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Abstract

Scientific claim verification against tables typ-
ically requires predicting whether a claim is
supported or refuted given a table. However,
we argue that predicting the final label alone is
insufficient: it reveals little about the model’s
reasoning and offers limited interpretability. To
address this, we reframe table–text alignment
as an explanation task, requiring models to
identify the table cells essential for claim verifi-
cation. We build a new dataset by extending the
SciTab benchmark with human-annotated cell-
level rationales. Annotators verify the claim
label and highlight the minimal set of cells
needed to support their decision. After the an-
notation process, we utilize the collected infor-
mation and propose a taxonomy for handling
ambiguous cases. Our experiments show that
(i) incorporating table alignment information
improves claim verification performance, and
(ii) most LLMs, while often predicting correct
labels, fail to recover human-aligned rationales,
suggesting that their predictions do not stem
from faithful reasoning.1

1 Introduction

Claim verification against tables requires models
to determine whether a natural language claim is
supported or refuted based on structured tabular
data. Several benchmarks have been proposed
in the general domain, such as TabFact (Chen
et al., 2020), INFOTABS (Gupta et al., 2020), and
FEVEROUS (Aly et al., 2021), primarily focusing
on Wikipedia tables. However, tables in scien-
tific papers pose additional challenges: they are
often denser, more structured, and require domain-
specific reasoning.

Two datasets have recently addressed this task
in the scientific domain: SEM-TAB-FACTS (SEM;

*Research conducted during internship at NII, Japan.
1Our data and code are available at https://github.

com/Alab-NII/SciTabAlign

Wang et al., 2021), which includes both claim veri-
fication and cell-level evidence selection, and Sc-
iTab (Lu et al., 2023), which focuses solely on
claim verification. While SEM includes an align-
ment component, its claims are crowd-generated
and simplified, limiting their representativeness.
SciTab, in contrast, uses naturally occurring claims
but lacks explicit annotations that explain why a
given label is correct.

We argue that label prediction alone, as in Sc-
iTab, is not enough. It fails to reveal whether a
model truly understands the table content, nor does
it provide interpretable reasoning. For both evalua-
tion and practical use, models need to go beyond
classification and provide explanations grounded
in tabular evidence.

From the perspective of scientific reading
tools (Lo et al., 2023), table–text alignment is also
crucial. It allows readers to quickly locate which
parts of a table are referenced in the text, improv-
ing comprehension and accelerating the reading
process. Such alignments could directly support
scientific workflows by making tabular evidence
more accessible and interpretable.

To address these limitations, we reframe ta-
ble–text alignment as an explanation task for sci-
entific claim verification. Specifically, we extend
the SciTab dataset with human-annotated cell-level
rationales. For each claim–table pair, annotators
verify the claim label and highlight the minimal set
of table cells needed to support the decision.

During annotation, we frequently encountered
ambiguous cases in claim interpretation and evi-
dence selection. To capture these edge cases sys-
tematically, we introduce a taxonomy of five ambi-
guity types in scientific table-based verification: (i)
Table Conversion Errors, (ii) Additional Context
Requirements, (iii) Unexpected Claim Types, (iv)
Subjective Adjectives, and (v) Unclear Claims.

We use our dataset to evaluate various types of
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large language models (LLMs), including table-
based models, open-source LLMs, and closed-
source LLMs. Our experiments also incorporate
three different prompting strategies. On average,
our human-annotated cell-level rationales help im-
prove the performance of the claim label prediction
task. The results show that while models achieve
high macro-F1 scores on the claim label prediction
task, their performance on the cell selection task
remains low—even for advanced models like GPT-
4o. The highest score, 50.8, is achieved by Qwen
2.5 72B using CoT prompting. Further analysis of
the correlation between the two tasks reveals that
although LLMs often correctly predict the claim
label, their ability to identify the corresponding
explanation cells is still limited.

2 Related Work

Claim verification has been studied across mul-
tiple domains, including news (Wang, 2017),
Wikipedia (Thorne et al., 2018; Jiang et al., 2020),
scientific literature (Wadden et al., 2020; Ou et al.,
2025), and medicine (Kotonya and Toni, 2020;
Vladika et al., 2024). Beyond plain text, recent ef-
forts have extended claim verification to structured
or multimodal evidence, including tables (Chen
et al., 2020; Lu et al., 2023), figures (Akhtar et al.,
2024), knowledge graphs (Kim et al., 2023) and
multimodal data (Yang et al., 2025b).

Among table-based datasets, SEM (Wang et al.,
2021) and TabEvidence (Gupta et al., 2022) are
most related to our work. However, SEM features
simplified, crowd-generated claims, while TabEvi-
dence is limited to two-column Wikipedia tables,
lacking the complexity of scientific tables. Re-
cent frameworks like Chain-of-Table (Wang et al.,
2024) and Dater (Ye et al., 2023) include evidence
selection steps, but only report label accuracy, with-
out evaluating the relevance or quality of the se-
lected evidence, limiting trust in their predictions.

In contrast, our work emphasizes explanation via
alignment, explicitly evaluating whether the model
selects the correct table cells needed for verifica-
tion, providing a more faithful and interpretable
assessment of reasoning.

3 Dataset Creation

In this section, we first briefly introduce the exist-
ing SciTab dataset, on which our work is based.
We then describe the process of obtaining the ex-
tended version, SciTabAlign, with cell-level ex-
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Claim

Table
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Claim Label Verification
Post-

Processing

SciTab Human Annotation

Figure 1: Overall dataset creation process.

planations. Finally, we propose a taxonomy of
five common ambiguity types, which we hope fu-
ture work considers to build more reliable claim
verification datasets. We note that we remove all
ambiguous cases from our dataset, reducing the
number of claims from 868 to 372.

3.1 Base Dataset: SciTab

We build on SciTab (Lu et al., 2023), the only avail-
able dataset for claim verification against scientific
tables with naturally occurring claims. SciTab is
derived from SciGen (Moosavi et al., 2021), a table-
to-text generation dataset in which each sample
consists of a scientific table and its corresponding
textual description.

The dataset contains 1,224 claim–table pairs:
457 supported, 411 refuted, and 356 not enough
information (NEI). Supported claims are sourced
from original paper content, while refuted and
NEI claims are generated by InstructGPT (Ouyang
et al., 2022) and then manually verified. The origi-
nal benchmark defines two settings: binary classifi-
cation (supported vs. refuted) and three-class clas-
sification (supported, refuted, NEI), but focuses
only on label prediction, without providing expla-
nations.

3.2 Our Dataset: SciTabAlign

We extend SciTab by adding cell-level explana-
tions, i.e. table regions required to support or refute
each claim. We focus on the supported and refuted
claims (868 total), leaving out NEI cases, which
are typically under-specified. As shown in Fig-
ure 1, our annotation pipeline includes two tasks:
claim label verification and evidence selection.

Human Annotation. Each annotator is given a
claim, its label, the associated table, and the cap-
tion. Annotators first verify the correctness of the
claim. If it is clearly supported or refuted, they
mark it as Good; if the claim is unclear, malformed,
or unsupported by the table, they choose Do Noth-
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ing or optionally revise it (Revised). For Good
or Revised claims, annotators highlight the min-
imal set of table cells required to determine the
label. Annotation was performed by four NLP
researchers (authors of this paper).

Post-Processing. After human annotation, we
obtain 444 Good samples, 81 Revised, and 343
Do Nothing. We retain only the samples labeled
as Good. Among these, we discard 66 samples in
which all table cells are marked (non-informative)
and 6 samples containing NaN values, resulting
in a final dataset of 372 aligned samples (195 sup-
ported, 177 refuted).

Inter-Annotator Agreement. To assess anno-
tation quality, we conducted a second round of
labeling on 50 randomly selected tables (covering
137 claims) by a different annotator. Using the
first annotation as ground truth, we obtained 75.2%
precision, 89.1% recall, and 78.0% macro-F1 for
cell-level overlap.

3.3 A Proposed Taxonomy
During annotation, we observed frequent edge
cases where claim verification was hindered by
poor table formatting, unclear language, or missing
context. We propose a taxonomy of five ambiguity
types based on annotator notes and discussion:
(i) Table Conversion Errors: artifacts introduced
during table extraction (e.g. merged cells, missing
entries, formatting loss).

(ii) Additional Context Requirements: Claims
referencing abbreviations, statistical tests, or as-
sumptions not recoverable from the table alone.

(iii) Unexpected Claim Types: Descriptive or
meta-level claims (e.g., “Table 4 lists the scores of
different models.”) that require no reasoning.

(iv) Subjective Adjectives: Use of vague or non-
quantifiable terms (e.g., “poor”, “substantial”, or
“a large margin”).

(v) Unclear Claims: Ambiguous references to
table elements (e.g., “this model”, “these scores”).

We provide examples for each case in Ap-
pendix A. We hope this taxonomy will guide future
dataset development and improve robustness in sci-
entific claim verification tasks.

4 Experimental Settings

Models. We use three groups of models in our
experiments: Table-based LLMs, Open-source

LLMs, and Closed-source LLMs. For table-
based LLMs, we use TAPAS-base and TAPAS-
large (Herzig et al., 2020), pretrained for reasoning
over tabular input. For open-source LLMs, we use
the Instruction-tuned variants of Qwen 2.5 (7B and
72B, Yang et al., 2025a) and Llama 3.1 (8B and
70B, Grattafiori et al., 2024). For closed-source
LLMs, we use GPT-4o (Hurst et al., 2024).

Prompting Strategies. Our dataset contains two
subtasks: (1) claim label prediction and (2) cell-
level evidence selection. We conduct experiments
using three prompting strategies: zero-shot, few-
shot, and Chain-of-Thought (CoT; Wei et al., 2022).
For few-shot and CoT promptings, we use four
demonstration examples selected from the revised
subset of samples not included in the evaluation
set, ensuring fair evaluation.

Tabular Representation. Following Wang et al.
(2024), who found that the PIPE encoding format
with explicit tags (e.g. Col and Row 1) outper-
formed HTML, TSV, and Markdown formats for
tabular data, we adopt PIPE encoding for all of our
experiments.

Evaluation Metrics. We use Macro-F1 to eval-
uate both tasks in our dataset: (1) claim label pre-
diction and (2) cell-level evidence selection. For
the claim label prediction task, we compare the
predicted label with the ground-truth label. Our
dataset contains two labels: Supported and Re-
futed. For the cell-level evidence selection task,
both ground-truth and predicted evidence are repre-
sented as lists of (row, column) index tuples using
PIPE encoding. For example, (1, 2) refers to the
cell in row 1, column 2. We compare the two lists
to obtain True Positives, False Positives, and False
Negatives, and then calculate precision, recall, and
F1 based on these values. The Macro-F1 score
is computed as the average of the individual F1
scores.

5 Results

All results are shown in Table 1. It is noted that,
due to cost constraints, we only run GPT-4o on 100
samples selected to match the label distribution of
the entire dataset.

Claim Prediction Results. As expected, GPT-
4o achieves the highest score. Larger models,
such as Qwen 2.5 72B and Llama 3.1 70B, out-
perform their smaller 7B and 8B counterparts, and
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Model Claim Labeling Cell Selection

Zero Few CoT Zero Few CoT

TAPAS-base 48.1 - - - - -
TAPAS-large 51.6 - - - - -

Llama 3.1 8B 53.2 59.5 62.4 23.6 22.3 22.6
Llama 3.1 70B 75.2 75.0 73.9 31.8 28.8 36.8
Qwen 2.5 7B 66.3 68.1 67.9 20.7 16.6 17.0
Qwen 2.5 72B 83.5 84.7 81.5 32.8 46.7 50.8

GPT-4o 88.4 87.0 88.0 32.4 32.9 34.8

Table 1: Macro-F1 scores of the models on our dataset.
‘Zero’, ‘Few’, and ‘CoT’ denote zero-shot, few-shot,
and CoT prompting, respectively.

all LLMs surpass the performance of the previous
table-based model, TAPAS. We also observe that
few-shot and CoT prompting are less effective for
larger, well-instructed models like the 70B variants
and GPT-4o on this familiar label classification
task, but remain beneficial for smaller models.

Evidence Selection Results. Compared to claim
label prediction, evidence cell selection is a more
challenging task that most LLMs are unfamiliar
with. The input consists of a claim and a table, and
the output is a list of cell positions—each defined
by a row and column index—required to determine
the claim’s label. This structured output format
adds complexity, and overall, all models struggle
to achieve high scores on this task. In the zero-
shot setting, GPT-4o, Llama 3.1 70B, and Qwen
2.5 72B achieve comparable scores. Under few-
shot and CoT prompting, GPT-4o’s performance
remains relatively stable, while Qwen 2.5 72B sees
an 18.0 F1 improvement from zero-shot to CoT.
CoT prompting also boosts Llama 3.1 70B’s per-
formance. In contrast, smaller models (7B–8B)
show decreased performance under both few-shot
and CoT prompting compared to zero-shot.

Overall, compared to the human agreement
score (78.0 macro F1), the best model still falls
short, indicating room for improvement on this
task. Despite its difficulty and the possibility of
multiple valid reasoning paths, our proposed evi-
dence cells can be seen as a minimal, useful set
for claim verification. In the era of black-box
LLMs, focusing solely on the final label is insuffi-
cient—evidence selection is equally important for
explainability. Our work takes a first step toward
more interpretable evaluation and highlights the
underlying reasoning abilities of models.

Model Table Exp. Table + Exp.

Llama 3.1 8B 53.2 56.9 63.0
Llama 3.1 70B 75.2 80.1 80.9
Qwen 2.5 7B 66.3 67.5 69.8
Qwen 2.5 72B 83.5 80.6 81.9

Table 2: Macro-F1 scores of the models on our dataset
using different types of input table contexts. “Exp.”
refers to our explanation table cells. For all experiments
in this table, we use zero-shot prompting.

Divergent Effects of Few-Shot and CoT Prompt-
ing on Claim Labeling vs. Cell Selection. The
claim labeling task is a binary classification prob-
lem (supported vs. refuted), which closely aligns
with tasks that most LLMs are already exposed to
during pretraining. In contrast, cell selection is a
novel task with a different structure, likely unfamil-
iar to most models. We observe that for claim label-
ing, few-shot and CoT prompting benefit smaller
models (7B–8B), while larger models (70B–72B)
show little to no improvement, likely due to their
stronger inherent reasoning capabilities. For cell
selection, however, smaller models struggle with
few-shot and CoT prompting, possibly because the
demonstrations are not easily generalizable for this
unfamiliar task. Larger models perform better in
this setting, suggesting greater adaptability to task
structure even when it deviates from pretraining
distributions.

Effectiveness of Our Explanation Cells. To
evaluate the effectiveness of our explanation cells,
we assess models under two different settings: (1)
using only our explanation table cells, and (2) us-
ing both the original table and our explanation table
cells. The results are shown in Table 2. On average,
we observe that using only our explanation cells
or combining them with the original table leads to
improved task performance.

6 Analyses

To better understand the correlation between the
claim label prediction task and the cell evidence
selection task, we categorize outcomes into four
types: Correct–Correct, Correct–Incorrect, Incor-
rect–Correct, and Incorrect–Incorrect. For claim
label prediction, correctness is easily determined
based on whether the predicted label (Supported or
Refuted) matches the ground truth. In contrast, cell
evidence selection involves list-based predictions,
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making exact matches more challenging. There-
fore, we consider two evaluation criteria: exact
match (EM) and a relaxed case where an F1 score
of 50.0 or higher is considered correct.

Claim Cell L 8B L 70B Q 7B Q 72B GPT

Setting 1: Exact Match for Both Tasks

C C 0.0 0.0 0.0 4.6 0.0
C I 63.4 73.9 68.0 73.4 88.0
I C 0.0 0.0 0.0 0.0 0.0
I I 36.6 26.1 32.0 22.0 12.0

Setting 2: F1 >= 50 in Cell Selection

C C 10.5 26.1 4.3 44.1 30.0
C I 53.0 47.8 63.7 33.9 58.0
I C 5.6 10.5 2.7 8.9 7.0
I I 30.9 15.6 29.3 13.2 5.0

Table 3: Categorical statistics (%) showing the cor-
relation between the claim label prediction and cell
evidence selection tasks. C and I denote Correct and In-
correct, respectively. L and Q denote Llama and Qwen,
respectively. The results are from CoT prompting.

The percentage distribution of these cases is
shown in Table 3. The case where both tasks are
correct (C–C) is what we expect. However, as
shown in the table, none of the models achieve a
percentage of 50% for this case—even in the sec-
ond setting, where an F1 score of 50.0 or higher is
considered correct for the cell selection task. This
suggests that while models often predict the claim
label correctly, they lack the ability to select the
minimal subset of table cells necessary to support
that prediction.

7 Conclusion

In this work, we highlighted the limitations of sci-
entific claim verification systems that focus solely
on label prediction, arguing for the importance
of interpretability through evidence selection. By
reframing table-text alignment as an explanation
task and introducing a new dataset with human-
annotated cell-level rationales, we provide a more
rigorous benchmark for evaluating model reason-
ing. Additionally, we proposed a taxonomy of
ambiguous cases in claim verification against ta-
bles, which can support future work on dataset
construction. Our findings demonstrate that while
LLMs often predict the correct claim labels, they
frequently fail to identify the minimal supporting
evidence, revealing a gap between accuracy and
faithful reasoning. This underscores the need for
future work to prioritize not just correctness, but

also alignment with human-understandable ratio-
nales in scientific fact verification tasks.

Limitations

Our work has several limitations. First, the annota-
tion scale is modest, with 868 claims as input and
only 372 claims in the final dataset, which may
affect the statistical reliability and generalizability
of the findings. Second, the dataset originates from
a specific domain (computer science), which may
limit its applicability to tables and claims from
other domains. Third, the PIPE encoding method
used may not be well-suited for handling complex
table structures, suggesting the need for more ro-
bust encoding approaches.
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A Dataset Creation

A.1 A Proposed Taxonomy
We present examples for our proposed taxonomy in
Section 3.3 in Tables 4, 5, 6, 7, and 8, respectively.
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Claim Comparing POS and SEM tagging (Table 5), we note that higher layer repre-
sentations do not necessarily improve SEM tagging, while POS tagging does
not peak at layer 1. We noticed no improvements in both translation (+0.9
BLEU) and POS and SEM tagging (up to +0.6% accuracy) when using features
extracted from an NMT model trained with residual connections (Table 5).

Label Refuted
Table Caption Table 5: POS and SEM tagging accuracy with features from different layers

of 4-layer Uni/Bidirectional/Residual NMT encoders, averaged over all non-
English target languages.

Table Uni | POS | 0 87.9 | 1 92.0 | 2 91.7 | 3 91.8 | 4 91.9
Uni | SEM | 81.8 | 87.8 | 87.4 | 87.6 | 88.2
Bi | POS | 87.9 | 93.3 | 92.9 | 93.2 | 92.8
Bi | SEM | 81.9 | 91.3 | 90.8 | 91.9 | 91.9
Res | POS | 87.9 | 92.5 | 91.9 | 92.0 | 92.4
Res | SEM | 81.9 | 88.2 | 87.5 | 87.6 | 88.5

Table 4: Example of (i) Table Conversion Errors. The column headers are merged with the data values. For example,
"0 87.9" incorrectly combines the column name 0 and the value 87.9.

Claim After removing the graph attention module, our model gives 24.9 BLEU points.
Label Supported
Table Caption Table 9: Ablation study for modules used in the graph encoder and the LSTM

decoder
Table [BOLD] Model | B | C

DCGCN4 | 25.5 | 55.4
Encoder Modules | [EMPTY] | [EMPTY]
-Linear Combination | 23.7 | 53.2
-Global Node | 24.2 | 54.6
-Direction Aggregation | 24.6 | 54.6
-Graph Attention | 24.9 | 54.7
-Global Node &Linear Combination | 22.9 | 52.4
Decoder Modules | [EMPTY] | [EMPTY]
-Coverage Mechanism | 23.8 | 53.0

Table 5: Example of (ii) Additional Context Requirements. B and C stand for BLEU and CHRF++, respectively, but
this cannot be inferred from the claim, caption, or table alone. It requires additional context from the original paper.

Claim Table 4 lists the EM/F1 score of different models.
Label Supported
Table Caption Table 4: Exact match/F1-score on SQuad dataset. “#Params”: the parameter

number of Base. rnet*: results published by Wang et al. (2017).
Table Model | #Params | Base | +Elmo

rnet* | - | 71.1/79.5 | -/-
LSTM | 2.67M | [BOLD] 70.46/78.98 | 75.17/82.79
GRU | 2.31M | 70.41/ [BOLD] 79.15 | 75.81/83.12
ATR | 1.59M | 69.73/78.70 | 75.06/82.76
SRU | 2.44M | 69.27/78.41 | 74.56/82.50
LRN | 2.14M | 70.11/78.83 | [BOLD] 76.14/ [BOLD] 83.83

Table 6: Example of (iii) Unexpected Claim Types. The claim simply describes what the table shows, similar to the
caption, and does not require any reasoning or data to support it.
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Claim [CONTINUE] RELIS significantly outperforms the other RL-based systems.
Label Supported
Caption Table 3: Results of non-RL (top), cross-input (DeepTD) and input-specific (REAPER) RL ap-

proaches (middle) compared with RELIS.
Table [EMPTY] | DUC’01 R1 | DUC’01 R2 | DUC’02 R1 | DUC’02 R2 | DUC’04 R1 | DUC’04 R2

ICSI | 33.31 | 7.33 | 35.04 | 8.51 | 37.31 | 9.36
PriorSum | 35.98 | 7.89 | 36.63 | 8.97 | 38.91 | 10.07
TCSum | <bold>36.45</bold> | 7.66 | 36.90 | 8.61 | 38.27 | 9.66
TCSum- | 33.45 | 6.07 | 34.02 | 7.39 | 35.66 | 8.66
SRSum | 36.04 | 8.44 | <bold>38.93</bold> | <bold>10.29</bold> | 39.29 | 10.70
DeepTD | 28.74 | 5.95 | 31.63 | 7.09 | 33.57 | 7.96
REAPER | 32.43 | 6.84 | 35.03 | 8.11 | 37.22 | 8.64
RELIS | 34.73 | <bold>8.66</bold> | 37.11 | 9.12 | <bold>39.34</bold> | <bold>10.73</bold>

Table 7: Example of (iv) Subjective Adjectives. Whether the performance is considered “significant” depends
on how the term is defined. Moreover, many argue that using the word “significant” requires the result to pass
some form of statistical test. The original version of the first row is: [EMPTY] | DUC’01 <italic>R</italic>1
| DUC’01 <italic>R</italic>2 | DUC’02 <italic>R</italic>1 | DUC’02 <italic>R</italic>2 |
DUC’04 <italic>R</italic>1 | DUC’04 <italic>R</italic>2.

Claim It closely matches the performance of ORACLE with only 0.40% absolute difference.
Label Supported
Caption Table 3: Accuracy of transferring between aspects. Models with † use labeled data from source

aspects. Models with ‡ use human rationales on the target aspect.
Table Source | Target | Svm | Ra-Svm‡ | Ra-Cnn‡ | Trans† | Ra-Trans‡† | Ours‡† | Oracle†

Beer aroma+palate | Beer look | 74.41 | 74.83 | 74.94 | 72.75 | 76.41 | [BOLD] 79.53 | 80.29
Beer look+palate | Beer aroma | 68.57 | 69.23 | 67.55 | 69.92 | 76.45 | [BOLD] 77.94 | 78.11
Beer look+aroma | Beer palate | 63.88 | 67.82 | 65.72 | 74.66 | 73.4 | [BOLD] 75.24 | 75.5

Table 8: Example of (v) Unclear Claims. It is unclear what entity the pronoun “it” refers to.
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