@inproceedings{lee-etal-2025-efficient-latent,
title = "Efficient Latent Semantic Clustering for Scaling Test-Time Computation of {LLM}s",
author = "Lee, Sungjae and
Kim, Hoyoung and
Hwang, Jeongyeon and
Park, Eunhyeok and
Ok, Jungseul",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.1310/",
pages = "24126--24144",
ISBN = "979-8-89176-335-7",
abstract = "Scaling test-time computation, generating and analyzing multiple or sequential outputs for a single input, has become a promising strategy for improving the reliability and quality of large language models (LLMs), as evidenced by advances in uncertainty quantification and multi-step reasoning. A key shared component is semantic clustering, which groups outputs that differ in form but convey the same meaning. Semantic clustering enables estimation of the distribution over the semantics of outputs and helps avoid redundant exploration of reasoning paths. However, existing approaches typically rely on external models, which introduce substantial computational overhead and often fail to capture context-aware semantics. We propose Latent Semantic Clustering (LSC), a lightweight and context-sensitive method that leverages the generator LLM{'}s internal hidden states for clustering, eliminating the need for external models. Our extensive experiment across various LLMs and datasets shows that LSC significantly improves the computational efficiency of test-time scaling while maintaining or exceeding the performance of existing methods."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2025-efficient-latent">
<titleInfo>
<title>Efficient Latent Semantic Clustering for Scaling Test-Time Computation of LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sungjae</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hoyoung</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeongyeon</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eunhyeok</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jungseul</namePart>
<namePart type="family">Ok</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Scaling test-time computation, generating and analyzing multiple or sequential outputs for a single input, has become a promising strategy for improving the reliability and quality of large language models (LLMs), as evidenced by advances in uncertainty quantification and multi-step reasoning. A key shared component is semantic clustering, which groups outputs that differ in form but convey the same meaning. Semantic clustering enables estimation of the distribution over the semantics of outputs and helps avoid redundant exploration of reasoning paths. However, existing approaches typically rely on external models, which introduce substantial computational overhead and often fail to capture context-aware semantics. We propose Latent Semantic Clustering (LSC), a lightweight and context-sensitive method that leverages the generator LLM’s internal hidden states for clustering, eliminating the need for external models. Our extensive experiment across various LLMs and datasets shows that LSC significantly improves the computational efficiency of test-time scaling while maintaining or exceeding the performance of existing methods.</abstract>
<identifier type="citekey">lee-etal-2025-efficient-latent</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.1310/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>24126</start>
<end>24144</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Efficient Latent Semantic Clustering for Scaling Test-Time Computation of LLMs
%A Lee, Sungjae
%A Kim, Hoyoung
%A Hwang, Jeongyeon
%A Park, Eunhyeok
%A Ok, Jungseul
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F lee-etal-2025-efficient-latent
%X Scaling test-time computation, generating and analyzing multiple or sequential outputs for a single input, has become a promising strategy for improving the reliability and quality of large language models (LLMs), as evidenced by advances in uncertainty quantification and multi-step reasoning. A key shared component is semantic clustering, which groups outputs that differ in form but convey the same meaning. Semantic clustering enables estimation of the distribution over the semantics of outputs and helps avoid redundant exploration of reasoning paths. However, existing approaches typically rely on external models, which introduce substantial computational overhead and often fail to capture context-aware semantics. We propose Latent Semantic Clustering (LSC), a lightweight and context-sensitive method that leverages the generator LLM’s internal hidden states for clustering, eliminating the need for external models. Our extensive experiment across various LLMs and datasets shows that LSC significantly improves the computational efficiency of test-time scaling while maintaining or exceeding the performance of existing methods.
%U https://aclanthology.org/2025.findings-emnlp.1310/
%P 24126-24144
Markdown (Informal)
[Efficient Latent Semantic Clustering for Scaling Test-Time Computation of LLMs](https://aclanthology.org/2025.findings-emnlp.1310/) (Lee et al., Findings 2025)
ACL