
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 22653–22675
November 4-9, 2025 ©2025 Association for Computational Linguistics

Lifelong Knowledge Editing requires Better Regularization

Akshat Gupta1*, Phudish Preteepamornkul1,2*, Maochuan Lu1

Ahmed Alaa1, Thomas Hartvigsen3, Gopala Anumanchipalli1

1UC Berkeley, 2SCB DataX, 3University of Virginia

akshat.gupta@berkeley.edu

Abstract
Knowledge editing is a promising way to im-
prove factuality in large language models, but
recent studies have shown significant model
degradation during sequential editing. In this
paper, we formalize the popular locate-then-
edit methods as a two-step fine-tuning pro-
cess, allowing us to precisely identify the
root cause of this degradation. We show that
model degradation occurs due to (1) over-
optimization of internal activations and (2) con-
tinuous norm-growth of edited matrices. To
mitigate these issues, we introduce two regu-
larization techniques: (1) Most-Probable Early
Stopping (MPES) and (2) explicit Frobenius
norm-constraint. We demonstrate that apply-
ing these simple yet effective regularization
techniques at key points in the editing pro-
cess can substantially mitigate model degra-
dation. Combining these regularization meth-
ods enables scaling locate-then-edit methods
to 10,000 edits while reducing editing time by
42-61%. These results show that targeted reg-
ularization is essential for lifelong knowledge
editing.

1 Introduction

Knowledge editing entails editing specific facts that
a language model has learned during pre-training
in a data and computate efficient manner (De Cao
et al., 2021; Yao et al., 2023). The most popular
editors follow a “locate-then-edit” approach, where
the methods aim to locate and update small sub-
sets of a model’s parameters that recall target facts
(Meng et al., 2022a,b; Gupta et al., 2024a,c; Ma
et al., 2024; Fang et al., 2024). Although these
methods have shown strong results when perform-
ing singular or small-scale edits, they suffer sub-
stantial degradation when applied at scale (Gu et al.,
2024a; Gupta et al., 2024b; Thede et al., 2025),
leaving the problem of lifelong knowledge editing
largely unsolved.

* Equal Contribution

(a) Norm-growth as function
of number of edits

(b) Layer wise norm post-
editing

Figure 1: The continuous growth of norm of edited
MLP matrices in MEMIT Llama3-8B during sequential
knowledge editing.

In this work, we systematically investigate the
factors that cause model degradations and pro-
pose appropriate regularization methods to miti-
gate them, enabling large-scale sequential knowl-
edge editing without sacrificing downstream perfor-
mance. We begin by first formalizing locate-then-
edit methods as a two-step fine-tuning process (sec-
tion 4), where the first step uses gradient-descent
for activation optimization, and the second step per-
forms weight-update via a least-squares update rule.
This explicit structure allows us to precisely diag-
nose the causes of loss of downstream performance
and allows us to choose appropriate interventions.

We show that model degradation occurs during
continuous sequential editing because of two rea-
sons. Firstly, we show that the gradient-descent
step in locate-then-edit methods leads to over-
optimization of internal activations, which makes
the model predict edited facts with unnaturally
high confidence (section 5). We mitigate this by
proposing Most-Probable Early Stopping (MPES)
- a novel variant of early-stopping where we halt
gradient-descent steps when edited facts become
most probable across all the different contexts used
to calculate the loss. Secondly, we show that se-
quential editing leads to disproportionate growth of
the Frobenius norm of the edited matrix (Figure 1).
This allows the outputs produced from the edited
layers to have an abnormally larger influence on the

22653

final output of the model, inadvertently causing loss
of general ability, which might require information
coming from other parts of the model. To address
this, we incorporate a Frobenius norm-constraint
into the editing objective of locate-then-edit meth-
ods (section 6.2). While early stopping and norm-
constraints are known regularization methods, their
targeted stage-specific application to locate-then-
edit methods is non-trivial. With our work, we
demonstrate that there exists a lack of proper reg-
ularization in existing knowledge editing methods
and show that explicit regularization at the appro-
priate stages of editing is essential and critical for
scalable and stable knowledge editing.

Our proposed regularization methods mitigate
the respective issues of over-optimization of in-
termediate activation vectors and disproportion-
ate norm-growth, consequently preserving down-
stream performance for a larger number of edits.
Finally, we show that combining these two regular-
ization methods allows us to perform up to 10,000
sequential edits while maintaining original down-
stream performance and making editing 41-62%
faster.

2 Related Work

Knowledge editing methods can broadly be clas-
sified into three types (Yao et al., 2023; Zhang
et al., 2024c) - hypernetwork based editing meth-
ods (De Cao et al., 2021; Mitchell et al., 2021),
where an additional model is trained to predict
the edited weights of the model, in-context editing
methods (Mitchell et al., 2022; Hartvigsen et al.,
2024; Zhong et al., 2023), where edited informa-
tion is added in-context, and locate-then-edit meth-
ods (Meng et al., 2022a,b; Gupta et al., 2024c,a;
Fang et al., 2024), where the knowledge source is
traced to certain MLP layers (Hase et al., 2024;
Yoon et al., 2024) before modifying them using
a two-step fine-tuning method (section 4). This
work focuses on performing locate-then-edit type
of knowledge editing methods.

Overfitting During Knowledge Editing. Some
recent works have studied overfitting as a key chal-
lenge of knowledge editing. For example, Zhang
et al. (2024a) identifies that locate-then-edit meth-
ods overfit on edited facts. They propose to miti-
gate this by introducing an inference-stage regular-
ization approach called “learn to inference” (LTI)

Code: https://github.com/myanonymousrepo/
knowledge-editing-regularization

that guides edited models to recall new knowledge
by adding multi-stage constraints during optimiza-
tion. With our proposed variant of early-stopping
called "most-probable early stopping" (MPES), we
present a much simpler way of reducing overfitting.
We also show that LTI does not scale to multiple ed-
its and leads to immediate model degradation when
performing sequential editing. Meanwhile, MPES
leads to significant improvements in downstream
performance while countering overfitting (section
5).

Norm-Growth and Weight Regularization.
Prior work has shown that sequential knowledge
editing leads to the norm-growth of the updated
weight matrices (Gupta et al., 2024b; Yang et al.,
2024). Ma et al. (2025) present a similar obser-
vation in the form of growth of condition num-
ber of the edited matrices as a potential cause of
loss of downstream performance. However, none
of these works explains why increasing norm of
edited matrix is bad for the model. In our work,
we analyze the effect of norm-growth on internal
activations and show how it connects with model
degradations (section 6.1). We verify our conclu-
sions by adding a norm-constraint in the optimiza-
tion objective of MEMIT. We show that our pro-
posed norm-constraint combines seamlessly with
MEMIT’s closed-form solution, unlike prior regu-
larization methods like PRUNE (Ma et al., 2025)
and RECT (Gu et al., 2024b), which require addi-
tional regularization steps post-editing. We also
show that our methods significantly outperform
PRUNE and RECT in preserving downstream per-
formance over a large number of edits.

3 Methods, Models, and Evaluation

We adopt the experimental setting of AlphaEdit
(Fang et al., 2024), a recent locate-then-edit method
that is able to perform sequential editing for up to
3,000 facts. Following their setting, we perform
sequential edits in batches of 100 facts. This means
that 100 facts are edited into the model with each
weight update, and multiple such updates are per-
formed sequentially.

We evaluate all algorithms on three represen-
tative models - GPT2-XL (Radford et al., 2019),
Llama2-7B (Touvron et al., 2023) and Llama3-8B
(Yoon et al., 2024). All experiments are performed
on the CounterFact (Meng et al., 2022a) and zsRE
(Mitchell et al., 2021) datasets, which are standard
knowledge editing datasets. We present the results

22654

https://github.com/myanonymousrepo/knowledge-editing-regularization
https://github.com/myanonymousrepo/knowledge-editing-regularization

(a) gradient-descent step
which finds the target
activations for the MLP
matrix.

(b) Target activations are
used to update the second
MLP matrix (in red).

Figure 2: Presenting locate-then-edit knowledge editing
methods as a two-step fine-tuning process.

for Llama2-7B and Llama3-8B on the CounterFact
dataset in the main paper and present the remaining
results in the appendix due to space constraints.

In this paper, we evaluate the editing algorithms
along two dimensions - editing performance and
downstream performance. The editing perfor-
mance evaluates the success of the knowledge edit-
ing algorithm in making successful edits, while
downstream performance evaluates the extent of
model degradation following prior work (Fang
et al., 2024; Gupta et al., 2024b; Gu et al., 2024a).

Knowledge Editing Metrics: To evaluate edit-
ing performance, we use five standard knowledge
editing metrics (Meng et al., 2022a). (i) Efficacy
Score (ES), which measures if an edit was suc-
cessfully made, (ii) Paraphrase Score (PS), which
measures if the model is able to recall edited facts
in different scenarios, (iii) Neighborhood Score
(NS), which measures if edited facts disturb unre-
lated knowledge, (iv) Overall Score (S), which is
the harmonic mean of ES, PS, and NS, and (v) Gen-
eration Entropy (GE), which measures the fluency
of a model. A detailed explanation of these metrics
is given in Appendix A. The editing metrics for
each model are calculated after making all 10,000
sequential edits (Fang et al., 2024). This approach
ensures that the metrics capture both the success of
the edits of the latest batch of facts as well as facts
that were edited in the past.

Downstream Performance Metrics: Follow-
ing prior work (Fang et al., 2024; Gupta et al.,
2024b), we measure downstream performance
during knowledge editing using 6 tasks - mas-
sive multitask language understanding (MMLU)
(Hendrycks et al., 2020), natural language infer-
ence (NLI, RTE) (Dagan et al., 2005; Haim et al.,
2006; Giampiccolo et al., 2007), sentiment analysis
(SST2) (Socher et al., 2013), paraphrase detection
(MRPC) (Dolan and Brockett, 2005), and linguistic
acceptability classification (CoLA) (Warstadt et al.,
2019). Performance is assessed every 1000 edits,
following Fang et al. (2024). Additional details are
provided in Appendix N.

4 Knowledge Editing as a Two-Step
Fine-tuning Process

“Locate-then-edit" family of methods like ROME
(Meng et al., 2022a) , MEMIT (Meng et al., 2022b)
and AlphaEdit (Fang et al., 2024) update factual
knowledge expressed as (subject, relation, object)
or (s,r,o). Instead of updating all parameters of a
model to incorporate new knowledge, these meth-
ods only update certain matrices that are most re-
sponsible for fact recall (Meng et al., 2022a). The
location of an edit within a model is described by a
two-dimensional address - (i) an intermediate layer
to be edited and (ii) a token from the list of input
tokens used to create the target representation.

The exact layer to be edited is found via causal
tracing (Meng et al., 2022a) or an empirical sweep
across the model layers (Hase et al., 2024; Yoon
et al., 2024). Only the second MLP matrix in the
FFN module of the editing layer is updated (Geva
et al., 2020; Meng et al., 2022a), forming the first
part of the editing address. Meng et al. (2022a)
also showed that using the output representation
of the last subject token produces the best editing
results, providing the second part of the address.
The entire editing process is presented in Figure 2.

We explain this with an example. Given a fact to
be edited, for example - “The capital of Malaysia
is Singapore", the query phrase for the editing pro-
cess is “The capital of Malaysia is" and the target
phrase is “Singapore". The first part of the edit-
ing address, the exact layer whose second MLP
matrix gets edited, is decided before the editing
begins. The second part of the editing address is
the token index of the last subject token, which
in this case would be the last subword-token in

“Malaysia". The intermediate hidden representation

22655

of this last subject token is used to make the edit.
Once the editing address has been decided, instead
of updating the chosen MLP weight matrix directly
using gradient-descent, locate-then-edit knowledge
editing proceeds in two steps.

1. In the first step (Figure 2(a)), gradient-descent
is used to find the appropriate activation vec-
tor that acts as a target for the weight matrix to
be edited. In the example, the found activation
will cause the model to generate “Singapore"
in response to the question. The loss function
for the gradient-descent step is shown in equa-
tion 2. Note that in this step, no weights are
updated and just an intermediate activation
vector is found.

2. The weight update occurs in the second edit-
ing step (Figure 2(b)), where the MLP ma-
trix is updated using the target activation vec-
tor found previously. This update uses a
least square loss function, which preserves
the MLP outputs for unrelated contexts while
generating the target activation when the input
corresponds to the query phrase.

The loss function used to update the MLP weight
matrix is formulated using least-squares in the form
of a preservation-memorization objective (Gupta
et al., 2024c):

argmin
Ŵ

L(Ŵ) where

L(Ŵ) = λ
P∑

i=1

∥∥∥Ŵki
0 −W0k

i
0

∥∥∥
2

2

︸ ︷︷ ︸
preservation

+
B∑

j=1

∥∥∥Ŵkj
e − vje

∥∥∥
2

2

︸ ︷︷ ︸
memorization

(1)

Specifically, W0 represents the initial weights
of the second MLP matrix, which is being edited
to Ŵ . k0 represent input to the MLP matrix for
information we want to preserve from the original
model, and ke is input activation vectors represent-
ing facts we want to insert into the model. ve is the
target activation vector found in step 1 of editing
using gradient-descent. Since the above objective
is linear in the argument, we do not need to use
gradient-descent for optimization.

Thus, locate-then-edit methods can be seen as
a unique type of 2-step fine-tuning method. In-
stead of updating the MLP matrix directly using
gradient-descent on the desired data, the weight
update happens in two steps using two different
types of objective functions for each step. The first
step uses gradient-descent whereas the second step
uses a closed-form solution.

5 Over-Optimization of Target
Activations

The gradient-descent step for finding target activa-
tions as described in section 4 minimizes average
cross-entropy loss for predicting the target fact for
the query phrase augmented by ‘N ’ random pre-
fixes. The random prefixes are supposed to rep-
resent different contexts in which the edited fact
can be recalled, thus aiming to create a more gen-
eral query representation (Meng et al., 2022a). Let
p represent the query-phrase input to the model,
o∗ represent the target fact to be edited into the
model and xj represent random prefixes added to
the query phrase. Then, the gradient-descent step
minimizes the following loss function:

L(θ) =
1

N

j=N∑

j=1

−logPθ[o
∗|xj + p], (2)

We observe that when the gradient-descent
step stops in these algorithms, the intermediate
target representations become over-optimized,
assigning unusually high probabilities to edited
facts. More specifically, the average target prob-
ability at which the gradient-descent step stops
for all locate-then-end algorithms lies between 95-
100%. When this target representation is used to
update the the edited matrix using equation 1, the
resultant edits are predicted with abnormally high
probabilities. This can be seen in Table 1, where the
edited facts are predicted with a much larger prob-
ability compared to the original “unedited” models.
More details on the experimental settings can be
found in Appendix B. This phenomenon was also
observed by Zhang et al. (2024b).

5.1 MPES and Knowledge Editing
As seen in Table 1, the probability with which the
unedited Llama2-7B, and Llama3-8B naturally re-
call a fact are 52% and 49% respectively. How-
ever, facts that get edited into the model with algo-
rithms like MEMIT are predicted with an average
probability of 78-79%. To overcome this hyper-
optimization over a small subset of edited facts, we
propose a variant of early stopping called “most-
probable early stopping" (MPES).

Conventionally, early stopping is used during
training while monitoring validation loss, where
training is halted when the validation loss stops
improving. In MPES, we stop the gradient-descent
step in knowledge editing when the target fact be-
comes the most probable token for all ‘N ’ query

22656

Model Prediction Probability Time / edit (s)

Original
fact MEMIT MEMIT

w/ LTI
MEMIT

w/ MPES MEMIT MEMIT
w/ LTI

MEMIT
w/ MPES

Llama-2 7B 0.52 0.78 0.30 0.45 4.84 8.67 2.79 (↓ 42 %)
Llama-3 8B 0.49 0.79 0.29 0.41 8.71 9.21 3.31 (↓ 61 %)

Table 1: Comparison between prediction probabilities of edited facts along with editing time when using MPES and
LTI (Zhang et al., 2024b) with MEMIT.

Method Edit Score Paraphrase Score Neighborhood Score Overall Score Generation Entropy
Llama2-7B Llama3-8B Llama2-7B Llama3-8B Llama2-7B Llama3-8B Llama2-7B Llama3-8B Llama2-7B Llama3-8B

MEMIT 81.04 49.68 64.67 49.29 60.95 51.31 67.86 50.08 442.59 373.48
MEMIT + LTI 55.34 51.85 53.57 51.23 49.21 49.21 52.58 50.70 562.07 372.08
MEMIT + MPES 93.21 74.40 83.43 66.32 62.25 50.78 77.36 62.23 569.84 466.97
RECT 82.42 63.17 66.84 56.92 67.39 52.89 71.54 57.36 549.35 588.39
RECT + LTI 53.87 51.55 52.17 51.08 50.35 50.43 52.09 51.02 498.97 544.41
RECT + MPES 92.12 66.52 78.06 59.11 67.16 59.44 77.81 61.51 596.62 410.82
PRUNE 70.80 49.38 62.11 49.63 51.86 51.09 60.60 50.02 280.83 340.22
PRUNE + LTI 55.19 49.88 52.98 49.63 50.33 50.19 52.76 49.90 548.23 239.17
PRUNE + MPES 91.48 92.66 83.65 82.20 61.91 64.82 76.85 78.16 568.91 512.83
AlphaEdit 61.10 72.67 55.86 63.44 53.75 52.90 56.74 61.95 540.92 465.81
AlphaEdit + LTI 53.82 53.27 53.03 51.70 49.68 49.72 52.11 51.52 524.11 240.07
AlphaEdit + MPES 84.15 88.43 74.94 82.08 62.87 56.60 72.93 72.83 583.40 565.32

Table 2: Sequential knowledge-editing performance after 10,000 edits. Scores are shown for nine MEMIT-based
and AlphaEdit algorithms under two models. MPES consistently improves editing metrics across all settings.

phrases used for optimization (equation 2). This
contrasts with the current stopping criteria in these
methods, where gradient-descent is halted after ei-
ther 20 iterations or upon reaching a loss threshold.
These criteria leave open the possibility of over-
optimization (and hence overfitting, as observed
empirically in Table 1), or underfitting. Apart from
preventing the model from becoming overly opti-
mized towards a specific target fact, using MPES
for halting gradient-descent also has two other ad-
vantages. Firstly, it simplifies monitoring of the
gradient-descent process and provides a principled
approach to stopping gradient-descent which is di-
rectly tied to the knowledge editing objective, that
is, accurately recalling edited facts in a variety of
scenarios without overfitting. Secondly, by opti-
mally stopping the gradient-descent process, we
also improve the efficiency of locate-then-edit al-
gorithms. MPES reduces the average edit time by
42-61% compared to the standard MEMIT.

We compare MPES with LTI (Zhang et al.,
2024b), which prevents over-optimization during
the gradient-descent step using multiple additional
loss functions that also increase the average time
per edit (LTI takes approximately three times as
long as MPES as shown in Table 1). We combine
MPES with multiple knowledge editing methods
including MEMIT (Meng et al., 2022b), RECT (Gu
et al., 2024b), PRUNE (Ma et al., 2025) and Al-

phaEdit (Fang et al., 2024). We perform 10,000
sequential edits in batches of 100 as described in
section 3. The editing and downstream evaluation
metrics for sequential editing for both regulariza-
tion methods can be seen in Table 2 and Figure 3
respectively. We see that MPES provides substan-
tial gain across all key metrics.

Table 2 shows that all editing metrics are en-
hance significantly for all knowledge editing meth-
ods when combined with MPES. Infact, Table 2
shows that LTI harms the editing metrics for se-
quential editing when compared to even the re-
spective baselines. The downstream performance
metrics can be seen in Figure 3. We see that knowl-
edge editing methods augmented with MPES (rep-
resented by solid lines with diamond dots) are
able to maintain their downstream performance for
much longer when compared to the corresponding
baselines and LTI. However, despite these improve-
ments, downstream degradation still occurs after
a few thousand edits especially in larger models
like Llama3-8B. This suggests that MPES alone
may not fully address all failure modes, which we
explore further in the next section. To summarize,
with MPES we present a principled way of stop-
ping the gradient-descent step during knowl-
edge editing which results in improved editing
performance, delays loss of downstream perfor-
mance, and makes current knowledge editing meth-

22657

(a) Llama2-7B (b) Llama3-8B

Figure 3: Downstream evaluation when comparing MPES (our method) with LTI for regularizing over-optimization
of target activations during knowledge editing.

ods much faster.

6 Norm Growth during Sequential
Knowledge Editing

Previous studies show that sequential knowledge
editing increases the norm of the edited matrix
(Gupta et al., 2024b; Yang et al., 2024; Ma et al.,
2025). Figure 1 illustrates this issue, highlight-
ing the extreme norm growth in edited layers of
Llama3-8B using MEMIT. Here, the norms of the
edited layers increase by more than 10 times, while
the unedited layer remains unchanged (Figure 1(b)).
Furthermore, norm growth persists continuously
during editing, as shown in Figure 1, for not even
one edit does the norm remain constant or decrease.

While the anomalous norm-growth was observed
in prior work, they do not explain how it affects
the general ability of the model. We answer this
question by analyzing the residual stream of the
model during large-scale knowledge editing.

6.1 Explaining Loss of Downstream
Performance due to Norm-Growth

To understand the impact of this norm growth, we
analyze how residual connections work in decoder-
only LLMs. The intermediate hidden vector at
layer l, represented by hl, is also sometimes re-
ferred to as the residual stream. Each decoder-only
layer contains one attention and FFN module that
feeds directly into the residual stream through resid-
ual connections. The exact computations happen-
ing within transformer-based decoder-only LLMs
can be found in Appendix E. Let the output of the
attention module at layer l be represented by al,
and the output of the FFN module be represented
by ml. As the vectors computed in the attention
and MLP modules get added back to the residual

stream at each layer, the residual stream represents
a summation of an increasing number of vectors as
we go deeper into the model. A non-recursive for-
mula for the output of the transformer just before
unembedding and final layernorm is shown below:

hL = h0 +

i=L∑

i=1

ai +

i=L∑

i=1

mi (3)

Here, L represents the total number of layers in
a model and hL represents the residual stream after
the final layer. Thus, the output vector at the final
layer is a summation of the outputs of individual
self-attention and MLP sub-modules.

Now, if the norm of the edited MLP matrix
grows as disproportionately as shown in Figure
1, the norm of the vectors that are produced from
those edited MLP sub-modules will also grow. This
means that the norms of the vectors ml in the sum-
mation corresponding to the edited layers will grow
substantially. As the norm of a few vectors in the
summation grows, these vectors will begin to dom-
inate the sum. Proof for this is shown in Appendix
D.1, where we show that if the norm of a vector
in a summation grows, the overall sum effectively
tends towards that vector.

We also show this effect empirically. The grow-
ing norm of activation vectors produced by edited
layers after editing Llama3-8B can be seen in Fig-
ure 4. After editing using MEMIT, which edits
layers 4-8 for 10,000 sequential edits (edited layers
are shown in red color on the x-axis), we see a
drastic increase in the norm of activation vectors
produced by edited layers. For example, the activa-
tion vectors produced by layer 8 account for almost
40% of the total norm, and vectors produced by
all edited layers account for 85% of the total. To
emphasize how extreme this is, the residual stream

22658

for Llama-3-8B is made up of a summation of 65
vectors, and 4 out of the 65 vectors coming from
the edited layers account for 85% of the total norm.
The norm-contributions for an unedited model can
be seen in Figure 9(a) (appendix), where the four
edited layers account for less than 4% of the overall
norm. Note that this effect cannot be mitigated by
LayerNorm or RMSNorm, which just normalize
the incoming vectors (Brody et al., 2023), whereas
the norm growth of edited layers changes the con-
tent of the final hidden representation by making it
consist of mostly the output of the edited layers.

This gives us a crucial insight into why the grow-
ing norm of edited matrices leads to a loss of down-
stream performance. As the norms of the edited
matrices increase, and as a consequence, the
norm of the activation vectors produced from
those matrices also increases, the activation vec-
tor at the final layer (hL) is dominated by the
output of edited layers, thus giving the edited
layers a larger authority over the final represen-
tations. This allows edited layers to override the
information produced from other parts of the
model, possibly also helping make successful edits.
However, as the norm of the edited matrix contin-
ues to grow when we edit it sequentially, suddenly
the final representations begin to largely be com-
posed of the outputs of only the edited layers. This
makes it impossible for the model to account for
the information processed from other sub-modules,
which might be important to perform other down-
stream or unrelated tasks.

6.2 Introducing Norm Constraint
In the above discussion, we show how growing
norm of edited matrices is detrimental to the func-
tioning of edited models and hypothesize how it
causes loss of downstream performance. To test
these conclusions, we propose to add an additional
term to the editing objective to control this norm
growth. Thus, we augment the MEMIT objective
with a Frobenius norm-constraint:

L(Ŵ) = λp

P∑

i=1

∥∥∥Ŵki
0 −W0k

i
0

∥∥∥
2

2

︸ ︷︷ ︸
preservation

+
B∑

j=1

∥∥∥Ŵkj
e − vje

∥∥∥
2

2

︸ ︷︷ ︸
memorization

+ λn

∥∥∥Ŵ −W0

∥∥∥
2

F︸ ︷︷ ︸
norm-constraint

(4)

Llama-3-8B has 32 layers, each contributing two vectros
al and ml to the residual stream along with the input vector.

Figure 4: The figure shows the proportion of contribu-
tion of activation vectors from each sub-module to the
residual stream. Edited layers are shown in red.

The original weight matrix is represented by W0

and Ŵ represents the edited matrix. The above ob-
jective has a closed-form solution as shown below
(proof, Appendix F):

Ŵ = W0 +∆ where

∆ = (V1 −W0K1)K
T
1 (λpK0K

T
0 +K1K

T
1 + λnI)

−1

(5)

Table 3 and Figure 5 show the editing and down-
stream performance after 10,000 sequential edits
using the norm-constraint. Compared to baseline
methods such as MEMIT, AlphaEdit, as well as reg-
ularization approaches such as PRUNE and RECT,
Frobenius norm-constraint version of MEMIT (rep-
resented by MEMIT + NC) produces consistent
and substantial improvements in editing and down-
stream performance metrics. Specifically, we see in
Table 3 that MEMIT + NC outperforms all previous
models on all editing metrics except for the genera-
tion entropy metric. This shows that explicitly con-
trolling norm growth is more effective than prior
regularization methods like PRUNE and RECT,
particularly when editing at scale. When looking
at downstream performance in Figure 5, MEMIT
+ NC also outperforms all prior editing methods
when looking for Llama-2-7B, and all methods
except AlphaEdit for Llama3-8B. Moreover, the
observed gains in downstream performance sup-
port our hypothesis that uncontrolled norm growth
in edited layers leads to downstream degradation.

Additionally, we want to note that AlphaEdit
inherently has an explicit norm-constraint in its
optimization objective. To present the importance
of norm-constraint during large scale editing, we
remove this term from the objective and evaluate
the method, as shown in Table 3. To our surprise,
we find that AlphaEdit completely fails without the
norm constraint, as shown in the row ‘AlphaEdit
w/o NC’ in Table 3 . Specifically, after 10,000 edits,
the model effectively collapes, where Llama2-7B

22659

Method Edit Score Paraphrase Score Neighborhood Score Overall Score Generation Entropy
Llama2-7B Llama3-8B Llama2-7B Llama3-8B Llama2-7B Llama3-8B Llama2-7B Llama3-8B Llama2-7B Llama3-8B

MEMIT 81.04 49.68 64.67 49.29 60.95 51.31 67.86 50.08 442.59 373.48
PRUNE 70.80 49.38 62.11 49.63 51.86 51.09 60.60 50.02 280.83 340.22
PRUNE + MPES + NC 91.33 85.18 79.12 75.75 57.72 58.55 73.33 71.39 475.63 538.49
RECT 82.42 63.17 66.84 56.92 67.39 52.89 71.54 57.36 549.35 588.39
RECT + MPES + NC 89.51 82.52 74.13 69.35 60.02 64.96 72.60 71.54 480.66 587.79
AlphaEdit 61.10 72.67 55.86 63.44 53.75 52.90 56.74 61.95 540.92 465.81
AlphaEdit w/o NC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 434.17 560.92
MEMIT + LTI + NC 54.41 50.76 51.87 48.89 52.05 51.17 52.75 50.25 516.24 575.59
MEMIT + NC 87.89 85.72 79.10 77.08 59.72 58.45 73.59 71.86 517.86 367.46
MEMIT + MPES + NC 91.09 87.54 78.02 77.97 59.78 59.30 74.03 72.97 545.72 536.43

Table 3: Editing performance of our approach when compared to baseline MEMIT, AlphaEdit and MEMIT
regularization method such as PRUNE and RECT.

(a) Llama2-7B (b) Llama3-8B

Figure 5: Average downstream performance for during sequential editing with compared to baseline of MEMIT and
addition of MPES and Norm-Constraint (NC).

outputs <unk> and Llama3-8B loops on "!" and all
editing scores drop to zero. We also illustrate the
unbound growth of norm in Figures 26(a) and 26(b)
in Appendix L. These results support our analy-
sis in section 6.1 and re-emphasize that managing
norm-growth is essential for stable and successful
large-scale editing.

6.3 Combining MPES and Norm Constraint

In this section, we combine MPES, which inter-
venes in the gradient-descent step, with explicit
Frobenius norm constraint, which regularizes the
weight-update step in MEMIT. This combined
approach, MEMIT + MPES + NC, achieves the
strongest results across both editing score and
downstream metrics. As shown in Table 3, it con-
sistently improves the consistency of editing scores
between models, with the largest gains observed
on Llama3-8B. More importantly, Figures 5(a) and
5(b) show that the combination of the two regular-
ization methods beautifully preserves downstream
task performance with great effectiveness when
compared to other algorithms, even after 10,000
sequential edits.

These findings suggest that MPES and norm-
constraint address complementary failure modes

during large-scale sequential editing. Their combi-
nation provides regularization methods that enable
scalable knowledge editing while having minimal
loss of downstream task performance. The gen-
eralizability of these findings can be seen by the
compatibility of MPES with other knowledge edit-
ing methods, and the neccesity and importance of
managing norm-growth in both MEMIT and Al-
phaEdit.

7 Conclusion

In this paper, we show that existing knowledge
editing methods require appropriate regularization
when scaled sequentially to a large number of ed-
its. Specifically, we diagnose and address two core
failure modes in large-scale knowledge editing, (1)
over-optimization of intermediate activations and
(2) uncontrolled norm growth of edited matrices.
To mitigate these, we introduce stage-specific regu-
larization techniques in the form of “most-probable
earlys stopping” (MPES) and Frobenius Norm-
Constraint, which generalize to multiple knowl-
edge editing methods. With the combination of
both these regularization methods, we are able to
make 10,000 sequential edits while consistently
maintaining the downstream performance levels of

22660

the unedited model.

8 Limitation

Although our method significantly improves edit-
ing speed, scaling beyond 10,000 edits still remains
challenging due to compute constraints. Perform-
ing 10,000 sequential edits on Llama3-8B already
required a full day of GPU time on our hardware.
This is because running these edits is combined
with a lot of analysis, including downstream perfor-
mance evaluation and measuring editing accuracy
metrics on past edited facts. In contrast, baseline
methods such as MEMIT combined with LTI were
substantially slower, making larger-scale compar-
isons infeasible. Future work could explore more
efficient optimization techniques or hardware ac-
celeration to push beyond this limit.

Acknowledgements

This work was supported in part by the NVIDIA
Academic Grant Program award.

References
Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo

Giampiccolo. 2009. The fifth pascal recognizing
textual entailment challenge. TAC, 7:8.

Shaked Brody, Uri Alon, and Eran Yahav. 2023. On
the expressivity role of layernorm in transformers’
attention. Preprint, arXiv:2305.02582.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop,
pages 177–190. Springer.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. arXiv
preprint arXiv:2104.08164.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005).

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan
Ma, Xiang Wang, Xiangnan He, and Tat-seng Chua.
2024. Alphaedit: Null-space constrained knowl-
edge editing for language models. arXiv preprint
arXiv:2410.02355.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the

ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024a.
Model editing can hurt general abilities of large lan-
guage models. arXiv preprint arXiv:2401.04700.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024b.
Model editing harms general abilities of large lan-
guage models: Regularization to the rescue. Preprint,
arXiv:2401.04700.

Akshat Gupta, Sidharth Baskaran, and Gopala Anu-
manchipalli. 2024a. Rebuilding rome: Resolv-
ing model collapse during sequential model editing.
arXiv preprint arXiv:2403.07175.

Akshat Gupta, Anurag Rao, and Gopala Anu-
manchipalli. 2024b. Model editing at scale leads
to gradual and catastrophic forgetting. arXiv preprint
arXiv:2401.07453.

Akshat Gupta, Dev Sajnani, and Gopala Anu-
manchipalli. 2024c. A unified framework for model
editing. arXiv preprint arXiv:2403.14236.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment, volume 7, pages 785–794.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2024.
Aging with grace: Lifelong model editing with dis-
crete key-value adaptors. Advances in Neural Infor-
mation Processing Systems, 36.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2024. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models. Advances
in Neural Information Processing Systems, 36.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-
Hua Ling, and Jia-Chen Gu. 2024. Perturbation-
restrained sequential model editing. arXiv preprint
arXiv:2405.16821.

Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-
Hua Ling, and Jia-Chen Gu. 2025. Perturbation-
restrained sequential model editing. Preprint,
arXiv:2405.16821.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359–17372.

22661

https://arxiv.org/abs/2305.02582
https://arxiv.org/abs/2305.02582
https://arxiv.org/abs/2305.02582
https://arxiv.org/abs/2401.04700
https://arxiv.org/abs/2401.04700
https://arxiv.org/abs/2405.16821
https://arxiv.org/abs/2405.16821

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817–15831.
PMLR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learn-
ers. OpenAI blog, 1(8):9.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Lukas Thede, Karsten Roth, Matthias Bethge, Zeynep
Akata, and Tom Hartvigsen. 2025. Understanding
the limits of lifelong knowledge editing in llms. In
International Conference on Machine Learning.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models, 2023. URL
https://arxiv. org/abs/2307.09288.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Wanli Yang, Fei Sun, Xinyu Ma, Xun Liu, Dawei Yin,
and Xueqi Cheng. 2024. The butterfly effect of
model editing: Few edits can trigger large language
models collapse. arXiv preprint arXiv:2402.09656.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Junsang Yoon, Akshat Gupta, and Gopala Anu-
manchipalli. 2024. Is bigger edit batch size always
better?–an empirical study on model editing with
llama-3. arXiv preprint arXiv:2405.00664.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren,
Shu Wu, and Zhumin Chen. 2024a. Uncovering over-
fitting in large language model editing. Preprint,
arXiv:2410.07819.

Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren,
Shu Wu, and Zhumin Chen. 2024b. Uncovering
overfitting in large language model editing. arXiv
preprint arXiv:2410.07819.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, and 1 others.
2024c. A comprehensive study of knowledge edit-
ing for large language models. arXiv preprint
arXiv:2401.01286.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

A Knowledge Editing Metrics

A more detailed explanation of the knowledge edit-
ing metrics used in this paper is below:

1. Efficacy Score (ES): assesses whether an
edit has been successful. It is calculated as
the percentage of edits where P (new fact) >
P (old fact) when evaluated on paraphrases of
the query prompt.

2. Paraphrase Score (PS): measures the
model’s ability to generalize after an edit.
Specifically, it is the percentage of edits where
P (new fact) > P (old fact) for paraphrased
versions of the query prompt.

3. Neighborhood Score (NS): evaluates the lo-
cality of a model edit by determining whether
editing one fact affects other facts stored in
the model. It is the percentage of unaffected
facts in the neighborhood of the edited fact.

4. Generation Entropy (GE): measures the flu-
ency of the model’s text generation post-edit.
GE is computed as the weighted average of
bi-gram and tri-gram entropies in the text gen-
erated by the edited model. A lower GE in-
dicates repetitive text generation, a common
failure mode (Meng et al., 2022a; Gupta et al.,
2024b).

5. Score (S): introduced by (Meng et al., 2022a),
this composite metric combines edit success,
generalization, and locality into a single score.
It is calculated as the harmonic mean of the
Efficacy Score (ES), Paraphrase Score (PS),
and Neighborhood Score (NS).

22662

https://arxiv.org/abs/2410.07819
https://arxiv.org/abs/2410.07819

B Experimental Detail on Overfitting
During Knowledge Editing

For each method and model, we conducted three
different experiments:

1. Unedited fact recall probability - In this
case, we calculate the average probabil-
ity with which a fact is recalled by the
unedited/original model. These are the facts
that the model learnt through its pre-training.
The model is asked questions from the Coun-
terFact dataset, and we average the probability
with which the model predicts the fact cor-
rectly.

2. Edited fact probability without MPES - In this
case, we evaluate the probability with which
a model recalls a fact that is edited into the
model. This is the standard baseline case with-
out MPES.

3. Edited fact probability with LTI - Here we also
evaluate the average probability with which a
model recalls an edited fact. In this case we
used LTI during editing the fact.

4. Edited fact probability WITH MPES - Here
we also evaluate the average probability by
which a model recalls an edited fact. In this
case, MPES is used during editing the fact.

In each of the experiments we performed, we
passed average numbers over 1000 edited facts
with a batch size of 1. We use the CounterFact
dataset (Meng et al., 2022a) for all of these experi-
ments. We show the result in table 1. As we can see
from the table, the unedited fact token probability is
pretty low but once we run the edited fact the prob-
ability increases to almost 1 for some cases. MPES
brings the probability of fact recall for edited facts
down to a more natural value, which prevents the
overfitting problem that we present in this paper.

C GPT2-XL Result

In this section we show the result for GPT2-XL on
CounterFact dataset in Tables 4 and 5 and also the
downstream average downstream performance in
Figure 6. As we can see that the result for GPT2-
XL also improves the results as well.

METHOD EDIT

SCORE

PARAPHRASE

SCORE

NEIGHBORHOOD

SCORE

OVERALL

SCORE

GENERATION

ENTROPY

MEMIT 94.04 79.91 57.90 74.22 517.37
MEMIT + LTI 82.03 70.51 56.29 67.97 508.35
MEMIT + MPES 92.17 77.01 60.38 72.26 523.57

PRUNE 61.05 58.05 50.00 55.96 579.69
PRUNE + LTI 80.06 69.77 56.07 67.18 542.41
PRUNE + MPES 76.91 59.11 65.96 66.54 563.57

RECT 51.40 49.83 52.17 51.12 409.42
RECT + LTI 47.51 47.37 52.74 49.08 185.96
RECT + MPES 51.99 49.93 54.29 52.01 523.63

ALPHAEDIT 88.58 70.33 56.04 69.20 580.27
ALPHAEDIT + LTI 74.20 59.90 54.86 61.98 596.47
ALPHAEDIT + MPES 95.52 82.08 60.03 76.32 565.44

Table 4: Knowledge editing performance for GPT2-XL
on the CounterFact dataset for different algorithms in
combination with MPES.

METHOD EDIT

SCORE

PARAPHRASE

SCORE

NEIGHBORHOOD

SCORE

OVERALL

SCORE

GENERATION

ENTROPY

MEMIT 94.04 79.91 57.90 74.22 517.37
PRUNE 61.05 58.05 50.00 55.96 579.69
RECT 51.40 49.83 52.17 51.12 409.42
ALPHAEDIT 88.58 70.33 56.04 69.20 580.27
ALPHAEDIT + W/O NC 47.37 47.37 52.63 49.00 573.40
MEMIT + LTI + NC 84.15 73.12 54.91 68.54 554.47
MEMIT + NC 93.89 80.9 58.00 74.53 504.68
MEMIT + MPES + NC 93.99 79.79 59.98 75.29 517.44

Table 5: Knowledge editing performance for GPT2-XL
on the CounterFact dataset for different algorithms in
combination with MPES and NC.

(a) GPT2-XL downstream performance comparison with MPES

(b) GPT2-XL downstream performance comparison with
MPES + NC

Figure 6: Average downstream performance for during
sequential editing with compared to baseline of MEMIT
and addition of MPES and Norm-Constraint (NC).

22663

D Experimental Details on Activation
Norm Growth

To assess the impact of the activation vectors gen-
erated by the edited layers before and after editing,
we conducted an experiment where we edited our
model on a total of 10,000 facts using a batch size
of 100. Once the model was edited, we evalu-
ated the norm of the activations produced by each
layer by passing it through a Wikipedia dataset con-
taining 30,000 examples. For each example, the
model performed a one-word prediction task given
an input context, and we measured the norm of
the activation vectors produced from each layer in
the model. We repeated the same process for the
unedited model to compare the differences.

For each of the 30,000 examples, we calculated
the proportion of the activation norm at each layer.
We then plotted the mean and standard deviation of
these proportions for both the edited and unedited
models in figures 7 - 12. As shown in our results,
the proportion of activation norms for the layers
that were edited is significantly higher than their
neighboring layers. In fact, some of the edited
layers show the highest proportions overall. The
edited layers are highlighted with red color on the
x-axis.

D.1 Theoretical Analaysis of Growth of
Vector Norm in a Summation

We want to understand the effect of excessive in-
crease in the norm of a vector in a sum of vectors.
First, let’s start with an easy example where we
have a summation of two vectors, s = a+ b and
then there is excessive increase in the norm of the
first vector, that is s = ka + b where k is some
positive scalar. To evaluate the effect of this in-
crease, we analyses the tendencies of the sum s as
k increases.

We first want to understand the norm of ||s||. We
have the following :

||s||2 = ||ka+ b||2 = k2||a||2 + 2ka · b+ ||b||2

From this we can clearly see that as k increases
the first term quadratic in k will dominate. This
means that as k → ∞, ||s||2 → k2||a||2, or ||s|| →
k||a||, which is the norm of the new vector. Thus,
as the norm of one of the vectors in the summation
increases, the norm of the summation tends to the
norm of that vector with increasing norm.

Next, we look at the tendencies of the orienta-
tion of the summation as the norm of one vector
increases. Let θ be the angle between s and ka.
Then, the cosine of the angle between the sum-
mation and the new vector ka is as follows (note
that angle between s and ka is same as the angle
between s and a):

cos θ =
s · a

||s||||a|| =
(ka+ b) · a
||ka+ b||||a||

In the limit of k → ∞, ||s|| → k||a|| as shown
above. Thus, the cosine expression in the limit can
be written as:

cos θ
k→∞

=
(ka+ b) · a

k||a||2 =
ka · a
k||a||2 +

b · a
k||a||2

= 1 +
b · a
k||a||2

Thus, as k → ∞, the cosine of angle between
the sum and the vector tends to 1, or the angle
between the summation and the vector tends to
zero. This shows that as the norm of a vector in
the summation continues to increase, the both the
norm and the orientation of the summation tends
towards the vector with increasing norm.

Finally, the same proof can be generalied to a
summation of multiple vectors, where b represents
the sum of the remaining vectors.

22664

(a) Average Norm Proportion For Unedited GPT2-XL

(b) Average Norm Proportion for GPT2-XL using Alphaedit

(c) Average Norm Proportion for GPT2-XL using MEMIT

Figure 7: Activation norm growth for GPT2-XL.

(a) Average Norm Proportion For Unedited Llama2-7B

(b) Average Norm Proportion for Llama2-7B using Alphaedit

(c) Average Norm Proportion for Llama2-7B using MEMIT

Figure 8: Activation norm growth for Llama2-7B.

22665

(a) Average Norm Proportion For Unedited Llama3-8B

(b) Average Norm Proportion for Llama3-8B using Alphaedit

(c) Average Norm Proportion for Llama3-8B using MEMIT

Figure 9: Activation norm growth for Llama3-8B.

(a) Average Norm Proportion For GPT2-XL using MEMIT

(b) Average Norm Proportion for GPT2-XL using NC

(c) Average Norm Proportion for GPT2-XL using MPES + NC

Figure 10: Activation norm growth for GPT2-XL using
NC and MPES + NC.

22666

(a) Average Norm Proportion For Llama2-7B using MEMIT

(b) Average Norm Proportion for Llama2-7B using NC

(c) Average Norm Proportion for Llama2-7B using MPES +
NC

Figure 11: Activation norm growth for Llama2-7B using
NC and MPES + NC.

(a) Average Norm Proportion For Llama3-8B using MEMIT

(b) Average Norm Proportion for Llama3-8B using NC

(c) Average Norm Proportion for Llama3-8B using
MPES + NC

Figure 12: Activation norm growth for Llama3-8B using
NC and MPES and NC.

22667

E Internal Computations within
Decoder-Only LLMs

The internal computations happening within a
transformer-based decoder-only LLM is shown be-
low:

f l = LN1(hl−1) (6)

al = Att(f l) (7)

gl = LN2(hl−1 + al) (8)

ml = W l
projσ(W

l
fcg

l + blfc) + bproj (9)

hl = hl−1 + al +ml (10)

The intermediate hidden vector between each
layer, hl, is also sometimes referred to as the resid-
ual stream. LN1 represents the first LayerNorm
(or equivalently RMSNorm for Llama models) that
acts just before the attention module and LN2 repre-
sents the second LayerNorm just before the MLP
module. Att represents the self-attention module in
an LLMs whereas the action of a traditional MLP
module is written in terms of the individual weight
matrices (Wfc,Wproj). As the vectors computed
in the attention and MLP modules get added back
to the residual stream at each layer, the residual
stream represents a summation of an increasing
number of vectors as we go deeper into the model.

F Proof for MEMIT + MPES + NC
Objective

First we have that we can write the equa-
tion 4 in term of matrix form where we can
stack the ki0. Specifically, we define K0 =
[k10 |k20 | · · · |kP0], K1 = [k1e |k2e | · · · |kBe] and
V1 = [v1e |v2e | · · · |vBe]

column wise and instead the L2 norm will be-
come the frobenius norm and we have that

λp

∥∥∥ŴK0 −W0K0

∥∥∥
2

F
+
∥∥∥ŴK1 − V1

∥∥∥
2

F
+λn

∥∥∥Ŵ −W0

∥∥∥
2

F

We can differentiate this expression with respect to Ŵ and let
it equal to 0, we get the following

λpŴK0K
T
0 − λpW0K0K

T
0 + ŴK1K

T
1

−V1K
T
1 + λnŴ − λnW0 = 0

λpŴK0K
T
0 + ŴK1K

T
1 + λnŴ

= λpW0K0K
T
0 + V1K

T
1 + λnW0

Since Ŵ = W0 +∆ we have the following

λp(W0 +∆)K0K
T
0 + (W0 +∆)K1K

T
1 + λn(W0 +∆)

= λpW0K0K
T
0 + V1K

T
1 + λnW0

λpW0K0K
T
0 + λp∆K0K

T
0 +W0K1K

T
1 +∆K1K

T
1

+λn(W0 +∆) = λpW0K0K
T
0 + V1K

T
1 + λnW0

∆(λpK0K
T
0 +K1K

T
1 + λnI) = (V1 −W0K1)K

T
1

∆ = (V1 −W0K1)K
T
1 (λpK0K

T
0 +K1K

T
1 + λnI)

−1

G Editing Hyperparameters and
Hardware Details

Here we present the hyperparameters that we find and used
for the MPES, Norm constraint, and MPES + Norm constraint.
Tables 6, 7 and 8 show the hyperparameters for CounterFact
dataset and tables 9,10 and 11 show the hyperparameters for
the zsRE dataset. Additionally, there is one more hyperpa-
rameter that requires tuning, as stopping immediately when
the target token becomes the most probable may not always
be optimal. We define this hyperparameter as the probability
cutoff, which determines how many additional steps we take
before stopping. Specifically, a cutoff of +n means that we
continue for n more steps after the target token first becomes
the most probable.

All experiments in this paper are done on NVIDIA A6000,
including experiments where editing speeds of different meth-
ods are timed.

METHOD MODEL
λp

PROBABILITY

CUT OFF

ALPHAEDIT + MPES GPT2-XL 20,000 +1
LLAMA2-7B 15,000 +0
LLAMA3-8B 15,000 +0

MEMIT + MPES GPT2-XL 20,000 +2
LLAMA2-7B 15,000 +1
LLAMA3-8B 15,000 +2

Table 6: Hyperparameters for different algorithms with
MPES on CouterFact dataset

METHOD MODEL λp λn

NORM CONSTRAINT GPT2-XL 20,000 10
LLAMA2-7B 15,000 10
LLAMA3-8B 15,000 20

Table 7: Hyperparameters for Norm Constraint on
CouterFact dataset

METHOD MODEL λp λn
PROBABILITY

CUT OFF

MPES + NC GPT2-XL 20,000 10 +3
LLAMA2-7B 15,000 10 +2
LLAMA3-8B 15,000 20 +1

Table 8: Hyperparameters for MPES + Norm Constraint
on CouterFact dataset

H Norm growth Result
In this section we present the observation of norm growth
during editing for different methods (including Norm Con-
straint and MPES + Norm Constraint) with different models.
Figures 13 and 14 show the result for different methods for
GPT2-XL. Figures 15 and 16 show the result for Llama2-7B.
Lastly figures 17 and 18 show the result for Llama3-8B.

22668

METHOD MODEL λp λn

NORM CONSTRAINT GPT2-XL 20,000 40
LLAMA2-7B 15,000 10
LLAMA3-8B 15,000 20

Table 9: Hyperparameters for Norm Constraint on zsRE
dataset

METHOD MODEL
λp

PROBABILITY

CUT OFF

ALPHAEDIT + MPES GPT2-XL 20,000 +1
LLAMA2-7B 15,000 +1
LLAMA3-8B 15,000 +3

MEMIT + MPES GPT2-XL 20,000 +5
LLAMA2-7B 15,000 +1
LLAMA3-8B 15,000 +4

Table 10: Hyperparameters for different algorithms with
MPES on zsRE dataset

METHOD MODEL λp λn
PROBABILITY

CUT OFF

MPES + NC GPT2-XL 20,000 40 +4
LLAMA2-7B 15,000 10 +2
LLAMA3-8B 15,000 10 +3

Table 11: Hyperparameters for MEMIT+ Norm Con-
straint on zsRE dataset

(a) Norm growth of GPT2-
XL using Alphaedit

(b) Norm growth of GPT2-
XL using MEMIT

Figure 13: Norm growth of GPT2-XL using AlphaEdit
and MEMIT

(a) Norm growth of GPT2-
XL using NC

(b) Norm growth of GPT2-
XL using MPES + NC

Figure 14: Norm growth of GPT2-XL using NC and
MPES + NC

(a) Norm growth of Llama2-
7B using Alphaedit

(b) Norm growth of Llama2-
7B using MEMIT

Figure 15: Norm growth of Llama2-7B using AlphaEdit
and MEMIT

(a) Norm growth of Llama2-
7B using NC

(b) Norm growth of Llama2-
7B using MPES + NC

Figure 16: Norm growth of Llama2-7B using NC and
MPES + NC

(a) Norm growth of Llama3-
8B using Alphaedit

(b) Norm growth of Llama3-
8B using MEMIT

Figure 17: Norm growth of Llama3-8B across different
methods

(a) Norm growth of Llama3-
8B using NC

(b) Norm growth of Llama3-
8B using MPES + NC

Figure 18: Norm growth of Llama3-8B using NC and
MPES + NC

22669

I Editing Performance on zsRE dataset

Tables 12 - 14 show the editing scores for the sequential editing
experiments on zsRE.

MODEL METHOD EDIT

SCORE

PARAPHRASE

SCORE

NEIGHBORHOOD

SCORE

GPT2-XL ALPHAEDIT 42.1 33.61 14.61
ALPHAEDIT + MPES 54.99 43.18 18.40

MEMIT 74.60 61.77 22.40
MEMIT + MPES 75.09 61.58 23.37

MEMIT + NC 74.51 61.90 23.39
MEMIT + MPES + NC 74.46 61.79 23.41

Table 12: Editing performance for GPT2-XL on zsre
dataset

MODEL METHOD EDIT

SCORE

PARAPHRASE

SCORE

NEIGHBORHOOD

SCORE

LLAMA2-7B ALPHAEDIT 83.77 77.12 41.96
ALPHAEDIT + MPES 83.80 77.64 41.97

MEMIT 79.49 74.29 41.80
MEMIT + MPES 83.01 77.45 44.64

MEMIT + NC 88.73 84.05 47.98
MEMIT + MPES + NC 89.10 84.28 48.51

Table 13: Editing performance for Llama2-7B on zsre
dataset

MODEL METHOD EDIT

SCORE

PARAPHRASE

SCORE

NEIGHBORHOOD

SCORE

LLAMA3-8B ALPHAEDIT 89.27 82.19 45.23
ALPHAEDIT + MPES 93.54 85.93 47.32

MEMIT 96.45 90.30 48.91
MEMIT + MPES 96.85 90.76 47.34

MEMIT + NC 90.40 84.58 49.09
MEMIT + MPES + NC 93.15 86.19 49.81

Table 14: Editing performance for Llama3-8B on zsre
dataset

J Downstream Performance

Figures 19(a) - 20(b) show the result for the downstream
performance for GPT2-XL on both CounterFact and zsRE
datasets. Figures 21(a) - 22(b) show the result for Llama2-7B
on both datasets. Lastly, figures 23(a) - 24(b) show the result
for Llama3-8B on both datasets.

(a) AlphaEdit and MPES

(b) MEMIT, MPES, NC, MPES+NC

Figure 19: Downstream Performance for GPT2-XL us-
ing different editing methods with CounterFact dataset

(a) AlphaEdit and MPES

(b) MEMIT, MPES, NC, MPES+NC

Figure 20: Downstream Performance for GPT2-XL us-
ing different editing methods with zsRE dataset

(a) AlphaEdit and MPES

(b) MEMIT, MPES, NC, MPES+NC

Figure 21: Downstream Performance for Llama2-7B us-
ing different editing methods with CounterFact dataset

22670

(a) AlphaEdit and MPES

(b) MEMIT, MPES, NC, MPES+NC

Figure 22: Downstream Performance for Llama2-7B
using different editing methods with zsRE dataset

(a) AlphaEdit and MPES

(b) MEMIT, MPES, NC, MPES+NC

Figure 23: Downstream Performance for Llama3-8B us-
ing different editing methods with CounterFact dataset

(a) AlphaEdit and MPES

(b) MEMIT, MPES, NC, MPES+NC

Figure 24: Downstream Performance for Llama3-8B
using different editing methods with zsRE dataset

K Norm Decrease From MPES
In this section we want to highlight one observation that we
have is that while MPES does reduce the norm of the edited
layer shown in Figure 25 by quite a lot compared to just
MEMIT alone in Figure 1(a). But we still note that the norm
growth is still 3 times higher which is the reason why we think
that explicit norm control is still needed.

Figure 25: The figure shows the Norm-growth as func-
tion of number edits in MEMIT Llama3-8B with MPES.

L Unbound growth of norm in AlphaEdit
Here we provide the result if we remove the norm constraint
from the objective function of AlphaEdit. As we can see, once
we remove the norm constraint, the norm growth of AlphaEdit
just becomes unbound. Note that the reason why the x-axis
only goes up to 300 edits is that after that the norm value
becomes overflow in Python and it therefore it cannot be plot.

(a) AlphaEdit with Llama2-7B

(b) AlphaEdit with Llama3-8B

Figure 26: The figures show the unbound Norm-growth
as function of number edits in AlphaEdit

M Batch Size Effect
For this section we show the result for different batch size we
see that our method MPES + NC is still effective

22671

Method Edit Score Paraphrase Score Neighborhood Score Overall Score Generation Entropy

GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B

MEMIT 91.97 81.73 50.32 77.67 65.58 49.56 58.00 66.22 50.59 73.19 70.45 50.15 503.98 522.72 281.88
PRUNE 92.76 51.80 48.50 78.43 50.15 49.21 57.25 50.17 51.15 73.17 50.70 49.60 505.02 247.88 297.80
RECT 51.01 51.85 48.94 48.92 50.47 49.98 52.57 49.34 50.14 50.79 50.53 49.68 539.58 323.46 192.70
AlphaEdit 91.24 56.92 57.80 73.71 51.38 56.55 56.39 53.73 49.70 70.99 53.92 54.44 586.77 494.64 430.37
MEMIT + MPES + NC 92.57 90.79 89.71 78.19 79.76 80.48 60.36 59.70 57.63 74.70 74.44 73.31 510.81 555.18 539.91

Table 15: Editing performance of our approach when compared to baseline MEMIT, AlphaEdit and MEMIT
regularization method such as PRUNE and RECT using batchsize 10.

(a) Downstream Performance for GPT2-
XL with batch size 10

(b) Downstream Performance for
Llama2-7B with batch size 10

(c) Downstream Performance for
Llama3-8B with batch size 10

Figure 27: Different Downstream Performance for different models with batch size 10

Method Edit Score Paraphrase Score Neighborhood Score Overall Score Generation Entropy

GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B

MEMIT 94.04 81.04 49.68 79.91 64.67 49.29 57.90 60.95 51.31 74.22 67.86 50.08 517.37 442.59 373.48
PRUNE 61.05 70.80 49.38 58.05 62.11 49.63 50.00 51.86 51.09 55.96 60.60 50.02 579.69 280.83 340.22
RECT 51.40 82.42 63.17 49.83 66.84 56.92 52.17 67.39 52.89 51.12 71.54 57.36 409.42 549.35 588.39
AlphaEdit 88.58 61.10 72.67 70.33 55.86 63.44 56.04 53.75 52.90 69.20 56.74 61.95 580.27 540.92 465.81
MEMIT + MPES + NC 93.35 92.57 88.77 78.66 82.64 78.19 59.84 60.43 60.07 74.75 76.04 73.71 523.49 560.16 523.61

Table 16: Editing performance of our approach when compared to baseline MEMIT, AlphaEdit and MEMIT
regularization method such as PRUNE and RECT using batchsize 100.

(a) Downstream Performance for GPT2-
XL with batch size 100

(b) Downstream Performance for
Llama2-7B with batch size 100

(c) Downstream Performance for
Llama3-8B with batch size 100

Figure 28: Different Downstream Performance for different models with batch size 100

Method Edit Score Paraphrase Score Neighborhood Score Overall Score Generation Entropy

GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B GPT2-XL Llama2-7B Llama3-8B

MEMIT 93.55 93.94 74.45 81.31 76.83 61.25 59.66 67.64 57.33 75.47 78.03 63.56 558.93 577.69 457.97
PRUNE 92.42 88.58 62.83 81.27 70.43 54.11 58.79 64.64 52.29 74.75 73.25 56.05 548.27 527.05 461.71
RECT 87.49 87.35 57.36 71.94 60.86 52.31 64.9 73.67 64.34 73.64 72.37 57.59 603.91 566.67 215.44
AlphaEdit 92.61 96.11 91.29 76.78 87.27 76.88 56.09 61.63 68.95 72.03 78.76 78.00 587.19 588.09 593.35
MEMIT + MPES + NC 92.57 93.75 84.29 80.01 80.45 70.51 61.26 65.71 69.48 75.71 78.30 74.19 566.94 593.12 598.86

Table 17: Editing performance of our approach when compared to baseline MEMIT, AlphaEdit and MEMIT
regularization method such as PRUNE and RECT using batchsize 1000.

(a) Downstream Performance for GPT2-
XL with batch size 1000

(b) Downstream Performance for
Llama2-7B with batch size 1000

(c) Downstream Performance for
Llama3-8B with batch size 1000

Figure 29: Different Downstream Performance for different models with batch size 1000

22672

N Evaluation of Downstream
Performance

In this paper, we assess model degradation by measuring
downstream performance at regular intervals of edits. Our
evaluation suite is wide-ranging and consists of the following
6 tasks – sentiment analysis (SST2) (Socher et al., 2013),
paraphrase detection (MRPC) (Dolan and Brockett, 2005),
natural language inference (NLI, RTE) (Dagan et al., 2005;
Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009), linguistic acceptability classification (CoLA) (Warstadt
et al., 2019), and massive multitask language understanding
(MMLU) (Hendrycks et al., 2020).

For each task, we created a subset of 100 examples bal-
anced across all multiple-choice options. The models were
evaluated on the tasks above, and the accuracy score was mea-
sured every 1000 edits. In order to improve the models’ initial
performance and achieve meaningful signals, we provided
few-shot examples. The few-shot prompt templates used for
each task are shown in Figures 30-35.

Review : an exhilarating futuristic thriller-noir , minority report
twists the best of technology around a gripping story , delivering a
riveting , pulse intensifying escapist adventure of the first order
Sentiment : positive

Review : try as i may , i ca n’t think of a single good reason
to see this movie , even though everyone in my group extemporane-
ously shouted , ‘ thank you ! ’
Sentiment : negative

Review : the film ’s performances are thrilling .
Sentiment : positive

Review : vera ’s technical prowess ends up selling his film
short ; he smoothes over hard truths even as he uncovers them .
Sentiment : negative

Review : [input]
Sentiment :

Figure 30: Few shot prompt template used for SST-2

Question: Which expression is equivalent to 4 x 9?
(A) (4x 4) + (4x5)
(B) (4+4) x (4+5)
(C) (4+4)+(4+5)
(D) (4x 4) x (4x5)
Answer: A

Question: A marketing researcher is conducting a survey in
a large selling area by contacting a small group of people that is
representative of all people in that area. The small, representative
group is known as the
(A) population
(B) sample
(C) stratification
(D) universe
Answer: B

Question: A research participant eats half a bowl of M&M
candies, and then stops eating. How would a motivation researcher
using drive reduction theory explain this participant’s behavior?
(A) Humans are instinctively driven to eat sugar and fat when
presented to them.
(B) The Yerkes-Dodson law explains that people will eat food when
presented to them, but usually in moderate amounts in order to avoid
being perceived as selfish.
(C) The primary drive of hunger motivated the person to eat, and
then stop when she/he regained homeostasis.
(D) The research participant was satisfying the second step on the
hierarchy of needs: Food needs.
Answer: C

Question: In a deductively valid argument
(A) If all the premises are true, the conclusion must be true
(B) The conclusion has already been stated in its premises
(C) If all the premises are true, the conclusion may still be false
(D) Both A and B
Answer: D

Question: [input]
Answer:

Figure 31: Few shot prompt template used for MMLU

22673

Are the sentences paraphrases of each other.
Sentence 1: Federal regulators have turned from sour to sweet on a
proposed $2.8 billion merger of ice cream giants Nestle Holdings
Inc. and Dreyer ’s Grand Ice Cream Inc .
Sentence 2: Federal regulators have changed their minds on a
proposed $2.8 billion merger of ice cream giants Nestle Holdings
and Dreyer ’s Grand Ice Cream .
Answer: Yes

Are the sentences paraphrases of each other.
Sentence 1: In the year-ago quarter , the steelmaker recorded a profit
of $16.2 million , or 15 cents per share , on sales of $1.14 billion .
Sentence 2: In the second quarter last year , AK Steel reported a
profit of $16.2 million , or 15 cents a share .
Answer: No

Are the sentences paraphrases of each other.
Sentence 1: He added : “I ’ve never heard of more reprehensiblebe-
haviour by a doctor .
Sentence 2: The Harrisons ’ lawyer Paul LiCalsi said : “ I ’ ve never
heard of more reprehensible behaviour by a doctor .
Answer: Yes

Are the sentences paraphrases of each other.
Sentence 1: While dioxin levels in the environment were up last year
, they have dropped by 75 percent since the 1970s , said Caswell .
Sentence 2: The Institute said dioxin levels in the environment have
fallen by as much as 76 percent since the 1970s .
Answer: No

Are the sentences paraphrases of each other.
Sentence 1: [input 1]
Sentence 2: [input 2]
Answer:

Figure 32: Few shot prompt template used for MRPC

Is this sentence linguistically acceptable?
Sentence: The evidence assembled by the prosecution convinced the
jury.
Answer: Yes

Is this sentence linguistically acceptable?
Sentence: I live at the place where Route 150 crosses the Hudson
River and my dad lives at it too.
Answer: No

Is this sentence linguistically acceptable?
Sentence: The government’s imposition of a fine.
Answer: Yes

Is this sentence linguistically acceptable?
Sentence: Sam gave the ball out of the basket.
Answer: No

Is this sentence linguistically acceptable?
Sentence: [input]
Answer:

Figure 33: Few shot prompt template used for RTE

The town is also home to the Dalai Lama and to more than 10,000
Tibetans living in exile.
Question: The Dalai Lama has been living in exile since 10,000.
True or False?
Answer: True

P. Prayong, who like Kevala belongs to the Theravada sect
of Buddhism, chose India over other Buddhist majority nations as it
is the birthplace of Gautama Buddha.
Question: P. Prayong is a member of Theravada. True or False?
Answer: False

The medical student accused of murdering an erotic masseuse he
met on Craigslist is drowning in more than $100,000 in student loan
debt and is so broke he can’t afford to pay an attorney, according
to court papers. Philip Markoff, a 23-year-old suspended Boston
University medical school student, owes $130,000 in student loans
and does not get money from his parents, leaving him to lean on
a taxpayer-funded attorney for his defense, according to a court
document in Boston Municipal Court that labels him indigent.
Markoff graduated from the State University of New York-Albany
and was a second-year medical student at BU.
Question: The medical student Philip Markoff was engaged. True or
False?
Answer: True

Traditionally, the Brahui of the Raisani tribe are in charge of
the law and order situation through the Pass area. This tribe is still
living in present day Balochistan in Pakistan.
Question: The Raisani tribe resides in Pakistan. True or False?
Answer: False

The latest attacks targeted the U-S embassy and a top prose-
cutor’s office in the Uzbek capital.
Question: [input]. True or False?
Answer:

Figure 34: Few shot prompt template used for CoLA

22674

Turkey is unlikely to become involved in, or allow U.S. forces to
use Turkish territory in a Middle East war that does not threaten her
territory directly. entails the U.S. to use Turkish military bases.
True or False?
Answer: False

Brooklyn Borough Hall featured a Who’s Who in New York’s literary
community during the second annual Brooklyn Book Festival.
According to Brooklyn Borough President Marty Markowitz, the
borough’s zip code 11215 boasts more authors than anywhere
else in the country. It appeared to be the case on Sunday. More
than 100 authors were featured at the day-long event, including
The Basketball Diaries writer Jim Carroll, former M*A*S*H star
Mike Farrell, author and illustrator Mo Willems, Jack Kerouac’s
sometime lover and National Book Critics Circle Award recipient
Joyce Johnson and PEN American Center President Francine Prose.
entails the The Brooklyn Book Festival is held in Brooklyn Borough
every year.
True or False?
Answer: True

NASA’s Saturn exploration spacecraft, Cassini , has discov-
ered an atmosphere about the moon Enceladus . This is the first
such discovery by Cassini, other than Titan , of the presence of an
atmosphere around a Saturn moon. entails the Titan is the fifteenth
of Saturn’s known satellites.
True or False?
Answer: False

Dr. Eric Goosby, a pioneer in the fight against AIDS, is
President Obama’s choice to run the American effort to combat
the disease globally, the White House announced Monday. The
President’s Emergency Plan For AIDS Relief, known as Pepfar,
was championed by President George W. Bush. It is expected to
spend $48 billion over the next five years and is credited with
markedly reducing the disease’s death rate. Its prevention policy has
been controversial because of its emphasis on socially conservative
methods. With a new administration and a Democratic majority
in the House, organizations seeking prevention choices beyond
abstinence and fidelity — including a renewed commitment to
distributing condoms — are eager to try to rewrite the guidelines.
entails the Pepfar is committed to fighting AIDS.
True or False?
Answer: True

[input]
True or False?
Answer:

Figure 35: Few shot prompt template used for NLI

22675

