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Abstract

Multidialectal Arabic POS tagging is challeng-
ing due to the morphological richness and high
variability among dialects. While POS tagging
for MSA has advanced thanks to the availabil-
ity of annotated datasets, creating similar re-
sources for dialects remains costly and labor-
intensive. Increasing the size of annotated
datasets does not necessarily result in better
performance. Active learning offers a more ef-
ficient alternative by prioritizing annotating the
most informative samples. This paper proposes
an active learning approach for multidialectal
Arabic POS tagging. Our experiments revealed
that annotating approximately 15,000 tokens
is sufficient for high performance. We further
demonstrate that using a fine-tuned model from
one dialect to guide the selection of initial sam-
ples from another dialect accelerates conver-
gence—reducing the annotation requirement
by about 2, 000 tokens. In conclusion, we pro-
pose an active learning pipeline and demon-
strate that, upon reaching its defined stopping
point of 16,000 annotated tokens, it achieves
an accuracy of 97.6% on the Emirati Corpus.

1 Introduction

POS tagging assigns a part of speech to each word
in a sequence. It is a crucial step in various NLP
tasks such as Named Entity Recognition (NER)
(Glingor et al., 2018; Hamad et al., 2025; Jarrar
et al., 2024b, 2023a; Ligreina et al., 2023; Jarrar
et al., 2022), machine translation (Yazar and Kilig,
2025), text summarization (Nambiar et al., 2023),
word sense disambiguation (Khalilia et al., 2024;
Al-Hajj and Jarrar, 2021), and synonymous extrac-
tion (Naser-Karajah et al., 2021; Jarrar et al., 2021) .
In Arabic, POS tagging is particularly challenging
due to its highly inflectional morphology across
MSA and dialects(Darwish et al., 2021). First,
Arabic’s inflectional and derivational nature leads
to numerous affixes that modify stems (Ryding,
2014). Second, dialectal variation adds complexity,
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as an example, different affixes for the progressive
tense—e.g., (. / b ) in Levantine and Egyptian, (> /
d ) in Iraqi, and (¢ / k) in Moroccan. Third, each
dialect includes unique vocabulary absent in MSA
and other dialects (Hamed et al., 2025; Jarrar et al.,
2023c), complicating POS tagging further.

The importance of POS tagging, combined with
the complexity of Arabic morphology, has moti-
vated extensive research aimed at improving POS
tagging accuracy, coverage, and speed. Approaches
differ in datasets, tag sets, and NLP techniques. Re-
cent methods have achieved strong results on MSA,
supported by a large morphologically annotated
corpus (Inoue et al., 2021). Research on POS tag-
ging for Arabic dialects is still in its early stages
and has yet to produce a tagger that covers most
dialects (Inoue et al., 2021; Darwish et al., 2020).
This is due to morphological challenges specific
to dialects, as discussed earlier, and the lack of
morphologically annotated corpora. Creating such
corpora for each dialect is costly.

Active learning approaches, which prioritize an-
notating the most informative and representative
data samples (Kirsch, 2024), effectively reduce an-
notation cost and effort while maintaining or im-
proving model performance. Studies show that
it can cut labeling effort by up to 50% (Settles,

24960

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 24960-24973
November 4-9, 2025 ©2025 Association for Computational Linguistics



2009; Sener and Savarese, 2018), and recent work
demonstrates strong results in many domains: 40%
labeled data sufficed in document image classifica-
tion (Krishnan and Satish, 2023), 20.83%—24.34%
in retail recognition achieved 95% performance
(Bhatia and Kumar, 2024), and over 90% time re-
duction was reported in biomedical analysis (Chen
et al., 2024). Thus, active learning provides a cost-
effective method for developing multidialectal POS
taggers by producing high-quality morphologically
annotated corpora with minimal annotation.

This paper evaluates active learning for POS
tagging of four Arabic dialects (Palestinian, Syr-
ian, Egyptian, and Emirati) along with MSA. The
evaluation examines four key factors affecting ac-
tive learning cycle (see Figure 1): learning mod-
els, initial sample selection methods, annotation
levels, and query strategies. Results show that
annotating approximately 15,000 informative to-
kens from MSA, Palestinian, Egyptian, and Syrian
corpora is sufficient to achieve high performance,
reaching 97.3%, 95.5%, 94.8%, and 92.9%, re-
spectively. It also explores using fine-tuned mod-
els from other dialects for initial sample selection,
showing a 2.5-5% accuracy gain in the first itera-
tion and faster convergence. Finally, it introduces
an active learning pipeline applicable to any unan-
notated dialect. In summary, our contributions are:

 Evaluation of active learning for multidialec-
tal Arabic POS tagging (29 experiments).

¢ Insightful analysis and 10 assessments for ini-
tial sample selection across dialects.

* Active learning pipeline, e.g., achieved 97.6%
with only 16,000 tokens in Emirati.

The paper is structured as: Section 2 reviews re-
lated work; Sections 3 and 4 describe the corpora
and the evaluation methodology; Sections 5 and
6 present results and findings; Section 7 proposes
an active learning pipeline; and we conclude in
Section 8.

2 Related Work

Various methods have been used for Arabic and
dialectal POS tagging, evolving from limited rule-
and database-based approaches (Boudchiche et al.,
2017; Buckwalter, 2004; Graff et al., 2009; Jarrar
et al., 2024a), through classical machine learning
models (Pasha et al., 2014; Darwish et al., 2014,
2017, 2018), to neural networks (Darwish et al.,

2017, 2018; Kondratyuk et al., 2018), with re-
cent advancements focusing on transformer-based
models that achieved state-of-the-art results (Inoue
et al., 2021; Kondratyuk, 2019).

All of the aforementioned machine learning and
deep learning approaches rely on passive learning,
where a large dataset is required for training.

As a result, most MSA approaches relied on
one or more versions of the Arabic Treebank
(Maamouri et al., 2004), which is sourced from
different Arabic news sources. The POS annota-
tion procedure used in the Arabic Treebank (ATB)
involves segmenting raw input, applying the Buck-
walter Morphological Analyzer (Buckwalter, 2004)
to generate candidate tags, and having human anno-
tators select the correct POS. Review passes follow
to correct errors and ensure quality. While auto-
matic analysis helps improve efficiency, substantial
manual correction is needed, making the process
time-consuming and reliant on trained annotators.
Similarly, the Egyptian Arabic Treebank (ARZTB)
(Maamouri et al., 2018), which is sourced from
various Egyptian informal data sources (discussion
forums, text messaging, and chat), was built using
the same approach.

For the Levantine dialects, the first morphologi-
cally annotated corpus was the Palestinian corpus
Curras (Jarrar et al., 2017; Habash et al., 2015;
Jarrar et al., 2014), annotated using the DIWAN
tool (Al-Shargi and Rambow, 2015), which inte-
grated outputs from MADAMIRA (Pasha et al.,
2014) and was completed by two annotators over
one year. The Lebanese corpus Baladi (Haff et al.,
2022) was manually annotated by four annotators
over ten months using AnnoSheet, a Google Sheets-
based tool with JavaScript aids and Curras-based
suggestions. The Syrian corpus Nabra (Nayouf
et al., 2023) adopted this methodology, using the
Tawseem portal for annotation with smart features
and was completed by nine annotators in one year.

On the other hand, Lisan (Jarrar et al., 2023c¢),
which cover multiple dialects, followed the same
annotation methodology as Curras, Baladi, and
Nabra and was manually annotated using the ADAT
tool by 35 annotators over two years, with separate
teams per dialect. Similarly, the Gumar corpus
(Khalifa et al., 2018) used the MADARI tool for
manual annotation by a dedicated team. All these
corpora were sourced from diverse platforms such
as Facebook, Twitter, blogs, forums, YouTube, and
TV shows.

None of these corpora have utilized active learn-
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ing approaches in their annotation process, result-
ing in extended annotation timelines to produce
corpora suitable for POS tagger training. Active
learning for POS tagging remains underexplored,
with a notable recent study by (Chaudhary et al.,
2021) applying it to six languages—excluding Ara-
bic. To our knowledge, this work is the first to
apply active learning strategies for POS tagging to
Arabic and its dialects, demonstrating that a large
annotated corpus is not required; annotating only
the most informative tokens yields comparable re-
sults to training on the full dataset.

3 Datasets Preparation and Composition

This paper investigates four Arabic di-
alects—Palestinian, Syrian, Egyptian, and
Emirati—alongside MSA, using seven datasets
annotated primarily with POS and other mor-
phological features: (1) Arabic Treebank Part 3
v3.2 (ATB) (Maamouri et al., 2010), (2) SALMA
(Jarrar et al., 2023b), (3) BOLT Egyptian Treebank
(ARZTB) (Maamouri et al., 2018), (4) Curras
(Haff et al., 2022), (5) Nabra (Nayouf et al., 2023),
(6) Baladi (Haff et al., 2022), (7) Gumar (Khalifa
et al., 2018)! . Table 1 summarizes these datasets,
and Section 2 provides more details.

Dataset Tokens  Unique Tokens
ATB (MSA) 339,710 51,820
SALMA (MSA) 34,253 8,718
ARZTB (Egyptian) 400, 448 66, 899
Curras (Palestinian) 56, 700 16,573
Nabra (Syrian)

+ Baladi (Lebanese) 69, 582 24,664
Gumar (Emirati) 201, 596 22,924

Table 1: Datasets Statistics

As the seven datasets use different POS tagsets,
we employed a two-step unification process to align
all corpora with the tagset used in ALMA (Jarrar
et al., 2024a, 2018), a lemmatizer and POS tagger
for Arabic that is part of the morphology module in
SinaTools (Hammouda et al., 2024). ALMA relies
on the Qabas lexicographic database (Jarrar and
Hammouda, 2024), which links 110 lexicons (Jar-
rar and Amayreh, 2019; Jarrar et al., 2019) and the
Arabic Ontology (Jarrar, 2021, 2011)—and 12 mor-
phologically annotated corpora, including those

'ATB and ARZTB are licensed from the Linguistic Data
Consortium (LDC), while Curras, Baladi, Nabra and SALMA
are CC-BY-4.0, and Gumar is under a custom license

used in addition to QuranMorph (Akra et al., 2025).
Our two unification steps are:

* Label normalization: Tags that express the
same category but are named differently
were unified. Example: DEM_PRON
(Curras, Nabra, Baladi, ARZTB, ATB)
and PRON_DEM (Gumar) were unified as
DEM_PRON in every corpus.

* Value-level mapping: Tokens that carry
equivalent meanings but receive different
tags across corpora were manually harmo-
nized. Example: the numeral “7” is labeled
NOUN_NUM in ARZTB and ATB but DIGIT
in the other corpora; we mapped all occur-
rences to DIGIT.

See full mapping list in Table 3 in Appendix A.
After unifying the tags across all datasets, the
datasets —except SALMA, which was used for
testing only—were split following the methodol-
ogy in (van der Goot, 2021): TRAIN for training,
TUNE ( 5% of TRAIN) for model selection, DEV
for initial evaluation, and TEST for final evalua-
tion. Table 2 shows the token counts for TRAIN,
DEYV, and TEST. Some tokens were excluded due
to missing POS annotations in the original datasets.

Dataset TRAIN DEV TEST
ATB 221,262 39,790 68,242
Egyptian 267,555 81,650 38,040
Curras 44,600 5,698 95,808
Nabra + Baladi 56,035 6,447 6,927
Gumar 161,441 20,138 20,017

Table 2: Splits statistics for each dataset

4 Active Learning Methodology

This section presents the methodology for identi-
fying the most effective query strategy to achieve
high performance with minimal annotated data. To
ensure fair comparison across query strategies, we
first evaluated various pretrained learning models
on Arabic dialects from the literature to select the
most suitable one (subsection 4.1). We then ran pre-
liminary experiments to determine the best initial
sample selection method (subsection 4.2). Finally,
with both components selected, we conducted ex-
periments to identify the optimal query strategy
(subsection 4.4).
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In our methodology, the active learning process
continues until all tokens in each corpus’s training
set are annotated. This enables us to track the im-
pact of each newly selected batch of tokens in each
iteration and evaluate how increased annotation
affects performance.

4.1 Model Selection

To identify the best query strategy for multidialec-
tal Arabic POS tagging, we first evaluate the best
performing model. To ensure an unbiased compar-
ison, both the initial sample selection and query
strategy are fixed to random, isolating the impact
of the learning model.

Accordingly, we assess three commonly
pretrained BERT models for Arabic dialects:
AraBERT ("arabertvO2-twitter") (Antoun et al.,
2020), MARBERTV?2 (Abdul-Mageed et al., 2021),
and CAMeLBERT-Mix (Inoue et al., 2021). The
evaluation was conducted on Curras, as Palestinian
Arabic was covered across all three models.

4.2 Initial Sample Selection Method

The second step in identifying the best query strat-
egy for multidialectal Arabic POS tagging is se-
lecting a consistent initial sample selection method.
To determine the most effective approach, we con-
ducted preliminary experiments using a random
query strategy to isolate the effect of the initial
sample selection method.

The initial sample comprises sentences used in
the first active learning iteration to train the model
described in 4.1. We evaluated three selection meth-
ods: (i) Most Dissimilar Sentences, (ii) Probabilis-
tic Selection, (iii) Longest Sentences. The first
two rely on a TF-IDF matrix. Most Dissimilar se-
lects sentences with the lowest cosine similarity,
while Probabilistic Selection applies softmax to the
normalized top-k mean of matrix rows and sam-
ples indices accordingly. Longest Sentences are
selected based on word count. Additionally, we
explored prediction-based methods using a model
fine-tuned on one dialect to guide initial sample
selection in another.

To ensure consistency across corpora, we fixed
the initial sample size at 2000 tokens. Although
sentences are selected, we apply a token cap—once
2000 tokens are reached, remaining tokens and
sentences are excluded.

4.3 Annotation Level Selection

Another key consideration is the annotation level,
which can be either sentence-level (selecting full
sentences) or token-level (selecting individual to-
kens). We adopt token-level annotation, as sen-
tences often include redundant functional words
that add little value. Instead, we aim to target key
tokens the model finds uncertain.

The token-level annotation raises the issue of
handling unselected tokens within selected sen-
tences during training. We evaluate two strate-
gies from the literature: (1) Mask-All-Unknowns:
the model is fed full sentences, but loss is com-
puted only on the selected tokens; (2) Drop-All-
Unknowns: unselected tokens are removed entirely,
resulting in incomplete sentence inputs. For ex-
ample, given the sentence (il 1, L ol o / bdys§
ald hsa bra aldar ), if only (1, / bra , s / bdys)
are annotated, Mask-All-Unknowns computes loss
only on these words while the full sentence is used
as input, whereas Drop-All-Unknowns feeds only
(1. / bra , g/ bdys ) to the model. Both methods
are discussed in (Vacareanu et al., 2024).

We assess these approaches using the Curras cor-
pus for Palestinian Arabic, applying the best learn-
ing model, best initial sample selection method,
and a random query strategy.

4.4 Query Strategy Selection

we outline the query strategies that used to iden-
tify the most effective method for achieving high
performance with minimal annotated data.

* Random: Selects 2000 tokens at random from
the unannotated data pool in each iteration.

* Prediction Entropy: We selected 2000 tokens
with the highest entropy in their tag probabil-
ity distributions, formally a token x is selected
from unlabeled pool U based on (Roy and Mc-
Callum, 2001):

argmax — P(y;|x) log P(y;|x
g ; (yil) log P(y;|z)

* Breaking Ties: We selected 2000 tokens with
the smallest difference between the top two
predicted labels, formally a token x is selected
from unlabeled pool U based on (Scheffer
et al., 2001):

argmin P(y;1|z) — P(yi2|x)
xeU
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where {1 and [ are the most and second most
likely labels.

» Least Confidence: Selects 2000 tokens with
the lowest probability for the top predicted
label, formally a token x is selected from un-
labeled pool U based on (Culotta and McCal-
lum, 2005)

argmax 1 — P(y;1|x)
zeU

where [; is the most likely label.

* Most Common Ambiguous Words: We pro-
pose a new strategy to select 2,000 tokens that
receive multiple predicted tags across various
contexts, indicating ambiguity. In each itera-
tion, the number of distinct tags predicted for
each token is computed, tokens are ranked in
descending order by this count, and the top
2,000 are chosen.

5 Evaluation Results

This section presents the evaluation results based
on the methodology outlined in Section 4, the selec-
tion of the best model (5.2), initial sample selection
method (5.3), unselected token handling strategy
(5.4), best query strategies (5.5), and use of a fine-
tuned model from one dialect to select the initial
sample in another (5.6).

5.1 Experimental Setup

All models were implemented with the Hug-
ging Face Transformers library (Wolf et al.,
2020) and trained in PyTorch (Paszke et al.,
1912). Unless stated otherwise, we used the
same hyper-parameter configuration in every ex-
periment: 10 epochs per active-learning iteration, a
learning rate of be—>5, a batch size of 6, and a fixed
random seed (12345).

The number of active-learning iterations was pro-
portional to the size of the training corpus: it ranged
from 22 iterations for the smallest dataset (Curras)
to 133 iterations for the largest (ARZTB). Exper-
iments were run on a server with 62GiB RAM,
1.2TB disk storage, and a single NVIDIA T4 GPU.
Total wall-clock time consequently varied with cor-
pus size, from about 4.5 hours for Curras to roughly
65 hours for ARZTB.

Additional parameters—Ilearning model, initial
sample selection, and unselected token handling
strategy—were chosen based on preliminary re-
sults.

5.2 Model Evaluation

Figure 2 shows that AraBERTV2 and MAR-
BERTV2 perform similarly, but AraBERTV2
slightly outperforms MARBERTV2 on Curras
(Palestinian). Given that the state-of-the-art result
is 94%, AraBERTV?2 exceeds it at 18,000 tokens
with 94.1%, while MARBERTV2 requires 20,000
tokens and CAMelBERT-Mix needs more. There-
fore, AraBERTV?2 is selected as the learning model
for subsequent experiments.
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Figure 2: Learning Models Experiments-Curras

5.3 Initial Sample Selection Evaluation

Figure 3 compares initial sample selection meth-
ods, excluding the approach using a fine-tuned
model from another dialect, which is evaluated sep-
arately later. Among Most Dissimilar Sentences,
Probabilistic Sampling, and Longest Sentences, the
Most Dissimilar Sentences method performs best.
This is likely because it captures a representative
subset of the dataset. However, the overall per-
formance shows minimal sensitivity to the initial
sample method, reinforcing that the query strat-
egy plays the most critical role. Therefore, Most
Dissimilar Sentences is adopted for all subsequent
experiments.
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Figure 3: Initial Sample Selection Method Experiments-
Curras
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5.4 Annotation Level Evaluation

Figure 4 compares methods for handling unselected
tokens, showing that Mask-All-Unknowns slightly
outperforms Drop-All-Unknowns during the first
seven iterations due to retained context. As more
tokens become annotated, the context improves in
Drop-All-Unknowns; both methods converge in
performance. Therefore, Mask-All-Unknowns is
adopted for the remaining experiments to ensure
better early-stage performance with minimal anno-
tation as aimed.
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88
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Figure 4: Handling Unselected tokens Experiments-
Curras

5.5 Query Strategy Evaluation

Notably, all prior preliminary experiments main-
tained a fixed query strategy which is Random,
focusing instead on identifying parameters to be
held constant. We now present the results of the
query strategy experiments. Figures 5, 6, 7, and 8
show the performance of each query strategy across
dialects.In Figure 5, covering Curras, Breaking
Ties, Least Confidence, and Entropy outperform
the state-of-the-art, reaching F1 scores of 94.7%,
94.6%, and 94.5% with only 8,000 tokens (about
18% of the training set). These results confirm that
high performance is achievable with partial annota-
tion, significantly reducing time and cost. Notably,
the Most Ambiguous Words strategy performs the
worst, behaving similarly to random selection. This
is likely because it selects tokens with the most
diverse tag predictions across contexts without con-
sidering model confidence. Future improvements
to this method should factor in confidence levels.
The same pattern appears in Nabra (Syrian) (Fig-
ure 6), where Breaking Ties, Least Confidence,
and Entropy reach F1 scores of 93%, 93%, and
92.9% using only 18,000 tokens (32% of the train-
ing data), with no performance gains from further
annotation. Similarly,in ARZTB (Egyptian) (Fig-
ure 7), the state-of-the-art is surpassed at only 5.2%

Curras (Palestinian) - Different Query Strategies

—Breaking Ties

——Least Confidence

F1
©
o

~——Max Entropy
—Most Common Ambiguous

——Random Query

O
FEES IS IS ST I E TSI ST

No. of Annotated Tokens

Figure 5: Curras (Palestinian) with Different Query
Strategies

of the training data, reaching 94.7%. Finally, in
ATB (MSA) (Figure 8), a 98% F1 score is achieved
with just 46,000 tokens (23% of the training data).

Nabra (Syrian) + Baladi (Lek iffe Query §f

—Breaking Ties
—Least Confidence

—Max Entropy

——Most Common Ambiguous
—Random

Figure 6: Nabra (Syrian) with Different Query Strate-
gies
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Figure 7: ARZTB (Egyptian) with Different Query
Strategies

ATB (MSA)- Different Query Strategies

97 — =
96
95
* 94
93 Max Entropy
92 ——Breaking Ties
43 — Least Confidence
89 ——Most Common Ambiguous
88 —Random

> 28000
30000
32000
34000
36000
38000
40000
42000
44000
46000
48000
50000
52000
54000

116000
220000

Figure 8: ATB (MSA) with Different Query Strategies
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5.6 Another-Dialect Model for Initial Sample
Selection Evaluation

Experiments in Figures 9, 10, 11, 12, and 13 aim
to examine the impact of using a model fine-tuned
on one dialect as an inference model for another
dialect, then selecting the tokens the model is un-
certain about as the initial sample for that dialect.
(1) Figure 9 shows that using a model finetuned on
Curras (Palestinian-Levantine) to guide selection
for Nabra (Syrian-Levantine) yields a 5% perfor-
mance boost in the first iteration and reaches 93.2%
with only 12,000 tokens (vs. 22,000 without a fine-
tuned model on Curras). The reverse—using Nabra
for Curras—shows similar benefits (Figure 10),
reaching 94.5% with just 6,000 tokens (vs. 8,000).
(2) Figure 11 indicates that using an ATB (MSA)
model for Curras boosts first-iteration performance
by 4.7%. (3) Figure 12 shows a 2.3% gain in first-
iteration when using ARZTB (Egyptian-a different
dialect family) for Nabra (Syrian), and reaching
93.2% at 14,000 tokens (vs. 22,000). (4) Lastly,
Figure 13 uses a model fine-tuned incrementally
on ATB (MSA) — Curras (Palestinian) — Nabra
(Syrian) for ARZTB (Egyptian), further validating
the effectiveness of this approach.

Nabra (Syrian) with Best Query with Curras (Palestinian) Model as a method
for selecting the initial sample
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Figure 10: Curras (Palestinian) with Nabra (Syrian)

6 Discussion

This section discusses and analyzes the results, be-
ginning with an extra validation step to check for

Curras (Palestinian) with Best Query with ATB (MSA) Model as a method for
selecting the initial sample

89 ——Best Query with MSA Model as a
88 method for selecting the initial sample
——Best Query

FEEESEE S EE S ST SIS
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Figure 11: Curras (Palestinian) with ATB (MSA)

Nabra (Syrian) with Best Query with ARZTB (Egyptian) Model as a method for
selecting the initial sample

_89 —Best Query
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Figure 12: Nabra (Syrian) with ARZTB (Egyptian)

ARZTB (Egyptian) with Best Query with All (ATB (MSA)+ Curras (Palestinian)+ Nabra
(Syrian)) Model as a method for selecting the initial sample
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Figure 13: ARZTB (Egyptian) with All (Curras, Nabra,
MSA)

potential overfitting (Section 6.1). Then, Sections
6.2, 6.3, and 6.4 present our findings with corre-
sponding analysis.

6.1 Extra Validation

To evaluate our methodology and check for po-
tential overfitting, we tested the model at each
iteration—while training on Curras (Palestinian)
with the Breaking Ties query strategy—not only on
the Curras test set, but also on Nabra (Syrian) and
SALMA (MSA). As shown in Figure 14, the model
exhibited similar behavior across all three datasets.
Through iterative selection and annotation of the
most informative tokens from Curras, the model
improved performance not only on Curras but also
on the unseen Nabra and SALMA datasets, despite
having no prior exposure to them during training.
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Evaluation Test — Curras (Palestinian) with Test sets ( Curras Test set, Nabra
(Syrian) and Salma (MSA) as Test sets)

77 ——Curras (Palestinian) Test Set
75 ——Nabra (Syrian) as Test Set
73 Salma (MSA) as Test Set

SESESE S, o}& ﬂ&i@”"fﬁ ST E S S
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Figure 14: Evaluation Test — Curras (Palestinian) with
Test it on Nabra (Syrian), Salma (MSA)

6.2 Best Query Strategy

The first key finding is that all three uncertainty-
based strategies—Breaking Ties, Least Confi-
dence, and Entropy—achieved similarly high per-
formance, as they all rely on prediction scores for
token selection. However, Breaking Ties consis-
tently converged earlier, probably due to its focus
on tokens with the smallest margin between top
two predictions, capturing uncertainty sooner.

To understand the slight performance differ-
ences, we analyzed selected tokens at iterations
3, 5, and 7 on the Curras dataset. All strategies
prioritized purely dialectal words (e.g., ./ bs,
/ f§') and tokens with dialectal prefixes (e.g., /b
/PROG_PART) or suffixes (e.g., :/§/NEG_PART),
which are typically ambiguous. Early selection
of such tokens helped reduce confusion, and the
best-performing strategy appeared to target more
of these informative tokens earlier.

6.3 Analysis Stabilization

The second notable finding across all experiments
is that model performance stabilizes around 15, 000
informative tokens, as illustrated in Figure 15. This
trend is further supported by the selected tokens
distributions to the overall training set in the first
eight iterations from Curras (Palestinian) in Figure
17. Initially, active learning targets dense and di-
verse regions—typically ambiguous or uncertain
cases—allowing the model to quickly learn essen-
tial pattern distinctions. Over time, newly selected
tokens increasingly cover more of the training set’s
distribution; finally, by the end of eight iterations
(totaling 16, 000 tokens), the selections are broadly
distributed (see last plot in Figure 17). This wide
coverage explains the degrading contribution of
later tokens, resulting in performance stabilization.

Best Query on All

gy —ATB (MSA)
90 Curras (Palestinian)
89 ——ARZTB (Egyptian)
——Nabra (Syrian)

FEEEEE S EEET TSI TS S SIS
No. of Annoluied Tokens

Figure 15: Performance on All corpora using Best Ac-
tive Learning Method

6.4 Comparing Between Dialects

Figure 15 also shows that Nabra (Syrian) under-
performed, prompting a quantitative analysis that
revealed rare and ambiguous Syrian words like s~
[ gwdly , g nbryg , 2/ 3n , yas | haswkh , s/
sqrq . Conversely, ATB (MSA) performed best due
to its more systematic morphology, where verbs
and nouns follow consistent forms, unlike dialects
where, for example, a noun like s,/ gwdly can
resemble a verb. )

7 Proposed Active Learning Pipeline

Based on the evaluation in 5 and findings in 6,
we propose an active learning pipeline for multi-
dialectal Arabic POS tagging on new unannotated
datasets (see Figure 1). The pipeline consists of
three phases: (1) selecting the initial sample us-
ing a model fine-tuned on another dialect. (2) ap-
plying the Breaking Ties strategy to select 2,000
new tokens per iteration. (3) stopping once perfor-
mance stabilizes. As discussed earlier, stabilization
typically occurs at approximately 15, 000 tokens.
Therefore, the stopping criterion is set at 16, 000
tokens to ensure convergence. This pipeline was
validated on the Gumar (Emirati) Corpus, reaching
a performance of 97.6% at stopping point. (see
Figure 16).

Gumar (Emirati) with Best Query with All (ATB (MSA)+ Curras (Palestinian) +
Nabra (Syrian)+ ARZTB (Egyptian)) Model as a method for selecting the initial
sample

95 ——Best Query with All

2000 4000 6000 8000 10000 12000 14000 16000
No. of Annotated Tokens

Figure 16: Gumar (Emirati) with Best Query with All
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Figure 17: t-SNE visualization of selected tokens distribution on the first eight iterations of the Curras (Palestinian)
training set. Notably, the Last plot is for all selected tokens in eight iterations together.

8 Conclusion

This paper evaluated using active learning for POS
tagging in MSA and Arabic dialects—Palestinian,
Syrian, and Egyptian. Selecting 15, 000 informa-
tive tokens per corpus proved sufficient for high per-

formance. Using a fine-tuned model from another
dialect with the Breaking Ties strategy yielded
the best results. Thus, new dialectal POS taggers
should adopt active learning to reduce annotation
effort and cost.
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9 Limitations

Like many deep learning approaches, our work re-
lies heavily on GPU resources. However, unlike
typical training setups where the model is trained
once on a fixed dataset, active learning requires
repeated training cycles as new data points are iter-
atively selected and added to the training set. This
iterative nature significantly increases the overall
computational cost and GPU demand. An addi-
tional limitation arises when working with large-
scale datasets, as both the training time and re-
source requirements grow substantially with each
active learning iteration, potentially impacting scal-
ability and experimentation efficiency.
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ATB, ARZTB Curras, Nabra, Baladi, SALMA Gumar Unified Tag (Sina)
NOUN NOUN NOUN NOUN
NOUN_PROP NOUN_PROP NOUN_PROP NOUN_PROP
NOUN_NUM NOUN_NUM NOUN_NUM NOUN_NUM
NOUN_QUANT NOUN_QUANT NOUN_QUANT NOUN_QUANT
- NOUN_VOICE - NOUN_VOICE
ADJ ADJ ADJ AD]J
ADJ_COMP ADJ_COMP ADJ_COMP ADJ_COMP
ADJ_NUM ADJ_NUM ADJ_NUM ADJ_NUM

PV PV VERB:P PV

v v VERB:I v

(0\Y Cv VERB:C Cv

PV_PASS PV_PASS - PV_PASS
IV_PASS IV_PASS VERB:PI IV_PASS
PRON PRON PRON PRON
DEM_PRON DEM_PRON PRON_DEM DEM_PRON

INTERROG_PRON

EXCLAM_PRON
REL_PRON

ADV

REL_ADV
INTERROG_ADV
PART

EMPHATIC_PART
INTERROG_PART

RESTRIC_PART
FOCUS_PART
VOC_PART
DET

FUT_PART
SUB_CONJ
PROG_PART
NEG_PART
VERB_PART
PSEUDO_VERB
VERB

PREP

CONJ

INTERJ
NOUN_NUM
FOREIGN

INTERROG_PRON
EXCLAM_PRON
REL_PRON

ADV

REL_ADV
INTERROG_ADV
PART
EMPHATIC_PART
INTERROG_PART
RESTRIC_PART
FOCUS_PART
VOC_PART

DET

FUT_PART
SUB_CONJ
PROG_PART
NEG_PART
VERB_PART
PSEUDO_VERB
VERB

PREP

CONJ

INTERJ

DIGIT

FOREIGN

PRON_INTERROG

PRON_EXCLAM
PRON_REL

ADV

ADV_REL
ADV_INTERROG
PART

PART_EMPHATIC
PART_INTERROG

PART_RESTRIC
PART_FOCUS
PART_VOC
PART_DET
PART_FUT
CONJ_SUB
PART_PROG
PART_NEG
PART_VERB
VERB_PSEUDO
VERB_NOM
PREP

CONJ

INTERJ

DIGIT
FOREIGN

INTERROG_PRON

EXCLAM_PRON
REL_PRON

ADV

REL_ADV
INTERROG_ADV
PART
EMPHATIC_PART
INTERROG_PART
RESTRIC_PART
FOCUS_PART
VOC_PART

DET

FUT_PART
SUB_CON]J
PROG_PART
NEG_PART
VERB_PART
PSEUDO_VERB
VERB

PREP

CONJ

INTERJ

DIGIT
FOREIGN

Table 3: POS Tagsets Mapping
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