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Abstract

As autonomous agents and assistants, large lan-
guage models (LLMs) often struggle with “hal-
lucinations.” Fundamentally, the problem is
one of prioritization and balance: the LLM
needs to understand or infer when it needs to
be creative and balance that with its need to be
accurate. Most efforts focus on either updating
intrinsic knowledge via targeted post-training
or by adding external knowledge sources which
the LLM can reference neurosymbolically (e.g.,
via retrieval-augmented generation). However,
these all eventually rely on the LLM’s im-
plicit reasoning ability during generation, still
allowing for these random hallucinations de-
spite high-quality training examples and refer-
ences. Using aspect-oriented summarization
as a case study, we propose LOgit REwriting
(LORE), a new controlled generation paradigm
which can simultaneously be faithful to exter-
nal knowledge and to the LLM’s intentions.
LORE works by adding a rewriting module
at left-to-right inference time, continuously re-
flecting on the newest prediction and trying to
find a replacement that is more faithful to the
source document. Then, it merges the logits of
the replacement with those of the original pre-
diction to generate the next token. We proposed
a new long-context aspect-oriented summariza-
tion dataset, SLPAspect, and find that LORE
generates 5.8% better summaries compared to
the LLM without LORE-rewriting. !

1 Introduction

The most widely used LLMs are capable of gener-
ating extremely coherent and reasonable text, of-
ten surpassing the efficiency and eloquency of hu-
mans (Bojic et al., 2023; Mittelstadt et al., 2024;
Luo et al., 2025; Samaan et al., 2024). However,
for domains like education and medicine, where
providing the right or wrong treatment or applying

!Code for LORE and collecting SLPAspect are

available at https://github.com/CharlesYu2000/
LORE-LogitRewriting.

an effective or ineffective intervention can have
long-lasting effects on the student or patient, hal-
lucinations often undermine the efficacy of LLMs,
eroding the trust of users (Asgari et al., 2025). Due
to the infinite input space of prompts and their
effects on the generated output, developers contin-
uously update their prompts to reduce perceived
hallucinations in document understanding or sum-
marization. However, it is especially in these cases
where the dangers of hallucinations prove to be
most harmful: when the “95%" of a generation that
a human can easily verify looks good, it’s simple
to take the remaining 5% at face value. A human
may tune a prompt to seemingly eliminate hallu-
cinations?, but without a mechanism to constantly
avoid them at inference time, this can lead to catas-
trophic failures when deployed.

These risks are widely pertinent in both the sim-
plest case of prompting an LLM to operate on an
explicit source document and in larger systems
where retrieval-augmented generation (RAG) is
used (Gao et al., 2024). To reduce hallucinations
in text generated based on source documents, we
propose Logit Rewriting (LORE), a framework for
controlling the generation of an LLM and ensuring
that the output text is faithful to both the source
document and the LLM’s creativity and language
modeling ability. LORE does this by using a Nat-
ural Language Inference (NLI) model to continu-
ously ground the generated output to the source
document. Then, in cases of hallucination, LORE
changes the offending output into text that can be
grounded back to the source. Unlike many other
frameworks, LORE allows for rewriting across any
token in the vocabulary of the NLI model, as op-
posed to only reranking options retained in the
current generation beam. To evaluate the efficacy
of LORE, we also introduce a new dataset for

%In the context of this paper, we care about hallucinations
from the perspective of an LLM introducing information not
present in some reference piece of text, i.e., faithfulness.
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aspect-oriented summarization called SLPAspect
focused on the Speech-Language Pathology do-
main’. The Speech-Language Pathology domain
is a quintessential usecase where LLMs need to
be highly accurate and hallucination-free with re-
spect to their source to reduce risk of harm (we will
discuss this further in §2).

To summarize, our primary contributions are:

* We propose a novel paradigm called LORE
which adds a rewriting mechanism to any
open-source LLM to ensure that the gener-
ation is faithful to a source document.

* We introduce a new dataset called SLPAspect
for aspect-oriented summarization.  This
dataset contains over 4000 scholarly docu-
ments with nearly 15000 ground-truth aspect-
oriented summaries.

* We apply LORE to SLPAspect and two other
aspect-oriented summarization benchmarks,
showcasing the efficacy of our rewriting mech-
anism across different settings.

2 Task & Data

Aspect-oriented summarization (Tan et al., 2020;
Ahuja et al., 2022) is a task where faithfulness is
particularly important, as each document may have
multiple different aspects for which different parts
of the source document are relevant. Given an
aspect (a small subtopic of interest) and a source
document, we aim to generate a summary of the
source document’s information relating to only that
aspect, which we will call an “aspect summary." Ex-
isting aspect-oriented summarization benchmarks,
such as AspectNews (Ahuja et al., 2022), MASSW
(Zhang et al., 2025a), and ACLSum (Takeshita
et al., 2024) focus on domains with relatively low
risk (news and NLP scholarly documents respec-
tively) compared to higher risk domains such as
the medical and education domains.

As with other medical practitioners, Speech-
Language Pathologists (SLPs) are constantly try-
ing new ways for evaluating and treating patients,
often school students with speech and language
disorders. However, the patient load for SLPs is
extraordinarily high among medical professions,
with the average SLP reporting a caseload 25%
larger than manageable and 76% of SLPs believ-
ing there to be barriers to maintaining manageable

3Speech-Language Pathology is a medical discipline fo-
cused on evaluating, diagnosing, and treating communication
and language disorders.

caseloads; of the 76%, a third identified the pri-
mary barrier being a shortage of SLPs (Associa-
tion, 2024). Thus, most SLPs rarely have time to
read the latest literature to find evidence-based di-
agnosis methods and interventions and have turned
toward LLMs to reduce this burden by extracting
information to summarize or synthesize scholarly
articles (Hu et al., 2024). In these cases, the risk
of harm is high, as LLMs are highly capable of
producing reasonable-sounding aspect summaries,
but if these contain hallucinations, the already time-
constrained SLPs may not realize this and end up
applying interventions which are not supported by
the literature.

To help research in the intersection of NLP and
Speech-Language Pathology, as well as to highlight
the difficulty of faithfulness in a domain where
most texts seem logical but are only high quality
when evidence-based, we introduce SLPAspect as
a new long context aspect-oriented summarization
dataset. In this higher risk domain, hallucinations
can have more consequences while simultaneously
being more difficult to recognize. SLPAspect is
constructed by collecting articles from three jour-
nals: International Journal of Speech-Language
Pathology (IJSLP), Language, Speech, and Hear-
ing Services in Schools (LSHSS), and American
Journal of Speech-Language Pathology (AJSLP).
These are three of the top journals published by the
American Speech-Language-Hearing Association
(ASHA), the leading organization on SLP research
and practices. In a subset of these articles (as this
is not required by the journals), the original authors
wrote “headline"-type abstracts summarizing key
aspects of their articles (e.g., purpose, method, re-
sults, conclusion, etc.). So, to construct SLPAspect,
we collected all volumes of the associated journals
and parsed their text to use these headline abstracts
as ground-truth aspect summaries.

A summary of dataset statistics is presented in
Tables 1 and 2, with example ground-truth aspect
summaries shown in Appendix A.1.

3 Methodology

Architecturally, LORE uses the concept of “rewrit-
ing" as a way to control the generation. By con-
tinuously grounding the output back to the source
document as we perform left-to-right generation,
we can have a fine-grained control over faithfulness
to both the LLM doing the generation as well as
to the source document itself with built-in source
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. # of Articles with
Journal | Start Year | # of Issues | # of Articles Ground-Truth Aspects
JSHLR 1990 179 3652 1831
LSHSS 1990 133 1316 789
AJSLP 1991 143 1895 1476

Table 1: Statistics of the 3 ASHA journals included in SLPAspect.
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Figure 1: This diagram shows the high-level flow of LORE. The source document is split into segments which are
then used by the LLM to generate the aspect summaries. While generating each aspect summary, we continuously
rewrite the output by passing it through the NLI model, backpropagating to find improved embeddings, and
combining with the original logits to generate a new set of tokens to be sampled. A detailed diagram of the rewriting

steps can be found at Figure 2.

Aspect H Count ‘
Purpose 4037
Method 3974
Conclusion 3891
Result 3727
(other aspects) 288

Table 2: Aspects and number of examples included in
SLPAspect.

attribution. As it grounds the output to the source
document, LORE finds cases where the generation
is not faithful and, by approximating the effects
of the embedding space on that faithfulness, looks
across the entire vocabulary of the language model
to find replacement tokens which best revise the
generation toward a more faithful generation.

Although context length is often a factor when
evaluating faithfulness, LORE does not rely on
long context capabilities to function effectively. In-
stead, the rewriting of LORE is based on shorter
targeted segments which are partitioned during pre-
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Figure 2: The steps to determining logits to rewrite the
generation output. This fits into the Rewriting Module
portion of Figure 1.

processing. Thus, LORE can be used plug-and-play
with other methods across domains with different
faithfulness measures for short or long contexts.

21316



3.1 Rewriting based on Natural Language
Inference at a High Level

The core methodology behind LORE is rewriting
the generation based on continuous grounding. To
ground the generation back to the source document,
we employ the roberta-large-mnli (Liu et al.,
2019) NLI model to detect unfaithful generations.
After our LLM has produced a set of logits and cho-
sen the best next token for the generation, we pass
the source document and current generation output
through our NLI model to produce a grounding
score indicating whether or not the source docu-
ment entails the current generation. In successful
cases, the current generation continues to be en-
tailed, but in cases where hallucinations are being
created, the current generation will not be entailed.
So, for this latter case, we want to rewrite the token
such that the generation continues to be entailed.

To rewrite the token, we introduce a procedure
which constructs a first-order approximation of the
improvement that any other token would have on
this generation and its probability of most improv-
ing the grounding score. This procedure will be
detailed in the following section. Then, with these
new probabilities, we mix them back in with the
original logits produced by the generation LLM us-
ing an average weighted by a faithfulness hyperpa-
rameter . This produces a new set of probabilities
which we can sample tokens from to replace the
originally generated next token, and we repeat the
rewriting step until there is no further improvement
to the token. This full procedure is illustrated in
Figure 1.

Note that « can be interpreted as how much we
value faithfulness to the original source document
vs faithfulness to the desires of the generation LLM.
For higher creativity, we weight toward the LLM
(decrease «) and for better source attribution, we
weight toward the source document (increase «).

3.2 Producing Rewritten Logits from NLI

To rewrite this token, we employ an approach simi-
lar in conception to AutoPrompt (Shin et al., 2020).
To start, we backpropagate the grounding score to
produce a gradient with respect to the input em-
beddings by the NLI model. Specifically, when
looking at the gradient with respect to the embed-
ding of the current token, we know the direction
in which those embedding values should move to
locally increase the grounding score. Since these
embeddings in modern Transformer-based models

are based on lookups, we cannot directly translate
this gradient to a better token, but by utilizing the
HotFlip technique (Ebrahimi et al., 2018), we can
find which tokens are in the direction hinted at by
the gradient and find a best match.

Formally, given a text sentence s = [s152. .. 8¢,
where s; is a single token for each ¢, let ¢ be the
index of the token being generated at the current
time-step. We pass the prompt s (composed of the
premise and hypothesis) through the NLI model M
and compute a logistic loss £(s) where the target
label is 1 for being grounded/entailed:

L(s) = —log M (s)

The NLI model produces logits with respect to each
1 x D embedding in the embedding layer F (where
D is the embedding size). So, we capture the gra-
dient of L(s) with respect to s;’s embedding (only
the token embedding, no positional embeddings)
and call this gradient V; (in PyTorch, we can get
V. by attaching a backward hook to the embedding
layer and setting it to track the gradient).

V tells us the direction in which the ¢ token’s
embedding should move for the maximum change
in the NLI model’s loss, but there may not be any
actual token with an embedding that matches. For
token s;, we can find the token’s embedding F(s;)
and find the vector difference between it and ev-
ery other embedding in the model’s vocabulary
(E — E(s¢)). Then, by taking the cosine similar-
ity between V; and each of the vector differences,
we can determine which tokens have embeddings
closest in the direction of the maximal change in
loss.

cos(Vy, E(v) — E(sy)),

where v is any token in the vocabulary of the NLI
model. This allows us to truly “rewrite" this token
as opposed to other methods which only rerank
existing candidates.

Note though that the cosine similarity is only
looking at the directional change between the em-
beddings, but there of course may be multiple to-
kens whose embeddings are very close to the cor-
rect angle from the current embedding. Despite
being close in angle, the actual distance in the em-
bedding space can be far, which would not satisfy
the assumptions of the first-order approximation.
So, we penalize those embeddings that are farther
from the current embedding by additionally scaling
according to the inverse of their distance. So, for
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each token v in the vocabulary, we calculate:

_cos(Vy, E(v) — E(st))
Py = max{||E(v) — E(s)l],1} W

to produce a new set of logits. We then normalize
these to produce a set of probabilities P; over the
model’s vocabulary:

Pl = 2 2)

>0 Po
We combine this with the original probabilities
‘P produced during the generation according to the
faithfulness parameter « according to

Py = (1 — )P + P, 3)

This gives a linear interpolation between the origi-
nal generation and the grounded rewritten genera-
tion, allowing for the operator to decide the weight-
ing between faithfulness to the original source doc-
ument and faithfulness to the LLM’s parametric
and natural inference.

3.3 Improving NLI by attending to source
document segments

When a document is long, we cannot assume that
the NLI model will classify entailment accurately.
Inherently, there’s a disconnect, as the generation
LLM is the one generating the hypothesis based
on some portion of the source document, while a
separate language model (the NLI model) is de-
termining which part of the source document to
ground back to.

To solve this conundrum, we first partition the
source document into an arbitrary number of seg-
ments by prompting GPT-4. Then, during left-to-
right generation, we use the attention matrices to
determine which segments of the source document
are being focused on by the LLM to generate the
current token. Specifically, we use the first layer of
the attention matrices, aggregating across all atten-
tion heads and over the tokens of each segment, to
compute a probability for each segment of the base
text. We pick the top segment only and use this
as the premise for the NLI model. The intuition is
that the LLM is generating the current token based
on that segment, and thus that segment is what the
token and generation must be primarily faithful to.

With an arbitrary source document, we cannot
make any assumptions about the structure of the
document nor the contents. For aspect-oriented
summarization, there might not be any inherent

structure or relation between parts of the text that
are relevant to that aspect. Thus, in many cases,
a piece of the generated summary may already in-
clude information from one segment but is now
generating based on information from another seg-
ment. For example, if we were summarizing a
document with only had two segments, suppose
the first half of our summary is entailed only by
the first segment and the second half by the sec-
ond segment. Upon generating the second half of
the summary, the NLI model accurately determines
that the second segment does not entail the first
half of our summary.

To prevent this, we keep a mapping from each
token in the generation to the attributed segment.
Then, when employing the NLI model, the current
segment is used as the premise, while only the sub-
set of the generation related to that same segment
is used as the hypothesis (in the prior example, we
would only ever look at the first and second halfs
of the summary at a time). This is shown in Figure
2.

4 Results

Selection
== GPT = Original == LORE

Faithfulness

Comprehensiveness

Conciseness

Relevance

0 20 40 60 80 100
Percent

Figure 3: When compared head-to-head with GPT-4
rewrites, LORE rewrites are often higher quality.

4.1 Baselines

We compare LORE, using both a
DeepSeek-R1-Distill-Qwen-1.5B and a
Qwen3-1.7B backbone (thinking off), with 5
baselines across different levels of resources.
We compare with 1) BertSum (Liu and Lapata,
2019), a BERT-based model fine-tuned on the
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Model SLPAspect AspectNews ACLSum
R-1 R2 RL GPT|R1 R-2 RL GPT|R-1 R-2 RL GPT
BertSum 22,1 11.1 1277 520 | 61.2 443 480 815 | 33.7 260 274 410
CTRLSum 243 122 137 672 | 381 269 274 528|279 205 21.0 407
AOSumm 236 140 142 658 | 643 456 492 827|313 243 257 392
DeepSeek-R1 2277 135 132 67.1 | 645 46.1 484 852 | 31.1 254 267 463
GPT-40-mini 26.8 13.8 151 68.0 | 629 459 493 87.7 | 31.7 259 265 458
LORE (Qwen3) || 30.8 15.8 18.0 69.3 | 67.0 49.6 503 86.2 | 31.8 26.7 28.0 47.8
LORE (R1) 325 162 188 71.0 | 66.7 50.1 521 903 | 32.1 27.7 289 50.3

Table 3: Performance of LORE using DeepSeek-R1-Distill-Qwen-1.5B and Qwen3-1.7B for generation com-
pared to baseline models across three aspect-oriented summarization datasets including SLPAspect. R — 1, R — 2,
and R — L are the respective ROUGE scores compared to ground-truth while G PT is the percentage of examples
where the GPTScore evaluated from OpenAl 03-mini is higher than that of the ground-truth.

CNN/DailyMail dataset, 2) CtrlSum (He et al.,
2022), a pretrained summarization model which
generates summaries conditioned on additional
prompts, and 3) AOSumm (Ahuja et al., 2022),
a model based on BertSum which additionally
finetunes to match extracted keywords with
summaries, specifically for the aspect-oriented
summarization task.

Finally, @ we compare with represen-
tative open- and closed-source LLMS,
DeepSeek-R1-Distill-Qwen-1.5B (without

LORE rewrites) and GPT-40 mini.

4.2 Evaluating Aspect Summaries

To evaluate generated aspect summaries on
SLPAspect, we employ the ROUGE metrics to
compare with the ground truth from the dataset.
Furthermore, for each method, we compute a
GPTScore (Fu et al., 2024) using probabilities from
OpenAl o3-mini (reporting these as the percent-
age of outputs evaluated as better than the ground-
truth).

We also evaluate on AspectNews (Ahuja et al.,
2022) and ACLSum (Takeshita et al., 2024), two
aspect-oriented summarization datasets spanning
news and NLP scholarly documents respectively.

These results are reported in Table 3. Overall, we
see that LORE achieves the best results in nearly all
instances, showcasing the benefit of rewriting when
generating necessarily extractive information.

4.3 Rewriting Ablations

The DeepSeek-R1 and LORE (R1) rows of Table
3 showcase that rewriting improves the generation
performance considerably. Furthermore, we can
see that, compared to ground truth, our method
outperforms GPT-4.

Rewriting the entire generation output with a
LLM is trivial and we might expect to see similar
improvements. Using the same evaluation criteria,
we see that prompting GPT-4 to rewrite its own
generation output yields improvements, and even
generates a higher proportion of better rewrites than
LORE does. These numbers are reported in Table
5.

The true benefit of LORE shines when evaluat-
ing the qguality of the rewritten summaries. Inspired
by Fu et al. (2024) and using GPTScore for eval-
uation, we score the quality of each rewrite along
four dimensions: Faithfulness, Comprehensive-
ness, Conciseness, and Relevance.

To validate the quality of LORE rewrites com-
pared to LLM rewrites, we performed a three-way
comparison between the non-rewritten generation,
LORE-rewritten, and GPT4-rewritten summaries
along these four dimensions. These results are re-
ported in Figure 3.

From these results, LORE is clearly better than
GPT-4 rewriting along the Faithfulness and Rele-
vance dimensions. For Comprehensiveness, LORE
also pulls slightly ahead. However, LORE falls
short with respect to Conciseness. The shortcom-
ings for conciseness seem to primarily stem from
redundant (yet faithful) information, rather than the
summaries being too long. This is likely caused by
the lack of a deletion mechanism in LORE, which
can only rewrite a single token at a time, left-to-
right. Thus, in some cases where there might be
redundant information, LORE prioritizes faithful-
ness over brevity. In contrast, LLMs rewrite the
entire output in one fell swoop, allowing for arbi-
trary removals.

An example of the above behavior is shown in
Table 4. In this example, we see that LORE can
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Source

Summary

Ground Truth

The participants were 2 Canadian English-speaking adolescents who
had not yet acquired /r/. The study included an initial period without
ultrasound and 13 treatment sessions, each 1 hr long, using ultrasound.
Speech samples were recorded at screening and immediately before and
after treatment. Samples were analyzed acoustically and with listener
judgments. Ultrasound images were obtained before, during, and after
the treatment period.

DeepSeek-R1

Two Canadian teens were assessed before and after treatment using speech
tasks, audio recordings, and ultrasound. The assessments included an oral
exam, /v/ sound discrimination, and word lists in set phrases. Ultrasound
showed tongue movement during speech, using the same setup before and
after treatment. One teen had extra single-word recordings after treatment.

DeepSeek-R1 with LORE

Two Canadian teens were assessed before and after treatment using speech
samples. Audio recordings were assessed with an oral mechanism exam,
/v/ sound discrimination, and word lists. Ultrasound recordings showed
midsagittal tongue images and coronal images of the tongue. Both an
acoustic formant analysis and a listener judgment task were conducted.

Table 4: Generated summaries for the “Method" aspect of Adler-Bock et al. (2007). The LORE rewrite diverges at
the word “tasks,” determining that the most faithful generation is actually “speech samples” rather than “speech
tasks.” Despite this divergence, it eventually generates what the original model would generate, and intersperses

more details as needed.

cause similar information to be generated to avoid
hallucinations. Even after this first rewriting, the
generated summary still roughly follows the origi-
nally intended generation, although it is not identi-
cal due to the change in context from the rewriting.

4.4 Adjusting the Faithfulness Parameter
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Figure 4: Proportion of rewritten summaries judged
as better than original when varying the faithfulness
parameter value o of LORE. Of increments of 0.1, the
best performance on SLPAspect came from o = 0.4 in
our setup.

During the course of rewriting, we can vary the
faithfulness parameter o from O to 1, with O be-
ing fully faithful to the language model’s original
generation and 1 being fully faithful to the rewrit-
ing module and the source document. Note that

an « value of 1 does not mean that the genera-
tion model is completely ignored; in fact, we still
fully utilize the models aggregation abilities and
still only rewrite according to the model’s inten-
tion (i.e., “generate this next token based on this
segment”).

When varying «, we can see in Figure 4 that
the overall performance of the model (aggregated
over the four rewriting criteria) changes. For the
best comprehensive results, we find that more equal
weightings of faithfulness toward the model and
rewriting modules yields the best results. Notably,
performance skews toward trusting the language
model more, which is not surprising given the rela-
tive sizes of the models and the fact that the rewrit-
ing module is still largely dependent on the original
generation model’s aggregation ability.

4.5 Computational Cost

The computational overhead of adding LORE
largely depends on the size of the models, so this is
ultimately a tradeoff that users should consider for
their domains/tasks, much like the considerations
they should be making when choosing any LLM of
differing sizes.

Using the general heuristic where the backward
pass is approximately twice the computational cost
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Generation Model Rewriting Method | R-1 R-L  GPT
DeepSeek-R1 Prompting GPT-4 | 26.7 142 71.6
DeepSeek-R1 LORE 325 18.8 71.0

Table 5: Scores over SLPAspect when rewriting using prompting compared to LORE. Prompt instructions can be
found in Appendix A.5. Here, across all evaluated samples, GPT-4 rewrites result in more of those samples being

evaluated as better than the ground-truth.

as the forward pass, with O(M) being the infer-
ence cost of the LLM and O(N) being the infer-
ence cost of the NLI model, adding LORE to the
LLM changes the generation cost from O(M) to
O(M + 3cN), where c is the number of iterations
of rewriting. In practice, ¢ depends on « (the faith-
fulness parameter) and the amount of mistakes of
the base LLM. In our experiments, ¢ was just over
1 on average (as only a small portion of tokens
need rewriting, after which the LLM will start self
correcting). Omitting the input size factor from the
calculation (the NLI model input is only a single
segment vs the entire source), with a 1.5B param-
eter LLM and 355M parameter NLI model, the
overhead is about 75%, whereas a 7B parameter
LLM with the same 355M parameter NLI model
would only incur an overhead of about 14%. Even
larger models would see a proportionally smaller
overhead (and, presumably, would make fewer mis-
takes that need correcting, reducing c further).

5 Related Work

Aspect-oriented Summarization. Most aspect-
oriented summarization methods focus on shorter
documents in specific formats, such as question-
answer forums (Chaturvedi et al., 2024) or reviews
(Angelidis and Lapata, 2018; BraZinskas et al.,
2020; Bhaskar et al., 2023; Tang et al., 2024).
Fewer methods focus on general long documents
summarized for generic aspects. Other approaches
to aspect-oriented summarization include weak su-
pervision (Tan et al., 2020), self-supervised pre-
training (Soleimani et al., 2022), keyword-guided
summarization (He et al., 2022), prompt engineer-
ing (Bhaskar et al., 2023), and extractive summa-
rization (Qi et al., 2022; Tang et al., 2024; Hu et al.,
2025). In contrast to these methods, we utilize a
rewriting mechanism to improve the natural gen-
eration capabilities of a pretrained large language
model.

Faithfulness Rewriting. Faithfulness, which rep-
resents the factual consistency with the input text,
plays a vital role in summarization. Previous work

has explored the role of post-editing (Cao et al.,
2020), namely rewriting, to ensure such faithful-
ness. Despite this, those post-editing techniques
usually require training revision models (Dong
et al., 2020; Adams et al., 2022; Fabbri et al., 2022;
Gao et al., 2023). Inspired by the success of logit
editing in decoding phrases (Aralikatte et al., 2021;
Wan et al., 2023), we use the NLI model as a
signal to improve the consistency between source
document segments and generation results. One
direction close to our work is embedding steer-
ing (Jahanian* et al., 2020; Li and Liang, 2021;
Subramani et al., 2022; Han et al., 2024). However,
these efforts rely on external signals such as senti-
ment and toxicity to control the model’s generation,
while LORE relies on the knowledge consistency
between generation results and source document.
Separately, Qiu et al. (2024) utilized general hy-
pothesis verification models (of which NLI is a sub-
set) to rerank generations based on verification but
can only operate over candidate sequences, while
Yu et al. (2023) used a similar classification model-
based signal but for post-training the pretrained
language model itself.

Hallucination Prevention, Detection and Miti-
gation. Factuality hallucination detection in LMs
typically involves external fact-checking methods,
such as FACTSCORE (Min et al., 2023) and Fac-
Tool (Chern et al., 2023), or internal uncertainty
analysis. The latter includes Chain-of-Verification
(Dhuliawala et al., 2024), logit-based assessments
(Kadavath et al., 2022; Zhang et al., 2024c), and
leveraging LM internal states (Varshney et al.,
2023; Luo et al., 2024). When internal states are un-
available, self-consistency probing (Manakul et al.,
2023; Agrawal et al., 2024) or multi-LM corrobo-
ration (Cohen et al., 2023) can provide alternative
signals. In a related direction, Zhang et al. (2024d)
introduce a RESET token during training which
allows LLMs to completely take back its genera-
tion if it discovers issues. Our work is also related
to prior studies on mitigating hallucinations. Shen
et al. (2021) addresses the issue by filtering out low-

21321



quality training data. Several approaches enhance
model factuality through external knowledge (Niu
et al., 2024; Xie et al., 2024; Lyu et al., 2023; Asai
et al., 2024), and knowledge-aware tuning (Li et al.,
2023). Some studies tackle hallucination by enforc-
ing LLMs to adhere to input (Tian et al., 2019; Ara-
likatte et al., 2021), modifying internal states (Chen
et al., 2023; Azaria and Mitchell, 2023; Gottesman
and Geva, 2024), and adopting refusal-awareness
(Zhang et al., 2024a). Recent work (Zhang et al.,
2024b, 2025b) prevents hallucination by modeling
it quantitatively, incorporating fine-grained factors
like knowledge popularity, length, and model size.
Compared to them, our work aligns with advanced
decoding strategies (Wan et al., 2023; Shi et al.,
2024) to enhance factuality. Most similar to our
work is that by Aichberger et al. (2024) who use a
similar mechanism of finding token replacements,
but rather than merge with the original predictions,
do a direct replacement to generate a semantically
different output.

6 Conclusions and Future Work

In this paper, we introduced a paradigm called
Logit Rewriting (LORE) for generating faithful
summarizations based on a canonical source doc-
ument. We showed that LORE’s performance ex-
ceeds that of specially trained models and the lat-
est closed- and open-source LLMs by utilizing
“Rewriting” during inference time to control the
generation. We also introduced a new dataset called
SLPAspect for the aspect-oriented summarization
task, which contains long-context data in the med-
ical/education domains along with expert ground-
truth aspect summaries.

Future directions for this line of work include ap-
plying LORE to general-domain RAG applications.
Furthermore, increasing the rewriting context (in-
stead of only the current token) of LORE and
adding a deletion mechanism would help bridge
the gap toward the seq2seq behavior of LLM-based
rewriting. Also interesting would be rewriting us-
ing domain-specific classification models rather
than only NLI.

Despite our method’s attempts to curtail hallu-
cinations, application of LORE is not enough to
guarantee that generations will be accurate, safe,
and hallucination free. We urge all readers to re-
main vigilant.
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Limitations

There are a few core limitations of the methodology
in this paper. The first limitation is in LORE’s ap-
plication to open-source large language models. Al-
though open-source LLMs are widely used, many
researchers, engineers, and users alike might not
have the resources or expertise to deploy and use
these LLMs. Thus, it would be ideal if LORE
could be extended to apply to closed-source large
language models. The second core limitation is in
LORE’s inability to delete or rewrite longer lengths
of the generation. This leads to hyperlocal edits
which, although effective, mean that some halluci-
nations cannot possibly be treated (e.g., there is no
backtracking). Another limitation of our method-
ology is that rewriting involves continual iteration
and essentially creates an optimization problem at
each timestep of generation: optimizing each to-
ken for more timesteps might be more effective
but more expensive. Furthermore, the optimization
problem is not convex and therefore inherently dif-
ficult to solve well. One solution might be to main-
tain rewriting beams on top of generation beams vs
a greedy decoding. Finally, one limitation of our
experiments is that evaluation by language mod-
els is inherently biased and may itself be prone to
hallucination. Although we have done our best to
mitigate these effects, there is no way to prevent
them completely.
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A Appendix
A.1 Example Aspects and Associated
Summaries

As an example, the ground-truth aspects and sum-
maries for Everaert et al. (2023) (open access on-
line in the ASHA portal) are shown in Table 6.

A.2 Example Segmentation
An example of segmenting a portion of Adler-Bock
et al. (2007) is shown in Figure 5.

A.3 Interoperability

The core of LORE is adding a rewriting module
into the inference stage of a language model. No-
tably, this means that the actual generation model,
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Aspect

Summary

Purpose

This study evaluated whether developmental reading disability could be predicted in
children at the age of 30 months, according to 3 measures of speech production: speaking
rate, articulation rate, and the proportion of speaking time allocated to pausing.

Method

Speech samples of 18 children at high risk and 10 children at low risk for reading
disability were recorded at 30 months of age. High risk was determined by history
of reading disability in at least 1 of the child’s parents. In grade school, a reading
evaluation identified 9 children within the high-risk group as having reading disability
and 9 children as not having reading disability. The 10 children at low risk for reading
disability tested negative for reading disability.

Result

Children with reading disability showed a significantly slower speaking rate than chil-
dren at high risk without reading disability. Children with reading disability allocated
significantly more time to pausing, as compared with the other groups. Articulation rate
did not differ significantly across groups.

Conclusion

Speaking rate and the proportion of pausing time to speaking time may provide an early
indication of reading outcome in children at high risk for reading disability.

Table 6: These aspects are extracted from “headline”-style abstracts for a subset of ASHA journal articles.

GPT-4 segmentation

eration.  For generation, we use the open-

North American English /r/ is often
described as having one of two major
tongue configurations, tip-up retroflexed
or tip-down bunched, although research
shows that speakers actually use a
variety of tongue shapes for /r/ that fall
between these two extremes. ),

Range of tongue
configurations for /r/

Typical
— constriction and lip
rounding features

The most anterior lingual |
constriction involves tongue movement
toward the palate. The /r/ is considered
to be more retroflexed when the tongue

tip stretches backward toward the
palate, and more bunched when the
tongue body approximates the palate.

The tongue also shows midline lowering Midline and posterior
behind the palatal constriction .... tongue constrictions

Anterior tongue
— gestures: retroflex
vs bunched

Figure 5: GPT-4, when prompted to segment the docu-
ment based on broad topics, generates slightly coarser-
grained segments than sentence-level segmentation.

assuming it’s a Transformer, can be switched to
whatever model works best for the task at hand.
Furthermore, any prompting procedure can and
should be modified accordingly, and similarly, for
certain tasks, any other hypothesis verification
model could potentially be used in place of the
NLI model.

In our study, we use a pretrained and open-
source NLI model, roberta-large-mnli (Liu
et al., 2019), to determine if the relevant seg-
ments of the source document entail the gen-

R source LLLM DeepSeek-R1-Distill-Qwen-1.5B

and generated aspect summaries by concatenating
the source document and a prompt containing the
aspect: “Given the following source document, gen-
erate a summary of the document’s Purpose.”

A.4 Rewriting Metrics

1. Faithfulness. Is the summary accurate in
relation to the source document? Are there
any hallucinations, contradictions, or misin-
terpretations?

2. Comprehensiveness. Does the summary
cover all the important points from the source
document that are relevant to the aspect?

3. Conciseness. Is the summary free of redun-
dant information or unnecessary elaboration?

4. Relevance. Does the summary include only
information pertinent to the original document
and task? Is irrelevant or tangential informa-
tion excluded?

A.5 Evaluation Prompts

The prompts used for calculating GPTScore are
based on the original prompts in Fu et al. (2024).
These are detailed in Table 7. For three way
comparisons, the ground-truth is scored using the
src — summ template and rewrites with the
ref — summ template.
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Dimension Function Instruction ‘

src — summ  Generate a summary consistent in relation to the following
text’s {aspect}, ensuring it is concise, comprehensive, rel-
evant, consistent, and has faithful details: {src}\n\nTl;dr
{summ}

ref — summ Rewrite the following text to have concise, comprehensive,
relevant, consistent, and faithful details. {ref} In other words,
{summ}

src — summ  Generate a summary consistent in relation to the following
text’s {aspect}, avoid making details up, contradictions, and
misinterpretations: {src}\n\nTl;dr {summ}

ref — summ Rewrite the following text with consistent and faithful details.
{ref} In other words, {summ}

src — summ  Generate a comprehensive summary in relation to the follow-
ing text’s {aspect}: {src\n\nTLdr {summ}

ref — summ Rewrite the following text with comprehensive details. {ref}
In other words, {summ}

src — summ  Generate a concise summary in relation to the following text’s
{aspect}: {src\n\nTLdr {summ}

ref — summ Rewrite the following text with comprehensive details. {ref}
In other words, {summ}

src — summ  Generate a relevant summary with consistent details in relation
to the following text’s {aspect}: {src}\n\nTl,dr {summ}

ref — summ Rewrite the following text with relevant details. {ref} In
other words, {summ}

Overall

Faithfulness

Comprehensiveness

Conciseness

Relevance

Table 7: Instruction design on different dimensions. aspect represents the name of the aspect, src is the source
document, ref is the ground-truth summary, and summ is the generated summary. These dimensions are further
detailed in Appendix A.4.
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