
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 23592–23605
November 4-9, 2025 ©2025 Association for Computational Linguistics

Exploration-Driven Reinforcement Learning for Expert Routing
Improvement in Mixture-of-Experts Language Models

Gyunyeop Kim Sangwoo Kang*

Department of Computing, Gachon University
{gyop0817, swkang}@gachon.ac.kr

Abstract

The performance of MoE-based LLMs depends
on the router’s ability to select suitable ex-
perts; however, the router is typically not explic-
itly supervised to acquire this routing ability.
We propose Exploration-Driven Reinforcement
Learning (ERL), which explicitly optimizes
the router by exploration of alternative rout-
ing paths. For every input, ERL evaluates by (i)
the original routing path and (ii) paths in which
an α-fraction of routing decisions is randomly
perturbed, and treats their performance gap as
an advantage signal in a reinforcement learn-
ing. Moreover, MoE-ERLwPL mitigates the
risk of performance collapse caused by routing
reinforcement learning–induced expert over-
specialization by intentionally enforcing over-
lap in experts’ knowledge. Without adding pa-
rameters or external reward models, our method
improves summarization (SAMSum, XSUM),
question answering (SQuAD), and language
modeling (WikiText-2), and raises routing qual-
ity, delivering up to 8.9 × higher MRR than
baselines over 100 perturbed routing paths.
Code is available at our github1.

1 Introduction

The rapid advancement of large language mod-
els (LLMs) has significantly improved artificial
intelligence, with conversational systems such as
ChatGPT (OpenAI, 2022) have already brought
significant changes to our daily lives (Bommasani
and et al, 2021). Empirical studies show scaling
training data and parameters to billions—even
trillions—consistently leads to improvements in
AI performance. (Kaplan et al., 2020; Henighan
et al., 2020). However, increasing model size in-
curs higher memory consumption and computa-
tional costs. To alleviate this, recent LLMs like
DeepseekMoE (Dai et al., 2024) and Mixtral (Jiang
et al., 2024) have adopted the Mixture-of-Experts

*Corresponding author.
1https://github.com/KimGyunYeop/MoE-ERL

Method α SAMSum XSUM

MoE 0 26.68 20.05
+random routing 0.25 26.21 18.49
+random routing 0.50 25.52 16.02
+random routing 0.75 23.39 12.07
+random routing 1.00 18.85 06.80

Table 1: Summarization performance(ROUGE-2) on
SAMSum and XSUM when an α fraction of the MoE
layer’s routing decisions are ignored and tokens are
assigned to random experts in a Switch Transformer-
base-8.

(MoE) architecture (Shazeer et al., 2017). MoE dy-
namically activates only a subset of experts per in-
put, enabling conditional sparse computation. This
approach maintains large model capacity while sig-
nificantly improving computational efficiency (Liu
et al., 2025; Huang et al., 2024a).

The Switch Transformer (Fedus et al., 2022)
extends the standard Transformer (Vaswani et al.,
2017) by applying a Mixture-of-Experts architec-
ture. Each feed-forward network (FFN) layer is
split into multiple experts, and a learned router
selects the most suitable expert for each token. Dur-
ing training, it combines the language modeling
loss with a z-loss and an auxiliary load-balancing
loss to encourage balanced expert utilization. De-
spite providing no explicit supervision for expert
selection, most previous MoE studies nonetheless
rest on the unvalidated assumption that jointly min-
imizing these three losses is sufficient for the router
to implicitly learn optimal routing decisions. How-
ever, MoE performance heavily depends on the
router’s ability to accurately select appropriate
experts. Our experiments (Table 1) confirm that
randomly perturbing routing decisions markedly
degrades performance, highlighting MoE models’
vulnerability to suboptimal expert selection. Al-
though previous approaches have attempted to im-

23592

prove routing quality, they mainly rely on heuris-
tics, additional side information, or auxiliary mod-
els rather than directly optimizing the routing prob-
ability, as detailed in Appendix D.

In this work, we explicitly optimize the router
using reinforcement learning to select optimal ex-
perts at each token and layer. Specifically, we
encourage the MoE-based LLM to explore mul-
tiple alternative routing paths and compute an
advantage signal based on how each path im-
pacts prediction performance. Using this advan-
tage, we directly train the existing router to enhance
its routing accuracy. Crucially, our method intro-
duces no additional parameters or external mod-
els, achieving improved MoE-based LLM perfor-
mance solely through more suitable expert selec-
tion. Furthermore, because we leave the standard
single-layer MLP router—adopted by most MoE-
based LLMs—completely unchanged in structure
and mechanism, our approach can be seamlessly in-
tegrated into most pretrained MoE models without
any architectural modification.

Many prior studies applying reinforcement learn-
ing to LLMs (Ryu et al., 2024; Böhm et al., 2019;
Ouyang et al., 2022) typically train separate reward
models or rely on external evaluation sources such
as APIs or human judgments, thereby increasing
model size and pipeline complexity. In contrast, our
approach computes reward signals directly from the
router’s own prediction probabilities, allowing the
model to autonomously assess performance and ex-
plore alternative routing paths without introducing
additional modules or external evaluators.

2 Background

2.1 Mixture-of-Experts

Mixture-of-Experts (MoE) (Fedus et al., 2022)
arranges multiple expert modules in parallel to
enhance computational efficiency and scalability.
Each MoE layer is composed of N parallel experts
E1, E2, . . . , EN , and, depending on the input, acti-
vates only a sparse subset expert. A router G selects
the suitable experts for each input token. Formally,
the output of an MoE layer is defined as:

MoE(h) =
N∑

i=1

Gi(h)Ei(h) (1)

Here, h ∈ Rd is the input vector to the MoE
layer, and Gi(h) denotes the routing weight as-
signed by the router to the i-th expert Ei. The router

activates only the top-K experts by retaining their
weights and sets the others to zero. Formally, Gi(h)
is computed as follows:

P = Softmax(Wr · h) (2)

Gi(h) =

{
Pi∑

j∈topK(P) Pj
i ∈ topK(P)

0 otherwise.
(3)

Here, P ∈ RN is the vector of expert activa-
tion probabilities, computed by projecting input h
through a learnable matrix Wr ∈ RN×d.

By leveraging conditional sparse computation,
MoE models significantly increase model capacity
while maintaining active parameters and computa-
tions per token comparable to dense models. Typ-
ically, Transformer feed-forward network (FFN)
layers are replaced with MoE layers to utilize this
benefit.

2.2 Clipped Surrogate Objective of RL
Policy gradient–based (Sutton et al., 1999) rein-
forcement learning updates the policy πθ to maxi-
mize expected rewards through agent–environment
interactions, guided by the advantage signal (Sut-
ton and Barto, 2018). The advantage—defined
as the reward benefit of an action over a base-
line—quantifies how much better or worse an ac-
tion performed, so positive advantages are rein-
forced and negative ones discouraged of action.

In this work, we utilize the Clipped Surro-
gate Objective from Proximal Policy Optimiza-
tion (PPO)(Schulman et al., 2017). PPO simplifies
computation while retaining the stability of Trust
Region Policy Optimization (TRPO)(Schulman
et al., 2015). The Clipped Surrogate Objective con-
strains policy updates to prevent excessive changes,
thus ensuring stable and incremental learning. This
technique is also employed in many PPO vari-
ants, such as Group Relative Policy Optimization
(GRPO) (Zhihong Shao, 2024).

The reinforcement learning objective in this
work aims to maximize the Clipped Surrogate Ob-
jective Oclip, defined as follows:

Oclip(θ) =

Ec [min (rc(θ)Ac, clip(rc(θ), 1− ϵ, 1 + ϵ)Ac)] ,
(4)

rc(θ) =
πθ(ac|sc)
πθold(ac|sc)

(5)

23593

Figure 1: The overall procedure of Exploration-Driven Reinforcement Learning

Here, πθ(ac | sc) denotes the action probability
under the current policy, and πθold(ac | sc) repre-
sents the corresponding probability under the previ-
ous policy, used to stabilize updates. The clipping
parameter ϵ bounds the change in the probability
ratio to prevent abrupt policy shifts. Ac is the advan-
tage estimate, encouraging the policy to increase
πθ(ac | sc) when Ac > 0 and decrease it when
Ac < 0.

3 Methodology

Many MoE-based LLMs assume that the router will
autonomously learn to select suitable experts. How-
ever, existing methods do not explicitly train the
router for optimality, which makes it challenging
to reliably achieve optimal expert selection. So, We
propose Exploration-Driven Reinforcement Learn-
ing (ERL), which explicitly trains the router toward
improved expert selection. ERL explores perturbed
(alternative) routing paths and compares their per-
formance against the original path. If an perturbed
routing path yields better predictions, the router is
reinforced perturbed routing decision; otherwise,
the original routing is strengthened. The overall
reinforcement learning procedure is illustrated in
Figure 1.

3.1 Original vs. Perturbed Forward

Given an input sequence X = {x1, x2, . . . , xt},
the model explores multiple expert routing paths
via two types of forward .

Original forward: At each MoE layer, we select
the top-K experts based on the original router’s
probability distribution. It perform the standard
MoE computation described in Section 2.1.

Perturbed forward: To encourage exploration,

we deliberately disrupt a subset of routing deci-
sions. Given a sequence of length t passing through
l MoE Transformer blocks, a total of t× l routing
decisions occur. We randomly select an α fraction
(0 < α ≤ 1) of these routing decisions and replace
them with perturbed routings. In perturbed rout-
ing, the router’s original decisions are overridden,
and experts are selected randomly. This perturb en-
courages the model to explore alternative expert
routes.

For clarity, we denote the standard MoE layer
computation as MoE(h) and the perturbed MoE
layer as MoEp(h). The computation of a single
perturbed MoE layer is defined as follows:

MoEp(h) =
N∑

i=1

Gp
i (h)Ei(h) (6)

ppi ∼ Uniform(0, 1), i = 1, 2, .., N (7)

P p = (pp1, p
p
2, ..., p

p
N) (8)

Gp
i (h) =

{
1
K i ∈ topK(P p)

0 otherwise.
(9)

To implement random selection, we assign each
expert a score sampled from a uniform distri-
bution and activate the top-K experts based on
these scores. Here, P p ∈ RN denotes the vec-
tor of random scores assigned to each expert, and
Gp(h) ∈ RN represents the weight for each expert,
uniformly set based solely on the K, independent
of the input h or the router’s output.

In this study, for each input sequence X , we
perform one original forward and m distinct per-

23594

turbed forward, each with independently applied
perturbations.

3.2 Advantage Strategy

For each perturbed forward, we compute an ad-
vantage, the primary reinforcement learning signal
indicating the relative benefit of an action. In our
setting, the action corresponds to a perturbed rout-
ing decision, and the policy is the router G. The
advantage is computed independently at each token
generation step. If the perturbed forward assigns
a higher probability to the correct token predic-
tion than the original forward, the advantage is set
to +1; if lower, −1; and 0 if equal. Formally, the
advantage Ãj for the j-th token is defined as:

ãj = LMp(xj |x<j)− LMo(xj |x<j) (10)

Ãj =





1 ãj > 0

0 ãj = 0

−1 ãj < 0

(11)

In these equation, LMo(xj | x<j) denotes the
probability assigned to the correct token xj by the
original forward , while LMp(xj | x<j) is the cor-
responding probability produced by the perturbed
forward.

3.3 Training loss

We define the reinforcement learning loss for the
perturbed forward by taking the negative of the
objective in Section 3.2, converting it into a mini-
mization problem.

The loss is designed to adjust the routing proba-
bilities Gi(i.e., it same as adjust Pi; see Eq.2 and
Eq.3) of randomly selected experts in each per-
turbed MoE layer based on their advantage values
Ã—increasing them when Ã > 0 and decreasing
them when Ã < 0. Formally, the reinforcement
learning loss function f(G, Ã) for a single per-
turbed routing decisions is defined as:

ri =
Gi(h)

Gold
i (h)

(12)

f(G, Ã) =

− 1

K

∑

i∈topK(Pp)

min
(
ri Ã, clip(ri, 1− ε, 1 + ε) Ã

)
.

(13)

Here, Gold
i (h) denotes the expert selection prob-

ability under the previous policy. By directly incor-
porating the advantage signal to action policy, the
loss function explicitly optimizes the router toward
selecting more suitable experts.

A single perturbed forward involves t× l rout-
ing decisions, of which α × t × l are perturbed.
An advantage is independently assigned to each
perturbed routing decision. Specifically, if a per-
turbed routing decision occurs at the k-th Trans-
former block during prediction of the j-th token,
only the corresponding Ãj is used. Thus, each per-
turbed routing decision has its own reinforcement
learning loss function f(Gj,k, Ãj). The overall re-
inforcement learning loss LRL is computed as the
average loss across all perturbed routing decisions.

LRL =
1

|S|
∑

j,k∈S
f(Gj,k, Ãj) (14)

Lp = LRL (15)

Here, S = {(j1, k1), . . . , (jM , kM)} denotes
the set of perturbed routing positions, where jm ∈
[1, l], km ∈ [1, t], and |S| = M ≈ αlt. Gj,k de-
notes the router at the k-th Transformer block dur-
ing generation of the j-th token. Using only the
advantage Ãj corresponding to the exact perturba-
tion step yields a finer-grained credit assignment
and lowers the variance of the RL updates.

The training loss for the original forward , Lo,
follows the Switch Transformer formulation(Fedus
et al., 2022), comprising the LM loss, z-loss, and
auxiliary load-balancing loss. We combine this
with the perturbed forward loss Lo, scaled by a
weighting factor δ. The overall training loss is:

L = Lo + δLp (16)

3.4 LM Loss of Perturbed Forward

As reinforcement learning progresses, the router
converges to selecting the “most suitable” expert
for each input. Although this promotes expert spe-
cialization on specific information types, during
training the router may consistently select the same
expert for all inputs requiring a given information
type I . While such specialization allows each ex-
pert to specialize in its domain, it also significantly
reduces knowledge overlap among experts. Con-
sequently, if the router mistakenly selects an in-
appropriate expert, there is an increased risk that

23595

the expert will fail to adequately process the in-
put. We refer to this vulnerability as the “expert
misclassification risk” of routing.

To address the expert misclassification risk, we
incorporate an auxiliary loss—the language model-
ing loss of perturbed forward (LpLM). This encour-
ages randomly activated experts to learn similar
information, thereby preserving a degree of knowl-
edge overlap. As a result, even when a suboptimal
expert is selected, performance degradation can be
alleviated. The combined perturbed forward loss in
this setting is defined as:

Lp
wPL = LRL + LpLM (17)

This auxiliary loss explicitly promotes knowl-
edge overlap by encouraging different experts to
learn from the same data. While various mecha-
nisms could be used to induce such overlap, we
adopt this simple strategy to clearly assess whether
reinforcement learning enables the router to dis-
cover optimal routing path.

4 Experiment

4.1 Task and Datasets
Summarization. SAMSum (Gliwa et al., 2019)
consists of 15k dialogue–summary pairs from
everyday conversations. XSUM (Narayan et al.,
2018) contains approximately 227k BBC news ar-
ticles paired with single-sentence summaries.

Question Answering. SQuAD (Rajpurkar et al.,
2016) is an extractive QA dataset comprising ap-
proximately 98k question–answer pairs derived
from Wikipedia passages.

Language Modeling. We evaluate language
modeling performance using WikiText-2 (Merity
et al., 2016), approximately 2.5M token corpus
commonly used for small- to medium-scale mod-
els.

These three tasks enable us to assess the gener-
alizability and effectiveness of our reinforcement
learning method across diverse settings. Dataset
statistics are provided in Appendix A.

4.2 Baselines
In this work, we compare with following three
baseline configurations: (1) Dense. A fully dense
model with MoE disabled; only a single expert is
used, and no sparse computation is performed. (2)
MoE. A standard MoE model with routing. We
adopt the Switch-base-8 configuration. (3) MoE-
share. A shared-expert variant based on Deepseek-

MoE (Dai et al., 2024), where one shared expert is
activated for all inputs with router-selected expert.

Summarization and QA Baselines. For summa-
rization and QA tasks, all baselines are fine-tuned
using pretrained Switch-base-8(Fedus et al., 2022).

MoE. The original Switch Transformer without
modification. Dense. Sparse computation is dis-
abled by retaining only a single expert and remov-
ing the router. MoE-share. We replicate one expert
from the MoE configuration to create a shared ex-
pert that is activated for every input.

Language Modeling Baselines. For language
modeling tasks, which use decoder-only architec-
tures, we construct three baselines based on pre-
trained GPT-2 (Radford et al., 2019), following the
Hyper-MoE setup (Zhao et al., 2024):

Dense. The original GPT-2 without modification.
MoE. The GPT-2 FFN layer is replicated to form
eight parallel experts, with a initialized router en-
abling sparse computation. MoE-share. Augment
the MoE configuration with a shared expert created
by replicating the FFN layer.

To ensure a fair comparison, we use the top-
1 routing configuration from switch-base-8 and
match all other MoE hyperparameters (number of
experts, expert capacity, etch) to it. Since deep
learning performance also depends on hyperpa-
rameters, model size and experiment enviorments,
we re-evaluate both the baseline and our proposed
method in our experiments.

4.3 Experiment Setting

For summarization and QA tasks, we used iden-
tical hyperparameters across all experiments. For
language modeling, a few hyperparameters were
adjusted. All hyperparameters were selected via
greedy search on SAMSum and WikiText-2, and
applied consistently across datasets. Reported re-
sults reflect the best performance among epochs 5,
10, and 15.

To address training instability when adapting
GPT-2 to an MoE setting, we initialized router pa-
rameters from N (0, 0.1), following Fedus et al.
(2022). Additional implementation details are pro-
vided in Appendix B.

We apply our proposed method to MoE baseline
configuration and reinforcement the model accord-
ingly. Since advantage computation depends on
next-token prediction probabilities, all experiments
and analyses in this paper focus exclusively on the

23596

Model #Exp. #Act. Exp.
SAMSum XSUM

R-1 (↑) R-2 (↑) R-L (↑) R-1 (↑) R-2 (↑) R-L (↑)

Dense – – 51.85 26.61 42.61 42.98 19.89 34.96
MoE 8 1 51.70 26.68 42.89 42.97 20.05 35.00
MoE-share 9 2 51.64 26.65 42.92 42.90 19.93 34.87

HyperMoE (2024) 8 1 51.50 26.84 43.01 - 19.67* -

MoE-ERL 8 1 51.98 26.94 43.11 43.10 20.13 35.05
MoE-ERLwPL 8 1 52.29 27.20 43.47 43.26 20.25 35.27

Table 2: Downstream task performance on the SAMSum and XSUM (ROUGE scores (%); higher is better). Within
each column, the bold numbers denote the best result and the underlined numbers denote the second-best. * denotes
scores reported in the original paper.

Model SQuAD WIKI2

EM (↑) F1 (↑) ppl. (↓)

Dense 83.11 90.44 20.53
MoE 82.80 90.37 21.20
MoE-share 83.03 90.31 20.70

HyperMoE(2024) 84.6* - 21.49*
SimSMoE(2025) 82.80* - -

MoE-ERL 83.16 90.50 20.53
MoE-ERLwPL 83.26 90.63 20.44

Table 3: Downstream task performance on SQuAD (Ex-
act Match & F1 score; higher is better) and WikiText-2
perplexity (lower is better).

decoder. We refer to our proposed method as MoE-
ERL, and its variant incorporating the perturbed
forward LM loss (Section 3.4) as MoE-ERLwPL.

5 Main Results

Tables 2–3 indicate that MoE-ERL and
MoE-ERLwPL outperform conventional baselines
on the majority of datasets.

Summarization. On both SAMSum and XSUM,
MoE-ERL outperforms all baselines across
ROUGE metrics. In ROUGE-2, it improves over
the strongest baseline by 0.26 (SAMSum) and 0.08
(XSUM). The variant MoE-ERLwPL achieves im-
proves of 0.52 and 0.20, respectively. These results
demonstrate that reinforcement learning improves
the summarization capability of MoE models, and
incorporating the LM loss for perturbed forwards
yields additional benefit.

Question Answering. On SQuAD,
MoE-ERLwPL achieves modest gains of 0.14

EM and 0.06 F1 over the best baseline. While
improvements are smaller than in other tasks and
do not surpass HyperMoE, this is likely due to the
limited effect of decoder-side routing in extractive
QA, where answers are typically short.

Language Modeling. On WikiText-2, the Dense
baseline achieved relatively strong performance,
likely due to its direct use of GPT-2’s pretrained
dense weights without modify architecture. Despite
this, MoE-ERL reduced perplexity by 0.67 com-
pared to the MoE baseline, achieving performance
on same with Dense. MoE-ERLwPL further im-
proved perplexity by 0.09, resulting in a total re-
duction of 0.76 over MoE.

MoE-ERL consistently matches or outper-
forms the performance of Dense, MoE, and MoE-
share baselines. In all cases, the LM-loss vari-
ant (MoE-ERLwPL) further improves upon MoE-
ERL. Supplementary experiments confirm that
these improvement hold across varying number
of expert (Appendix C).

6 Analysis

6.1 Analysis of Routing

To evaluate whether the RL-trained router selects
improved routing paths, we conduct an additional
analysis. For each fine-tuned model, we record
the ROUGE-2 score (summarization) or perplex-
ity (language modeling) from the original forward.
We then generate 99 perturbed forward per data
by randomly altering decoder routing 33 times at
each α ∈ 0.25, 0.50, 0.75, yielding 100 scores per
data. We report the rank of the original path using
Mean Reciprocal Rank (MRR) and Hit@1 (the pro-
portion of cases where the original forward ranks
first). Evaluations are conducted on 300 randomly

23597

Model SAMSum XSUM WIKI2

MRR (↑) Hit@1 (↑) MRR (↑) Hit@1 (↑) MRR (↑) Hit@1 (↑)

MoE 0.11 6.8 0.06 2.0 0.05 2.9
MoE-ERL 0.35 18.4 0.37 17.8 0.17 9.5
MoE-ERLwPL 0.16 11.7 0.10 5.0 0.14 8.0

Table 4: Routing quality - original routing path vs. 99 perturbed routing path. Reported are Mean Reciprocal Rank
and Hit@1 (higher is better) of original routing path.

sampled data per dataset, with results shown in
Table 4.

MoE vs. MoE-ERL. For baseline MoE, the orig-
inal routing path rarely ranked highly, with MRRs
of 0.11, 0.06, and 0.05, and Hit@1 scores of 6.8%,
2.0%, and 2.9% across the datasets. This indicates
that conventional routers often fail to select optimal
routing paths. In contrast, MoE-ERL achieved sig-
nificantly higher MRRs of 0.35, 0.37, and 0.17, and
Hit@1 scores of 18.4%, 17.8%, and 9.5%, improv-
ing the likelihood of optimal selection by 2.7–8.9×.
These results confirm that reinforcement learning
substantially enhances routing quality.

MoE-ERLwPL shows lower MRR and Hit@1
scores compared to MoE-ERL. We estimate this is
because intentionally increasing knowledge over-
lap among experts, through the additional LM
loss of perturbed forwards, raises the likelihood
that even suboptimal routing paths achieve accept-
able performance. Nevertheless, MoE-ERLwPL

still outperformed the MoE baseline by improv-
ing both metrics approximately 1.5–2.75×, clearly
demonstrating that it effectively enhances routing
quality.

6.2 Expert Misclassification Risk of ERL

We analyze the "expert misclassification risk" de-
scribed in Section 3.4. Specifically, we compare our
proposed methods to the MoE baseline under ex-
perimental settings similar to those in Table 5. We
measure the performance degradation of fine-tuned
models when perturbing decoder routing decisions
at inference time, with varying fractions α. Un-
like the experiment presented in Table 1, here we
perturb only in the decoder.

Baseline (MoE). In our experiments, the stan-
dard MoE baseline exhibited minimal degradation
under decoder-only perturbations. Some perfor-
mance drops became when the perturbation ratio α
exceeded 0.75. On XSUM, scores declined by 3.8
and 6.15 for α = 0.75 and α = 1.00.

Model α SAMSum XSUM SQuAD

MoE

0.00 26.68 20.05 82.80
0.25 27.10 19.31 82.81
0.50 26.42 18.14 82.61
0.75 26.05 16.25 82.59
1.00 25.11 13.90 82.13

MoE-ERL

0.00 26.94 20.13 83.16
0.25 14.19 4.73 31.95
0.50 2.93 0.24 10.49
0.75 0.56 0.01 2.90
1.00 0.02 0.00 0.36

MoE-ERLwPL

0.00 27.20 20.25 83.26
0.25 26.99 20.14 83.11
0.50 27.01 20.10 83.03
0.75 27.18 20.02 82.95
1.00 27.01 19.84 82.99

Table 5: Impact of randomly confusing a fraction α
of decoder’s routing. Scores are reported for SAM-
Sum/XSUM (ROUGE-2) and SQuAD (EM)

MoE-ERL. In contrast, MoE-ERL exhibited
substantial performance degradation starting from
α = 0.25, consistently across all datasets. As an-
ticipated, this suggests that reinforcement learning
reduces knowledge overlap among experts, increas-
ing the expert misclassification risk and leading to
performance drops under suboptimal routing.

MoE-ERLwPL. In MoE-ERLwPL, explicitly
augmenting expert overlap mitigated performance
degradation under routing perturbations, maintain-
ing stable results with only minor drops (0.1–0.4
points). This robustness likely stems from the per-
turbed LM loss, which encourages knowledge shar-
ing among experts. AOverall, the results here and in
Table 4 show that MoE-ERLwPL both enhances
the router’s ability to select optimal routing paths
and reduces the risk of expert misclassification.

6.3 Analysis of Routing Confidence

To assess the model’s confidence in its routing de-
cisions, we measured the probability of selecting
the top-1 expert, Gtop1(h), and visualized the dis-
tribution using histograms (Figure 2). For MoE-

23598

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Top-1 expert routing probability

0

20

40

60

80
%

of
to
ta
l
ro
u
ti
n
g

MoE

MoE-ERL

MoE-ERLwPL

1Figure 2: Histogram of top-1 expert routing probability
on SAMSum.

0.2 0.4 0.6 0.8 1.0

25.0

25.5

26.0

26.5

27.0

R
O

U
G

E
-2

Figure 3: Effect of the perturbed routing decision ratio
(α) during training on SAMSum.

ERL, approximately 80% of routing decisions had
a top-1 probability above 0.9, indicating high con-
fidence—about 30 percentage points higher than
the baseline MoE. This suggests that reinforcement
learning significantly enhances routing certainty. In
comparison, MoE-ERLwPL showed around 67%
in the same threshold, higher than MoE but lower
than MoE-ERL, reflecting its induced expert over-
lap.

6.4 Ablation Study

Figure 3 presents SAMSum ROUGE-2 scores for
MoE-ERL models trained with different pertur-
bation rates α ∈ [0.1, 1.0]. Performance remains
stable for α values between 0.3 and 0.8, but drops
sharply when α is too small or too large. We esti-
mate Low α results in insufficient exploration, lim-
iting the benefit of reinforcement learning, while
high α introduces excessive randomness, weaken-
ing the learning signal and degrading performance.

We additionally conduct an ablation study on
the advantage strategy for reinforcement learning.
Our proposed approach, referred to as the static
advantage strategy (Equations 10–11), assigns a
static value of +1, 0, or −1 depending on whether
the perturbed outperforms the original forward. As
an alternative, we implement a log advantage strat-

Model Advantage
Strategy SAMSum Wiki2

MoE-ERL static 26.94 20.53
MoE-ERL log 26.64 20.55

MoE-ERLwPL static 27.20 20.44
MoE-ERLwPL log 26.90 20.45

Table 6: Ablation—static vs. log advantage. Reported
are SAMSum ROUGE-2 (higher is better) and WikiText-
2 perplexity (lower is better)

egy, which uses the log-difference between the per-
turbed and original token prediction probabilities:

Ãj = log(Pp(xj |x<j))− log(Po(xj |x<j)) (18)

While the log advantage strategy captures fine-
grained differences between original and perturbed
outputs, the static strategy provides clearer sample-
level ranking, even under small performance gaps.

The results in Table 6 show that the static ad-
vantage strategy consistently outperforms the log-
based variant across all experiments. We observed
that the log advantage strategy frequently caused
loss divergence during training. We attribute this
issue to the nature of the logarithmic operation,
which can yield extremely large advantage values,
thereby destabilizing training and resulting in di-
vergence.

7 Conclusion

We proposed MoE-ERL, a reinforcement learning
method that explicitly optimizes expert routing in
MoE-based LLMs without introducing additional
parameters or external reward models. MoE-ERL
leverages the performance gap between original
and perturbed routing paths as an advantage signal
to guide the router toward optimal expert selection.
We further proposed MoE-ERLwPL, which incor-
porates an auxiliary LM loss on perturbed routing
paths to mitigate the risk of over-specialization.

Most of experiments on SAMSum, XSum,
SQuAD, and WikiText-2 demonstrated that both
variants outperform Dense, MoE, and MoE-share
baselines, improving routing quality (MRR and
Hit@1) by up to 8.9×. We also identified the expert
misclassification risk due to reduced knowledge
overlap, which MoE-ERLwPL effectively allevi-
ates. Future work may explore additional strategies
to further reduce misclassification risk while main-
taining routing precision.

23599

Limitations

The reinforcement learning proposed in this study
is only applicable to decoder models. MoE-ERL
calculates advantages by comparing token-level
prediction probabilities between original and per-
turbed forward , naturally aligning the t token-level
advantages with corresponding MoE routing deci-
sions. However, encoder models typically provide
a single document- or sentence-level classification
probability, resulting in only one overall advantage
value (Ã). allocating this single advantage across
all perturbed MoE layer and token is highly chal-
lenging. If one resorts to naively broadcasting the
same value uniformly across all perturbed MoE
layers and tokens, the credit signal becomes so di-
luted that it can no longer reveal which specific
tokens or MoE layers are responsible for the ob-
served performance gains, thereby impeding effec-
tive learning. Thus, future research should explore
designing effective token-level reward schemes and
credit assignment strategies specifically tailored to
encoder-based MoE architectures.

Additionally, our proposed method incurs higher
training costs. Typically, standard deep learning
methods perform one forward and one backward
per training step. In contrast, our method requires
additional forward passes to compute results from
the perturbed forwards. Specifically, for each back-
propagation step, the method performs 1 +m for-
ward passes (depending on the number of perturbed
forwards m) while keeping a single backward pass,
thereby increasing the training cost.

To complement wall-clock time, we also report
a hardware-independent efficiency metric in terms
of Training FLOPs. Let Ffwd and Fbwd denote the
forward and backward FLOPs of a baseline step.
Standard training requires Ffwd+Fbwd, whereas our
method requires (1 +m · ϕ)Ffwd + Fbwd. Here, ϕ
represents the fraction of forward FLOPs attributed
to the decoder (ϕ = 1 for decoder-only models,
where cost scales with the decoder input length
Tdec; for encoder–decoder models, ϕ ≈ Tdec

Tenc+Tdec
,

where Tenc and Tdec denote the number of encoder
and decoder input tokens, respectively).

Under our experimental setting (m = 3), the
measured wall-clock training times confirmed this
trend: encoder–decoder tasks (SQuAD, SAMSum,
and XSUM), where only decoder forwards are
multiplied, required approximately 1.2×, 1.6×,
and 1.8× longer, proportional to the generated se-
quence length Tdec. For the decoder-only language

model (WikiText-2), where the entire model re-
quires multiple forwards, training required approx-
imately 2.8× longer. The additional inclusion of
wPL introduced minimal differences in training
time. Importantly, this extra overhead occurs only
during training, while inference remains unaffected,
requiring just the original forward identical to con-
ventional MoE models. In summary, theoretical
FLOPs analysis and measured wall-clock times are
consistent, highlighting that the main efficiency
trade-off of our method lies in the increased num-
ber of forward passes.

Acknowledgements

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Ko-
rea government(MSIT) (No. 2022R1A2C1005316)

References
Florian Böhm, Yang Gao, Christian M. Meyer, Ori

Shapira, Ido Dagan, and Iryna Gurevych. 2019. Bet-
ter rewards yield better summaries: Learning to sum-
marise without references. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3110–3120, Hong Kong,
China. Association for Computational Linguistics.

Rishi Bommasani and Drew A. Hudson et al. 2021.
On the opportunities and risks of foundation models.
ArXiv.

Damai Dai, Chengqi Deng, Chenggang Zhao, R.x. Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y. Wu, Zhenda Xie, Y.k. Li, Panpan
Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wen-
feng Liang. 2024. DeepSeekMoE: Towards ultimate
expert specialization in mixture-of-experts language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1280–1297, Bangkok,
Thailand. Association for Computational Linguistics.

Nishanth Dikkala, Nikhil Ghosh, Raghu Meka, Rina
Panigrahy, Nikhil Vyas, and Xin Wang. 2023. On
the benefits of learning to route in mixture-of-experts
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9376–9396, Singapore. Association for Com-
putational Linguistics.

Giang Do, Hung Le, and Truyen Tran. 2025. SimSMoE:
Toward efficient training mixture of experts via solv-
ing representational collapse. In Findings of the Asso-
ciation for Computational Linguistics: NAACL 2025,
pages 2012–2025, Albuquerque, New Mexico. Asso-
ciation for Computational Linguistics.

23600

https://doi.org/10.18653/v1/D19-1307
https://doi.org/10.18653/v1/D19-1307
https://doi.org/10.18653/v1/D19-1307
https://crfm.stanford.edu/assets/report.pdf
https://doi.org/10.18653/v1/2024.acl-long.70
https://doi.org/10.18653/v1/2024.acl-long.70
https://doi.org/10.18653/v1/2024.acl-long.70
https://doi.org/10.18653/v1/2023.emnlp-main.583
https://doi.org/10.18653/v1/2023.emnlp-main.583
https://doi.org/10.18653/v1/2023.emnlp-main.583
https://aclanthology.org/2025.findings-naacl.107/
https://aclanthology.org/2025.findings-naacl.107/
https://aclanthology.org/2025.findings-naacl.107/

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Preprint,
arXiv:2101.03961.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70–79, Hong
Kong, China. Association for Computational Linguis-
tics.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris
Hallacy, Benjamin Mann, Alec Radford, Aditya
Ramesh, Nick Ryder, Daniel M. Ziegler, John Schul-
man, Dario Amodei, and Sam McCandlish. 2020.
Scaling laws for autoregressive generative modeling.
Preprint, arXiv:2010.14701.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke,
Shruti Bhosale, Hsien-Hsin S. Lee, Carole-Jean Wu,
and Benjamin Lee. 2024a. Toward efficient inference
for mixture of experts. In The Thirty-eighth Annual
Conference on Neural Information Processing Sys-
tems.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao,
Chen Zhang, Yang Jin, Kun Xu, Kun Xu, Liwei Chen,
Songfang Huang, and Yansong Feng. 2024b. Harder
task needs more experts: Dynamic routing in MoE
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12883–12895, Bangkok,
Thailand. Association for Computational Linguistics.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, and 7 others. 2024. Mixtral of experts.
Preprint, arXiv:2401.04088.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. CoRR,
abs/2001.08361.

Jiacheng Liu, Peng Tang, Wenfeng Wang, Yuhang Ren,
Xiaofeng Hou, Pheng-Ann Heng, Minyi Guo, and
Chao Li. 2025. A survey on inference optimization
techniques for mixture of experts models. Preprint,
arXiv:2412.14219.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don‘t give me the details, just the summary!

topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Tam Nguyen, Ngoc N. Tran, Khai Nguyen, and
Richard G. Baraniuk. 2025. Improving routing
in sparse mixture of experts with graph of tokens.
Preprint, arXiv:2505.00792.

OpenAI. 2022. Introducing ChatGPT. https://
openai.com/blog/chatgpt. Accessed: 2025-05-
17.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Zihan Qiu, Zeyu Huang, Shuang Cheng, Yizhi Zhou,
Zili Wang, Ivan Titov, and Jie Fu. 2025. Layerwise
recurrent router for mixture-of-experts. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Jie Ren, Yewen Li, Zihan Ding, Wei Pan, and Hao Dong.
2021. Probabilistic mixture-of-experts for efficient
deep reinforcement learning.

Stephen Roller, Sainbayar Sukhbaatar, arthur szlam, and
Jason Weston. 2021. Hash layers for large sparse
models. In Advances in Neural Information Process-
ing Systems, volume 34, pages 17555–17566. Curran
Associates, Inc.

Sangwon Ryu, Heejin Do, Yunsu Kim, Gary Lee, and
Jungseul Ok. 2024. Multi-dimensional optimization
for text summarization via reinforcement learning.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 5858–5871, Bangkok, Thailand.
Association for Computational Linguistics.

John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. 2015. Trust region policy
optimization. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages
1889–1897, Lille, France. PMLR.

23601

https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://arxiv.org/abs/2010.14701
https://openreview.net/forum?id=stXtBqyTWX
https://openreview.net/forum?id=stXtBqyTWX
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.18653/v1/2024.acl-long.696
https://doi.org/10.18653/v1/2024.acl-long.696
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2412.14219
https://arxiv.org/abs/2412.14219
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://arxiv.org/abs/2505.00792
https://arxiv.org/abs/2505.00792
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://openreview.net/forum?id=eWNEqdH0vk
https://openreview.net/forum?id=eWNEqdH0vk
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://openreview.net/forum?id=LtgEkhLScK3
https://openreview.net/forum?id=LtgEkhLScK3
https://proceedings.neurips.cc/paper_files/paper/2021/file/92bf5e6240737e0326ea59846a83e076-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/92bf5e6240737e0326ea59846a83e076-Paper.pdf
https://doi.org/10.18653/v1/2024.acl-long.319
https://doi.org/10.18653/v1/2024.acl-long.319
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy op-
timization algorithms. Preprint, arXiv:1707.06347.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof
Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representa-
tions.

Richard S. Sutton and Andrew G. Barto. 2018. Rein-
forcement Learning: An Introduction, second edition.
The MIT Press.

Richard S Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 1999. Policy gradient methods
for reinforcement learning with function approxima-
tion. In Advances in Neural Information Processing
Systems, volume 12. MIT Press.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, and 3 others. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Yuanhang Yang, Shiyi Qi, Wenchao Gu, Chaozheng
Wang, Cuiyun Gao, and Zenglin Xu. 2024. XMoE:
Sparse models with fine-grained and adaptive expert
selection. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pages 11664–11674,
Bangkok, Thailand. Association for Computational
Linguistics.

Zihao Zeng, Yibo Miao, Hongcheng Gao, Hao Zhang,
and Zhijie Deng. 2024. AdaMoE: Token-adaptive
routing with null experts for mixture-of-experts lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pages
6223–6235, Miami, Florida, USA. Association for
Computational Linguistics.

Hao Zhao, Zihan Qiu, Huijia Wu, Zili Wang, Zhaofeng
He, and Jie Fu. 2024. HyperMoE: Towards better
mixture of experts via transferring among experts.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 10605–10618, Bangkok, Thai-
land. Association for Computational Linguistics.

Qihao Zhu Runxin Xu Junxiao Song Mingchuan Zhang
Y.K. Li Y. Wu Daya Guo Zhihong Shao, Peiyi Wang.
2024. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping
Huang, Vincent Y Zhao, Andrew M. Dai, Zhifeng
Chen, Quoc V Le, and James Laudon. 2022. Mixture-
of-experts with expert choice routing. In Advances
in Neural Information Processing Systems.

23602

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2024.findings-acl.694
https://doi.org/10.18653/v1/2024.findings-acl.694
https://doi.org/10.18653/v1/2024.findings-acl.694
https://doi.org/10.18653/v1/2024.findings-emnlp.361
https://doi.org/10.18653/v1/2024.findings-emnlp.361
https://doi.org/10.18653/v1/2024.findings-emnlp.361
https://doi.org/10.18653/v1/2024.acl-long.571
https://doi.org/10.18653/v1/2024.acl-long.571
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/forum?id=jdJo1HIVinI
https://openreview.net/forum?id=jdJo1HIVinI

A Dataset Statistics

In this study, we evaluated our proposed approach
across various tasks and datasets. Since our method
is applied exclusively to the decoder for text gen-
eration, we present detailed statistical information,
including the number of tokens used for genera-
tion, in Table 9. The datasets, ordered by size, are
XSUM, SQuAD, SAMSum, and WikiText-2. We
specifically report the number of tokens input to
the decoder—the context in which our proposed
method operates. Among these datasets, WikiText-
2, where entire sentences serve as decoder input,
has the longest token length, followed by XSUM,
SAMSum, and SQuAD, respectively.

hyperparameter value

α (sum.&QA) 0.7
α (lm) 0.6
δ (sum.&QA) 2.0
δ (lm) 0.5
m 3
ϵ 0.2

learning rate 1e-5
weight decay 0.1
batch size (sum.&QA) 8
batch size (lm) 4
optimizer Adam
Beta1,2 0.9,0.999
lr scheduling linear
n beam 6

Table 7: Detailed Hyperparameter Value. (sum. & QA)
denote value for summarization and QA task and (lm)
denote value for language modeling task

B Additional Experiment Setting

All hyperparameters used in our experiments are
listed in Table 7. Here, α denotes the fraction
of routing decisions perturbed in the perturbed
forward ; δ controls the weight of the perturbed-
forward loss Lp in the overall loss L; m is the
number of perturbed forwards generated per origi-
nal forward; and ϵ is the clipping coefficient in the
Clipped Surrogate Objective. Hyperparameters for
the WikiText experiments were tuned via greedy
search on WikiText-2, while those for all other
datasets were tuned on SAMSum and then applied
uniformly. We use the HuggingFace evaluate li-
brary(Wolf et al., 2020) for all evaluation metrics.
All main experiments reported in the paper were

run on a machine with RTX 4090 × 2, whereas
the supplementary experiments in this appendix
were conducted on a machine with RTX 3090 ×
4. Training times for the proposed method were
approximately 4h on SAMSum, 60h on XSUM,
20h on SQuAD, and 1.5h on WikiText-2.

To verify the fairness of our comparisons, we re-
port both the total parameter count and the number
of parameters actually activated during inference
for every model (Table 10). Because MoE-share
introduces one additional shared expert per layer, it
contains the largest number of parameters; the pro-
posed MoE-ERL and MoE-ERLwPL have exactly
the same capacity as the vanilla MoE, while the
Dense baseline is the smallest. The same ordering
holds for activated parameters: MoE-share routes
two experts per token, whereas MoE, MoE-ERL,
and MoE-ERLwPL route a single expert, and the
Dense model, which lacks a router, activates none.
These statistics confirm that our performance gains
come solely from improved routing quality, not
from an increase in model size.

#.Experts Model SAMSum (↑)

16
MoE 26.47
MoE-ERL 26.53
MoE-ERLwPL 27.20

32
MoE 26.76
MoE-ERL 27.17
MoE-ERLwPL 27.90

Table 8: Experiment of difference model capacity on
SAMSum(ROUGE-2)

C Additional Results

We conducted additional experiments to verify the
effectiveness of our proposed method on mod-
els with a larger number of experts. Experimental
results confirmed that even when increasing the
number of experts, our proposed MoE-ERL and
MoE-ERLwPL consistently improved ROUGE-2
scores compared to the baseline. This demonstrates
the efficacy of our approach across various MoE
configurations with differing numbers of experts.

D Related Works

The router is a critical component in Mixture-of-
Experts (MoE) architectures, responsible for se-
lecting the most suitable experts. Several studies
have explored ways to enhance routing decisions;

23603

Dataset #data
avg. #token of

{summary, answer, document}

#train #dev #test #train #dev #test

SAMSum 14,732 818 819 25.5 25.5 25.2
XSUM 204,045 11,332 11,334 26.1 26.1 26.1

SQuAD 87,599 10,570 - 4.7 4.4 -

WikiText-2 36,718 3,760 4,358 65.1 65.8 65.0

Table 9: Statistics of the datasets used in our experiments.

pre-trained model Model #Exp. #Act. Exp. Total Parameter Act. Parameter

switch-base-8

Dense - - 222.94 M 222.94 M
MoE 8 1 619.34M 222.98M
MoE-share 9 2 647.65M 251.29M
MoE-ERL 8 1 619.34M 222.98M
MoE-ERLwPL 8 1 619.34M 222.98M

gpt2

Dense - - 124.44 M 124.44 M
MoE 8 1 322.86 M 124.51 M
MoE-share 9 2 351.19 M 152.85 M
MoE-ERL 8 1 322.86 M 124.51 M
MoE-ERLwPL 8 1 322.86 M 124.51 M

Table 10: Model capacities used in our experiments. “# Exp.” is the number of experts per MoE layer, “# Act.” is
activated.

however, as discussed in Dikkala et al. (2023),
these efforts have primarily focused on improving
computational efficiency. For example, Zhou et al.
(2022) addressed load imbalance among experts
to enhance efficiency in multi-node settings, while
recent approaches like Huang et al. (2024b) and
Zeng et al. (2024) dynamically adjusted the number
of activated experts, enabling computations strictly
as needed.

Beyond efficiency, several approaches have been
proposed with the explicit goal of improving rout-
ing accuracy. Techniques such as hash-based rout-
ing (Roller et al., 2021) and cosine similarity-based
allocation in XMoE (Yang et al., 2024) have refined
token-expert mappings. However, these methods
predominantly rely on non-trainable routing mech-
anisms that process tokens independently, thus fail-
ing to effectively capture interactions between to-
kens. In contrast, Dikkala et al. (2023) empirically
demonstrated that trainable router significantly out-
perform fixed (non-trainable) routers, with perfor-
mance gaps widening as the number of experts
increases. More recently, Nguyen et al. (2025) uti-
lized token similarity and attention matrices to clus-

ter similar tokens toward the same experts, while
RMoE (Qiu et al., 2025) employed shared GRUs
across layers to propagate prior routing decisions,
thereby improving routing accuracy.

Instead of complicating the router with aux-
iliary structures, we retain the standard single-
layer MLP router—used by virtually most MoE-
based LLMs—unchanged and optimize it with re-
inforcement learning (RL). Concretely, we treat the
router’s expert-selection probabilities as the pol-
icy, define a token-level reward as the confidence
gap between the original and a perturbed routing
path, and update the router with RL. To the best
of our knowledge, no prior work applies an using
reinforcement learning of router optimization. Be-
cause the algorithm introduces no extra parameters,
modules, or inference-time operations, it can be
incorporated into most pretrained MoE model with
minimal engineering effort, yielding substantial ac-
curacy gains while preserving inference efficiency.

23604

E Probabilistic View

A conditional MoE is a latent-variable model with
gating pθg(z | x) and experts pθe(y | x, z) (Ren
et al., 2021):

log pΘ(y | x) = log
∑

z pθg(z | x) pθe(y | x, z), z ∈ [K]L×T

For clarity we present the top-1 case (categorical z
per position); the top-k case follows analogously.

Using the ELBO with qϕ = pθg gives the score-
function gradient (REINFORCE) for the router:

∇θgLELBO = Ez∼pθg

[
log pθe(y | x, z)∇θg log pθg(z | x)

]

Estimator. We subtract a control variate (base-
line) from the router’s deterministic top-1 path zO:

ĝ =
(
log pθe(y | x, zP)− sg

[
log pθe(y | x, zO)

])
∇θg log pθg(z

P | x)

with zP∼ pθg(· | x). Because the baseline is inde-
pendent of the sampled zP and treated as a constant
w.r.t. θg (stop-gradient), the estimator is unbiased
in the on-policy case.

Stability. We optimize a PPO-style clipped sur-

rogate with ratio r =
pθg (z

P|x)
pθ̄g (z

P|x) and advantage

A = log pθe(y | x, zP)− log pθe(y | x, zO):

ĴPPO = E
[
min(rA, clip(r, 1− ε, 1 + ε)A)

]

This surrogate improves optimization stability but
does not guarantee exact ELBO ascent.
α-perturbation. For exploration, we also sam-

ple routes from

qα = (1− α) pθ̄g + αρ

where the local randomizer ρ has support covering
that of pθg . An unbiased off-policy update uses
importance weights w = pθg/qα; in practice we
often rely on PPO clipping with moderate α (e.g.,
0.3–0.8) for a favorable bias–variance trade-off.

Takeaway. Our “perturb-and-baseline” update
is a control-variate implementation of the ELBO
score-function gradient for MoE, stabilized by a
trust-region surrogate and light exploration.

Use of AI Assistant

We used ChatGPT(OpenAI; accessed May 19,
2025) solely to translate the draft into English, and
all translated content was thoroughly reviewed by
the authors.

23605

