@inproceedings{lutz-etal-2025-prompt,
title = "The Prompt Makes the Person(a): A Systematic Evaluation of Sociodemographic Persona Prompting for Large Language Models",
author = "Lutz, Marlene and
Sen, Indira and
Ahnert, Georg and
Rogers, Elisa and
Strohmaier, Markus",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.1261/",
pages = "23212--23237",
ISBN = "979-8-89176-335-7",
abstract = "Persona prompting is increasingly used in large language models (LLMs) to simulate views of various sociodemographic groups. However, how a persona prompt is formulated can significantly affect outcomes, raising concerns about the fidelity of such simulations. Using five open-source LLMs, we systematically examine how different persona prompt strategies, specifically role adoption formats and demographic priming strategies, influence LLM simulations across 15 intersectional demographic groups in both open- and closed-ended tasks. Our findings show that LLMs struggle to simulate marginalized groups but that the choice of demographic priming and role adoption strategy significantly impacts their portrayal. Specifically, we find that prompting in an interview-style format and name-based priming can help reduce stereotyping and improve alignment. Surprisingly, smaller models like OLMo-2-7B outperform larger ones such as Llama-3.3-70B.Our findings offer actionable guidance for designing sociodemographic persona prompts in LLM-based simulation studies."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lutz-etal-2025-prompt">
<titleInfo>
<title>The Prompt Makes the Person(a): A Systematic Evaluation of Sociodemographic Persona Prompting for Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marlene</namePart>
<namePart type="family">Lutz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Indira</namePart>
<namePart type="family">Sen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Georg</namePart>
<namePart type="family">Ahnert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Markus</namePart>
<namePart type="family">Strohmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Persona prompting is increasingly used in large language models (LLMs) to simulate views of various sociodemographic groups. However, how a persona prompt is formulated can significantly affect outcomes, raising concerns about the fidelity of such simulations. Using five open-source LLMs, we systematically examine how different persona prompt strategies, specifically role adoption formats and demographic priming strategies, influence LLM simulations across 15 intersectional demographic groups in both open- and closed-ended tasks. Our findings show that LLMs struggle to simulate marginalized groups but that the choice of demographic priming and role adoption strategy significantly impacts their portrayal. Specifically, we find that prompting in an interview-style format and name-based priming can help reduce stereotyping and improve alignment. Surprisingly, smaller models like OLMo-2-7B outperform larger ones such as Llama-3.3-70B.Our findings offer actionable guidance for designing sociodemographic persona prompts in LLM-based simulation studies.</abstract>
<identifier type="citekey">lutz-etal-2025-prompt</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.1261/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>23212</start>
<end>23237</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Prompt Makes the Person(a): A Systematic Evaluation of Sociodemographic Persona Prompting for Large Language Models
%A Lutz, Marlene
%A Sen, Indira
%A Ahnert, Georg
%A Rogers, Elisa
%A Strohmaier, Markus
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F lutz-etal-2025-prompt
%X Persona prompting is increasingly used in large language models (LLMs) to simulate views of various sociodemographic groups. However, how a persona prompt is formulated can significantly affect outcomes, raising concerns about the fidelity of such simulations. Using five open-source LLMs, we systematically examine how different persona prompt strategies, specifically role adoption formats and demographic priming strategies, influence LLM simulations across 15 intersectional demographic groups in both open- and closed-ended tasks. Our findings show that LLMs struggle to simulate marginalized groups but that the choice of demographic priming and role adoption strategy significantly impacts their portrayal. Specifically, we find that prompting in an interview-style format and name-based priming can help reduce stereotyping and improve alignment. Surprisingly, smaller models like OLMo-2-7B outperform larger ones such as Llama-3.3-70B.Our findings offer actionable guidance for designing sociodemographic persona prompts in LLM-based simulation studies.
%U https://aclanthology.org/2025.findings-emnlp.1261/
%P 23212-23237
Markdown (Informal)
[The Prompt Makes the Person(a): A Systematic Evaluation of Sociodemographic Persona Prompting for Large Language Models](https://aclanthology.org/2025.findings-emnlp.1261/) (Lutz et al., Findings 2025)
ACL