the batch size and number of steps are identical across settings, each model processes 6.6
billion tokens in total. The required number of passes through CCMatrix therefore depends on the parallel
corpus size: one epoch for English–Spanish and English–German, 2.1 epochs for English–Chinese, 3.6
epochs for English–Turkish; 2.4 epochs for English–Arabic; and 28.7 epochs for English–Swahili.

Each pre-training job is executed on two NVIDIA RTX A6000 GPUs (48 GB), consuming approxi-
mately 96 GPU-hours per model (≈48 wall-clock hours). Training the full suite of 24 models therefore
required 48 GPUs and about 2304 GPU-hours in total.

E Fine-tuning Experiment Details

For MultiNLI fine-tuning, we train each model for 5 epochs using a per-device batch size of 64 sequences
and a maximum sequence length of 1024 tokens. Optimization is performed with AdamW using a cosine
learning rate schedule without warmup. We conduct a hyperparameter sweep over three batch sizes (128,
256, 512) and three learning rates (1e−5, 5e−5, 1e−4), saving checkpoints every 500 gradient steps.
Because the number of epochs is fixed, the total number of steps varies with the batch size. This sweep
is performed independently for each language pair and overlap setting, and we select the best model
and checkpoint based on validation performance on MultiNLI. Each run is trained on a single NVIDIA
RTX A6000 GPU (48GB) and takes approximately 1.5 GPU hours on average. Across 24 models and 9
hyperparameter configurations, the total compute cost is roughly 320 GPU hours.

For SQuAD fine-tuning, we train each model for 7 epochs with a per-device batch size of 16 sequences
and a maximum sequence length of 1024 tokens. The optimizer settings and hyperparameter sweep
configurations are the same used for MultiNLI, but we save checkpoints every 200 steps. Each run is also
trained on a single NVIDIA RTX A6000 GPU (48GB) and takes about 2 GPU hours on average. Across
24 models and 9 hyperparameter configurations, the total compute amounts to roughly 430 GPU hours.
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Language Pair Setting Vocabulary Size Total Parameters

English–Spanish

Full Overlap 107,894 167.9M
High-similarity Overlap 174,271 218.9M
Low-similarity Overlap 174,271 218.9M
No Overlap 196,374 235.9M

English–German

Full Overlap 101,813 163.2M
High-similarity Overlap 163,178 210.4M
Low-similarity Overlap 163,178 210.4M
No Overlap 183,772 226.2M

English–Turkish

Full Overlap 76,645 143.9M
High-similarity Overlap 121,463 178.3M
Low-similarity Overlap 121,463 178.3M
No Overlap 135,370 189.0M

English–Chinese

Full Overlap 84,144 149.7M
High-similarity Overlap 128,648 183.9M
Low-similarity Overlap 128,648 183.9M
No Overlap 141,247 193.5M

English–Arabic

Full Overlap 81,020 147.3M
High-similarity Overlap 128,142 183.5M
Low-similarity Overlap 128,142 183.5M
No Overlap 138,106 191.1M

English–Swahili

Full Overlap 50,381 123.7M
High-similarity Overlap 82,923 148.7M
Low-similarity Overlap 82,923 148.7M
No Overlap 87,657 152.4M

Table 4: Vocabulary sizes and parameter counts for each overlap setting. Parameter counts are shown in millions
(M).

F Embedding Similarity Analysis Over Training

In Figures 5, 6, and 7 we analyze embedding similarity at training checkpoints from 20k to 100k steps, in
20k increments. Across language pairs, we observe several trends. In the Full Overlap setting, the scores
for high-similarity tokens gradually separate from low-similarity ones over the course of training. High-
similarity Overlap shows a strong separation throughout training, with low-similarity tokens becoming
more similar over time. In Low-similarity Overlap, low-similarity tokens initially have higher similarity
scores, but this reverses during training. No Overlap shows little change in similarity scores over time.

G Significance Tests

In this section, we present the Cohen’s d effect sizes for our embedding similarity analysis (Table 5),
as well as the p-values for the pairwise McNemar tests between performance metrics on the XNLI and
XQuAD downstream tasks (Table 6).

Language Pair Full Overlap High-Sim. Overlap Low-Sim. Overlap No Overlap

English–Spanish 2.134 4.156 0.044 1.028
English–German 2.458 5.053 0.049 0.721
English–Turkish 1.766 3.512 -1.151 0.559
English–Chinese 1.358 2.642 -1.350 0.467
English–Arabic 1.264 1.918 -0.992 0.646
English–Swahili 1.706 2.569 -1.639 0.661

Table 5: Cohen’s d effect sizes from our embedding similarity analysis. These values compare the cosine similarities
between the High-similarity and Low-similarity token sets for each language pair and vocabulary overlap condition.
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English–Spanish (L1)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap <.001 / .381 <.001 / 1.000 <.001 / .788
High-sim. Overlap — .206 / .436 .001 / .232
Low-sim. Overlap — — <.001 / .745

English–German (L1)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap .076 / .454 .130 / .734 .253 / .675
High-sim. Overlap — .812 / .708 .551 / .211
Low-sim. Overlap — — .752 / .385

English–Turkish (L1)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap .039 / .571 .097 / .365 .810 / .307
High-sim. Overlap — .781 / .725 .023 / .631
Low-sim. Overlap — — .062 / .945

English–Chinese (L1)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap .011 / 1.000 .012 / .640 .005 / .340
High-sim. Overlap — 1.000 / .688 .844 / .393
Low-sim. Overlap — — .879 / .687

English–Arabic (L1)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap .592 / .337 .730 / .890 .574 / 1.000
High-sim. Overlap — .871 / .456 1.000 / .401
Low-sim. Overlap — — .850 / .947

English–Swahili (L1)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap .313 / — .853 / — .291 / —
High-sim. Overlap — .235 / — .038 / —
Low-sim. Overlap — — .413 / —

(a) L1 (English) results.

English–Spanish (L2)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap <.001 / <.001 <.001 / .841 <.001 / <.001
High-sim. Overlap — .322 / .002 <.001 / <.001
Low-sim. Overlap — — <.001 / <.001

English–German (L2)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap .366 / .305 .837 / .002 <.001 / <.001
High-sim. Overlap — .277 / <.001 <.001 / <.001
Low-sim. Overlap — — <.001 / <.001

English–Turkish (L2)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap <.001 / .423 <.001 / .867 <.001 / <.001
High-sim. Overlap — <.001 / .319 <.001 / <.001
Low-sim. Overlap — — <.001 / <.001

English–Chinese (L2)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap <.001 / 1.000 <.001 / <.001 <.001 / <.001
High-sim. Overlap — <.001 / <.001 <.001 / <.001
Low-sim. Overlap — — <.001 / <.001

English–Arabic (L2)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap .818 / .425 <.001 / <.001 <.001 / <.001
High-sim. Overlap — <.001 / <.001 <.001 / <.001
Low-sim. Overlap — — <.001 / .008

English–Swahili (L2)
Overlap Setting High-sim. Overlap Low-sim. Overlap No Overlap

Full Overlap .208 / — <.001 / — <.001 / —
High-sim. Overlap — <.001 / — <.001 / —
Low-sim. Overlap — — <.001 / —

(b) L2 transfer results.

Table 6: McNemar p-values for XNLI / XQuAD across all overlap settings and language pairs. (a) presents results
on L1 (English); (b) presents L2 transfer results. In each table entry, the first number is XNLI; the second is
XQuAD.

H Licenses

The CCMatrix corpus was released under the BSD license, and XLM-R was released under the MIT
license. We will release our code and models under the MIT license. Our use of these artifacts is consistent
with their intended use.

I Software Packages

We use the following software libraries in our experiments: HuggingFace Transformers v4.47.0, Datasets
v3.2.0, PyTorch v2.5.1, SentencePiece v0.2.0, and Statsmodels v0.14.4.
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(a) English–Spanish.
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(b) English–German.

Figure 5: Embedding similarity analysis for English–Spanish and English–German over pre-trained model check-
points.
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(a) English–Turkish.

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Full Overlap High-sim. Overlap

20000 40000 60000 80000 100000
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Low-sim. Overlap

20000 40000 60000 80000 100000

No Overlap

Checkpoint

Si
m

ila
rit

y 
Sc

or
e

High-sim. Token Set
Low-sim. Token Set
Random Token Set

(b) English–Chinese.

Figure 6: Embedding similarity analysis for English–Turkish and English–Chinese over pre-trained model check-
points.
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(a) English–Arabic.
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(b) English–Swahili.

Figure 7: Embedding similarity analysis for English–Arabic and English–Swahili over pre-trained model check-
points.
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