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Abstract

Autoregressive decoding in large language
models (LLMs) necessitates a full forward
pass for each generated token, significantly
increasing inference latency. To address this
limitation, we propose Fractal-LLM, a lossless
self-speculative decoding method that embeds
a compressed model within selected decoder
layers of the original model. Specifically,
our approach generates multiple draft tokens
in parallel by injecting compressed layers
into selected decoder layers. These draft
tokens are subsequently verified through a
single forward pass of the original model,
ensuring the final outputs exactly match those
produced by the original model. Experimental
results across diverse benchmarks—including
GSMS8K, XSUM, CNN/DailyMail, and
HumanEval—demonstrate that our method
achieves substantial inference speed-ups (up
to 2.47x) compared to standard autoregressive
decoding, without requiring any additional
training.

1 Introduction

Recently, large language models (LLMs) have
demonstrated remarkable performance across var-
ious natural language processing tasks. However,
autoregressive decoding requires a full forward
pass for each generated token, causing significant
latency in practical applications. Speculative de-
coding methods (Chen et al., 2023; Li et al., 2024)
mitigate this issue by proposing multiple draft to-
kens simultaneously and verifying them with fewer
forward passes, thus reducing overall decoding
steps. Yet, existing approaches often require ei-
ther an external draft model (Chen et al., 2023),
additional decoding heads integrated within the
original model (Cai et al., 2024), or employ self-
speculative strategies (Zhang et al., 2024; Liu et al.,
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2024) that do not fully escape the token-by-token
autoregressive decoding constraint.

In this paper, we introduce Fractal-LLM, which
embeds compressed layers within selected decoder
layers, enabling parallel draft token generation in
a single forward pass. Generated tokens are subse-
quently verified by one additional forward pass of
the original model, ensuring that outputs precisely
match those of standard autoregressive decoding.
This approach significantly reduces inference la-
tency without auxiliary models or extra training.

The contributions of this paper are summarized
as follows: (1) Layer Embedded Self-Compression:
We introduce a novel design that embeds a com-
pressed model into selected decoder layers for par-
allel token generation without removing original
layers; (2) Lossless Self-speculative Decoding: We
generate and verify tokens within a single model in
parallel, preserving output quality identical to the
base model; (3) Efficiency Analysis: We conduct a
detailed study of how the number of embedded lay-
ers and the size of the draft window jointly affect
inference speed-up.

2 Related Work

Speculative Decoding. Early research on speeding
up autoregressive generation introduced the idea of
speculative decoding, in which a small draft model
proposes multiple tokens for each step, and the
main (larger) model verifies them in a single for-
ward pass (Chen et al., 2023). This approach can ef-
fectively reduce the number of sequential decoding
steps, but often requires an additional model that
must be trained or at least carefully aligned to the
target LLM. Some work, such as MEDUSA (Cai
et al., 2024), extends this paradigm by adding mul-
tiple look-ahead heads, constructing a tree of can-
didate continuations in parallel. Recently, EAGLE
(Li et al., 2024) further enhanced speculative de-
coding by introducing feature-level autoregression,
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Figure 1: Structure of a Fractal Layer, where compressed modules (embedding, decoder layers, and LM head) are
inserted before the i-th decoder layer to enable mid-forward draft token generation.

which leverages the top-layer outputs of an LLM
for predicting token features, and a context-aware
dynamic draft tree for improved token acceptance
rates. Ouroboros (Zhao et al., 2024) extends spec-
ulative decoding by enabling draft models to gen-
erate entire phrases in one step, and subsequently
concatenates high-quality phrases selected during
verification to significantly enhance decoding effi-
ciency.

Instead of relying on a second model, recent self-
speculative techniques generate drafts by skipping
layers or using partial forward passes within the
same network, then apply the full model to verify
and correct these drafts (Zhang et al., 2024; Liu
et al., 2024; Metel et al., 2024). However, these
methods commonly retain a strictly token-by-token
mechanism, thus limiting potential speedups from
token-level parallelism.

Another way to reduce latency is to generate sev-
eral tokens per iteration. Block-wise or multi-token
algorithms (Stern et al., 2018) split the sequence,
guess a chunk of tokens in parallel, then verify or
refine them before continuing. Look-ahead decod-
ing (Fu et al., 2024) uses a modified attention mask
to simultaneously predict multiple future tokens
without additional training.

Layer Compression and Quantization. A com-
plementary approach to boosting decoding effi-
ciency is to reduce the size or depth of the network
itself. Early work such as Xu et al. (2020) and Fan
et al. (2020) demonstrates that partial or probabilis-
tic layer dropping can preserve performance while
lowering computational costs. Likewise, quantiz-
ing weights and activations often yields faster in-
ference with minimal accuracy loss (Guo et al.,
2023). However, these methods neither address the

bottleneck imposed by token-by-token decoding
nor guarantee preservation of the original model’s
output quality.

3 Method
3.1 Problem Definition

Speculative decoding generally consists of the fol-
lowing two steps: (1) Draft Phase: From the cur-
rent input sequence {1, ..., ¥, } generate a new set
of K draft tokens, forming {z1, ..., zp41 }; (2) Ver-
ification Phase: Subsequently, use the target model
(the original LLM) in a single forward pass to ver-
ify these draft tokens in parallel. If a certain draft
token is found to be incorrect, that position is re-
placed with the token predicted by the target LLM,
and from that token onward, a new round of the
draft phase begins.

Suppose that, until the complete sequence is gen-
erated, this pair of draft and verify phases repeats
a total of Nppqse times. Following the draft —
verify phases, if we denote the time spent in each
phase as T},p4se, the overall generation time can be
expressed as

Nphase X Tphase

6]

Our goal is to minimize T},4;, however, this
introduces a trade-off between the accuracy and
efficiency of the draft process (Zhang et al., 2024).
From the point of view of precision, the closer the
draft is to the output of the original model, the
greater the number of tokens that pass the verifi-
cation, potentially reducing the Npp,sc. However,
from the point of view of efficiency, ensuring that
the quality of the draft matches the original model
closely can require significant computational cost,
thus increasing Ty, qc-

T;fotal =
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Figure 2: A schematic illustration of speculative decoding with proposed Fractal-LLM approach. The original
hidden state passes through the compressed layers, produces provisional logits for draft tokens, re-embeds newly
selected tokens, and merges them back into the main sequence.

3.2 Layer Embedded Self-Compression

Fractal Layer. The core idea of our method is
to compress the model through lightweight quanti-
zation and to insert the resulting modules between
the original decoder layers. Concretely, when we
designate the i-th decoder layer as a Fractal Layer,
we attach these compressed layers (including the
compressed LM head and embedding) before the
original layer L;. This arrangement facilitates mul-
tiple draft-token proposals mid-forward, leverag-
ing the partial hidden states up to layer (: — 1)
without having to re-run all preceding layers for
each new token. In practice, we apply 8-bit linear
quantization to construct the compressed modules.
Structure of Fractal Layer is presented in Fig. 1.

Draft Phase. We begin by appending w (draft
window) draft tokens at the end of the input se-
quence. These tokens are newly initialized special
tokens without any contextual information. Let
hi—1 be the hidden state from the (i — 1)-th origi-
nal layer.

Fractal Layer forwards h;_; through the upper
compressed layers (L) . .. L)), yielding logits that
range from the prefix’s last token to the w newly
appended tokens. We then apply the compressed
LM head to select the top token (via arg max) at
each of these positions, resulting in w + 1 new
tokens: one from the prefix’s final logit, plus w
more from the newly appended slots.

Next, we re-embed the updated sequence (con-
sisting of the original prefix plus the newly gen-
erated w + 1 tokens) using the compressed em-
bedding layer. We then pass this re-embedded
sequence through the lower compressed layers
(L} ...L;_,), obtaining an updated hidden state

~

h;—1. Finally, we obtain a merged representation
by replacing only the draft-token components in
h;_1 with those in izi_l, retaining the prefix in-
tact. This merged state then feeds into the original
layer L;. Since the prefix’s hidden states remain
unaltered, the first newly generated token is guar-
anteed to be aligned with the preceding context.
Furthermore, each Fractal Layer iteratively refines
subsequent draft tokens, thereby allowing the later
draft tokens to incorporate updated contextual in-
formation. Thus, a single compressed forward pass
can produce multiple tokens consistent with the tar-
get outputs, thereby overcoming the conventional
one-token-per-forward limitation. An overview of
our method is shown in Fig. 2. Note that if the
draft process generates an end-of-sentence (EOS)
token, it is treated as provisional and is verified in
the subsequent full forward step. Any unverified
EOS drafts are discarded unless confirmed by the
base model.

Verify Phase. During verification forward, the
inserted compressed network is entirely bypassed,
making this step identical to a standard forward
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pass of the target model. If we designate n layers
in total as Fractal Layers, then we can produce
w -+ n + 1 draft tokens in one forward pass, verify-
ing them against the full model. This ensures that
the final output matches exactly what the original
model would produce under vanilla autoregressive
decoding.

4 Evaluation

Setup. We benchmark three open Llama check-
points— Llama-3-3B, Llama-3-8B (Grattafiori
et al.,, 2024), and CodeLlama-13B (Roziere
et al.,, 2023). For each Llama-3-3B, Llama-3-
8B we randomly select 300 inputs each from
GSMBS8K (Cobbe et al., 2021), XSUM (Narayan
et al., 2018), and CNN/DailyMail (Nallapati et al.,
2016). CodeLlama-13B is evaluated on the full
HumanEval (Chen et al., 2021) test set. Through-
put (tokens / s), relative speed-up, and theoreti-
cal FLOPs are measured under identical settings.
All experiments were conducted using RTX 3090
GPUs. Detailed implementation and hyperparame-
ters are described in Appendix D.

Results. Table 1 shows that our decoder con-
sistently outperforms the baseline on all three
tasks. On the 3B backbone we reach 14.6 tok/s
on GSM8K (11.20x) and 8.5 tok/s on XSUM
(11.48x) with only a 7 % increase in FLOPs,
demonstrating that the inserted compressed model
introduces negligible overhead in total. The ef-
fectiveness of our approach scales with model
size. For instance, the 8B model achieves a 2.12x
speedup on the CNN/DM task, even though its
compute budget is approximately 20% larger than
the baseline.

We further evaluate our method on the 13B
CodeLlama model on HumanEval (Table 2).
Fractal-LLM achieves a 2.47x throughput im-
provement, demonstrating effective scaling to
larger models and computationally intensive code-
generation tasks, while preserving output identical
to baseline autoregressive decoding. At this scale,
our method even slightly reduces total FLOPs com-
pared to baseline, as computational savings from
fewer full forward passes outweigh overhead from
compressed layers.

Analysis The efficiency of our method critically
depends on two hyperparameters: (1) the number
of layers designated as Fractal Layers (n), and
(2) the number of draft tokens proposed simultane-
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Figure 3: Inference acceleration (tokens/s) as a function
of number of layers (n) and the draft window size (w).

ously (w). To better assess their effects, we con-
ducted an analysis using the Llama-3 3B model on
a random subset of 100 samples from the GSM8K
dataset, across different combinations of these pa-
rameters (Figure 3).

As discussed in Eq 1, total generation time
(Tyotar) depends on the number of phases (NVphqse)
and the duration per phase (Tpp4s). Increasing
Fractal Layers (n) progressively refines draft to-
kens within each forward pass, enhancing accuracy
and reducing N4, but simultaneously increases
internal computations, raising T5p4s.. Conversely,
fewer layers limit refinement quality, lowering draft
accuracy and thus potentially increasing Nppqse-

The draft window size (w) determines the num-
ber of tokens the model attempts to predict in paral-
lel during each draft phase. Setting w too large in-
troduces a high number of inaccurate tokens, which
unnecessarily increases computational overhead
through additional attention and FFN computations.
Furthermore, incorrect tokens result in more cor-
rections during the verification phase, thereby ex-
tending the total decoding time.

Experimental results indicate that setting the
draft window size equal to or slightly smaller than
the number of Fractal Layers achieves an optimal
balance between computational overhead and draft
accuracy. Additional ablation studies (Appendix A)
confirm that this configuration consistently pro-
vides stable improvements in both draft token ac-
curacy and overall decoding speed.

5 Conclusion

In this paper, we introduced Fractal-LLM, a novel
lossless self-speculative decoding framework that
integrates a compressed model into selected orig-
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Model Method | GSMSK \ XSUM \ CNN/DM
‘ Tok/s  Acc. FLOPs ‘ Tok/s  Acc. FLOPs ‘ Tok/s  Acc. FLOPs
Llama.3 3p  Baseline | 1220 1.00x 2.5 X 104 | 574 1.00x 4.6 x 10** | 313 1.00x 7.8 x 10
Fractal | 14.60 1.20x 2.7 x 10'* | 849 1.48x 5.0x 10" | 551 1.69x 8.3 x 10**
Llamac3 8B Baseline | 426 1.00x 7.6 x 10| 225 1.00x 1.1 x 10*® | 1.01 1.00x 1.8 x 10'®
Fractal 747 1.75x 9.0 x 10'* | 4.06 1.80x 1.4 x10'% | 215 2.12x 2.2x10'°

Table 1: Throughput (tokens / sec), relative acceleration (Acc.), and estimated FLOPs of our decoding method

versus the vanila autoregressive baseline.

Model Method HumanEval
Tok/s Acc. FLOPs
Baseline 1.79 1.00x 4.1 x 10*°

CodeLlama-13B

Fractal 4.43 2.47x 4.0 x 10'®

Table 2: Throughput (tokens/s), relative acceleration
(Acc.), and average FLOPs over the first 300 decoding
steps on HumanEval.

inal decoder layers. Our approach facilitates the
parallel generation of multiple draft tokens within
a single forward pass, leading to reduced infer-
ence latency. Experimental evaluations on di-
verse benchmarks demonstrated substantial im-
provements in inference speed (up to 2.47x) while
ensuring that outputs remain identical to original
decoding. Crucially, our method offers valuable
insights by demonstrating that autoregressive de-
coding need not strictly correspond to one token
per model forward pass, enabling the completion
of multiple tokens simultaneously.

Limitations

Our proposed method was evaluated under a simpli-
fied setting that does not employ Key-Value (KV)
caching. In a typical autoregressive decoding pro-
cess, using KV caching allows reusing intermediate
computations from previous tokens, thus speeding
up inference. As future work, we plan to incorpo-
rate cache management of prefix part in practical
manner.

Another limitation is that the speed-up from
Fractal Layers may vary based on their number
and positions within the decoder stack (e.g., closer
to the input or the output). Therefore, we intend
to investigate more systematic strategies for select-
ing Fractal Layer positions to maximize efficiency
gains.
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A Ablation Study
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Figure 4: Average correct tokens per layer.

Effect of Fractal Layer Fig 4 analyzes the im-
pact of distributing /N Fractal Layers uniformly
within a 28-layer decoder architecture. We set
N =7, corresponding to one Fractal Layer every
four layers, and highlight two critical insights. To
validate these observations, we randomly sampled
10 instances from the GSM8K dataset for detailed
analysis.

Embedding Fractal Layers within the decoder
leverages high-quality intermediate representations
from earlier full-precision layers. This arrange-
ment consistently yields an average of N + § to-
kens accepted per verification step, with 6 ~ 0.74.
Specifically, in our setup (N = 7), we observed ap-
proximately 7.74 tokens accepted per verification
pass.

In comparison, employing the same number of
layers N in an external draft model theoretically
limits the accepted tokens per verification pass
to exactly N. Thus, embedding layers internally
yields additional tokens per pass without increasing
the total number of layers, clearly demonstrating an
advantage over external model-based approaches.

Draft Token Quality We further analyze the
quality of drafted tokens under our incremental
verification scheme. When the draft window is w,
the denominator of the acceptance ratio is defined
as 2w-+1 verified positions per phase, while the
numerator corresponds to the w drafted tokens that
can be accepted.
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Model & Dataset GPUs Baseline (h)  Fractal (h) A

Llama-3 3B (GSM8K) 2x3090 1.5 1.1 -26.7%
Llama-3 3B (XSUM) 2x3090 2.5 1.3 -48.0%
Llama-3 3B (CNN/DM) 2x3090 3.5 2.1 —40.0%
Llama-3 8B (GSM8K) 2x3090 5.2 2.9 —44.2%
Llama-3 8B (XSUM) 2x3090 6.1 3.2 -47.5%
Llama-3 8B (CNN/DM) 2x3090 10.3 5.1 -50.5%
CodeLlama-13B (HumanEval)  3x3090 12.1 4.5 -62.8%

Table 3: Wall-clock inference time per dataset. A is the relative reduction of Fractal vs. baseline.

Dataset Incremental Acceptance Ratio
GSMS8K 0.49
XSum 0.46
CNN/DailyMail 0.54

Table 4: Incremental acceptance ratio with w=8.

Table 4 reports this incremental acceptance ratio
measured on the full evaluation sets of GSM8K,
XSum, and CNN/DailyMail using the Llama-3.1-
8B model. The results show that a substantial por-
tion of phases achieve values above 0.5, indicating
that the model often succeeds in predicting future
tokens beyond the immediate next one.

B Dataset

To benchmark decoding speed under heteroge-
neous workloads we employ four public cor-
pora—GSM8K (Cobbe et al., 2021), XSUM
(Narayan et al., 2018), CNN/DailyMail (Nalla-
pati et al., 2016), and HumanEval (Chen et al.,
2021)—covering arithmetic reasoning, short/long
summarization, and code generation.

* GSMSK: Grade-school math problems, con-
sisting of approximately 7.5K training exam-
ples and 1K test examples; throughput only,
max 256 generated tokens.

* XSUM: BBC news summarization dataset
containing approximately 204K training, 11K
validation, and 11K test samples; input trun-
cated to 512 tokens, generation capped at 128
tokens.

* CNN/DailyMail: Long-form summarization
dataset with approximately 287K training,
13K validation, and 11K test articles paired
with multi-sentence summaries; same trunca-
tion and generation cap as XSUM.

* HumanEval: Code generation benchmark
consisting of 164 Python synthesis tasks; in-
put up to 512 tokens, throughput measured on
the first 300 generated tokens.

C Quantization

We applied 8-bit precision to quantize the inserted
model components utilized by each Fractal Layer,
while the original model remained in full preci-
sion. This quantization strategy significantly re-
duces memory and computational demands and
crucially preserves lossless output parity with the
baseline decoder. In terms of efficiency, the use
of 8-bit matrix multiplications (mat-muls) speeds
up parallel draft generation and lowers VRAM us-
age. Regarding quality, the final FP16 verification
step corrects any minor quantization errors, thereby
ensuring that end-to-end outputs precisely match
those of the baseline decoder.

D Hyperparameters and Settings

Hyperparameters The hyperparameters used in
our experiments are listed in Table 5. We set n to be
one-quarter of the total number of layers and define
w = n. We set the gap between Fractal Layer
insertions as the total number of layers divided by
the number of insertions.

Model Params Layers n w
Llama-3 3B 3B 28 77
Llama-3 8B 8B 32 8 8

CodeLlama-13B 13 B 40 10 10

Table 5: Model specifications and hyperparameters used
in our experiments.

Generation proceeded via greedy decoding, and
no KV cache is utilized. Maximum output lengths
follow the task budgets in Appendix B: 128 tokens
(XSUM, CNN/DailyMail), 256 (GSM8K), and 512
(HumanEval).
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Hardware and Software Environment. Exper-
iments were run on Ubuntu 22.04 with two RTX
3090 (24 GB) GPUs for the 3B/8B checkpoints
and three RTX 3090s for the 13B checkpoint.
Key libraries: Python 3.11, PyTorch 2.5 (+CUDA
12.1, cuDNN 8.9),Transformers 4.48, BitsAnd-
Bytes 0.45 (8-bit mode), Xformers 0.0.28.post3.
The enviroment settings are available in the artifact
repository.

Compute Budget. All experiments are inference-
only (training budget 0 GPU-h). Across all datasets
(Table 3) the baseline decoder consumes 94.5
GPU-h, whereas our Fractal decoder needs only
44.9 GPU-h (-53 %).

Code Availability. All inference scripts, log-
parsing utilities, and plotting recipes are pub-
licly released at https://github.com/YEonleo/
FractalLLM.

External Resources and Licensing. All check-
points are distributed under the Meta Llama Non-
Commercial License; datasets are released under
CC-BY 4.0 or comparably permissive terms. We
use them strictly for non-commercial research and
do not redistribute derivatives.

E Use of AI Assistant

Translation work in this paper was assisted by an
Al tool. All generated output was subsequently
reviewed and revised by the authors to ensure ac-
curacy and clarity.
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