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Abstract

In recent months, substantial progress has been
made in complex reasoning of Large Language
Models (LLMs), particularly through the appli-
cation of test-time scaling. Notable examples
include, though are not limited to, OpenAI’s
01/03/04 series and DeepSeek-R1. When re-
sponding to a query, these models generate an
extended reasoning trajectory, during which
the model explores, reflects, backtracks, and
self-verifies before arriving at a conclusion.
However, fine-tuning models with such rea-
soning trajectories may not always be optimal.
Our findings indicate that not all components
within these reasoning trajectories contribute
positively to the reasoning process; in fact,
some components may affect the overall per-
formance negatively. In this study, we divide a
reasoning trajectory into individual subtrajec-
tories and develop a "5+2" framework to: (1)
systematically identify suboptimal subtrajecto-
ries within the reasoning trajectory based on
five human-established criteria; (2) assess the
independence of the suboptimal subtrajectories
identified in (1) from the subsequent content,
ensuring that their elimination does not com-
promise overall flow and coherence of the rea-
soning process. Additionally, a sampling algo-
rithm, built upon the "5+2" framework, is em-
ployed to select data whose reasoning process
is free from suboptimal subtrajectories to the
highest degree. Experimental results demon-
strate that our method can reduce the number of
suboptimal subtrajectories by 25.9% during the
inference. Furthermore, our method achieves
an average accuracy of 58.92% on highly
challenging AIME24, AIME25, AMC24 and
MATHS500 benchmarks with only two thirds of
training data, surpassing the average accuracy
of 58.06% achieved with the entire data, and
outperforming open-source datasets, includ-
ing s1K-1.1, Light-R1-SFT-stage-1, OpenR1-
Math-94k, and OpenThoughts-114k, when fine-
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tuning Qwen2.5-Math-7B. Finally, we have
validated the efficacy of our method under
resource-constrained scenarios, where it ex-
hibits performance improvements across dif-
ferent maximum inference token limits: 2k, 4k,
8k, and 16k tokens.

1 Introduction

Large language models (LLMs) have been rapidly
evolving in their ability to tackle complex reason-
ing tasks. Recently, in the domain of LLMs, Rein-
forcement Learning (RL) employing an outcome-
based reward has attracted public attention, as it
grants the model extensive freedom to explore, re-
flect, backtrack, and self-verify, a process known
as test-time scaling (DeepSeek-Al et al., 2025;
Luo et al., 2025). RL-ed LLMs, exemplified by
DeepSeek-R1 (DeepSeek-Al et al., 2025), have
demonstrated robust capabilities in handling com-
plex reasoning tasks, and are consequently often
used as teacher models in knowledge distillation,
enhancing the reasoning capabilities in other mod-
els or cold-starting them with a test-time scaled out-
put format through Supervised Fine-Tuning (SFT)
(DeepSeek-Al et al., 2025; Yang et al., 2025; Wen
et al., 2025). However, reponses generated by RL-
ed LLMs do not always guarantee the highest qual-
ity, as the unconstrained freedom during the RL
training can introduce inefficiencies or counterpro-
ductive elements, such as prematurely abandoned
steps or repetitive verifications, even within correct
solutions, which will be illustrated in Section 3.1.
Fine-tuning a model using such solutions would be
suboptimal, as they could potentially decrease both
the model’s accuracy (Ye et al., 2025) and thinking
efficacy (Wang et al., 2025).

Naturally, the following question arises: given
a set of QA pairs, where the answers are distilled
from a RL-ed LLM, how can we select the QA
pairs that are free from these inefficiencies and
counterproductive elements to fine-tune another
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model? To address this question, we first recall that
answers from a RL-ed LLM, such as DeepSeek-R1,
typically take the form in Appendix A.

For a QA pair, we divide its thinking process into
individual approaches, referred to as subtrajecto-
ries in later discussions. We propose five criteria:
Effort, Effectiveness, Coherence, Preliminary Con-
clusion, Valid Verification, to assess each subtrajec-
tory, determining whether it contributes positively
to problem-solving from a specific perspective. If
a subtrajectory fails to meet a criterion, we will
further assess its independence within the thinking
process and determine whether it can be removed
without impacting the understanding and coherence
of subsequent reasoning process. After eliminating
suboptimal and independent subtrajectories, we
will assign a quality score to the QA pair: first,
assign a score to each subtrajectory based on the
five criteria; second, aggregate these scores with
weights proportional to the number of tokens in
each subtrajectory.

In addition to data quality, our analysis reveals
that the distribution of the number of subtrajecto-
ries within the dataset also influences the model’s
reasoning ability. Accordingly, following the modi-
fication and computation of the quality scores, we
develop a sampling algorithm of selecting QA pairs
for supervised fine-tuning. This algorithm consid-
ers both the quality scores and the number of sub-
trajectories in the thinking process, achieving a bal-
ance through weights determined by the Kullback-
Leibler (KL) divergence (Joyce, 2011) between the
distribution of number of subtrajectories in the en-
tire dataset and that in the sampled dataset. This
approach enables the selection of efficient and pro-
ductive QA pairs based on an in-depth assessment
of their thinking processes, while preventing the al-
gorithm from disproportionately favoring thinking
process with fewer subtrajectories.

Comprehensive experimental results illustrate
that our methods achieve an average accuracy
of 58.92% on the highly challenging AIME24,
AIME25, AMC24, and MATH benchmarks, uti-
lizing merely two-thirds of the curated training
data. This performance surpasses the 58.06% accu-
racy obtained with the full dataset. Meanwhile, the
number of suboptimal subtrajectories decreases by
25.9% during the inference, which suggests a more
profound and efficient reasoning paradigm. The
concurrent enhancement in accuracy and thinking
efficacy underscores that the responses generated
from RL-ed LLMs indeed exhibit significant qual-

ity issues, and our data quality pipeline, encom-
passing suboptimal subtrajectory elimination and
sampling strategy, demonstrates a robust capability
in mitigating these issues.

In summary, our contributions are: (1) We pro-
pose a "5+2" framework to assess and modify the
thinking processes generated from RL-ed LLMs at
subtrajectory level. (2) We develop a sampling al-
gorithm aimed at selecting efficient and productive
QA pairs for supervised fine-tuning based on sub-
trajectory assessment. (3) We conduct comprehen-
sive experiments and ablation studies to illustrate
the effectiveness of ‘5+2” framework and samping
strategy, which enhance both model accuracy and
thinking efficacy.

2 Data Curation

In this section, we discuss the process of construct-
ing OpenSourceR1-Hard and DeepMath-Hard, the
source datasets that we use for our subsequent stud-
ies. It should be noted that our hypotheses and
methodologies in section 3 are both formulated
and validated using OpenSourceR1-Hard, and the
DeepMath-Hard dataset is regarded as an out-of-
distribution test set. Both datasets undergo the fol-
lowing filtering processes, including basic quality
filtering and difficulty filtering. The construction
and filtration processes of the two datasets are elab-
orately detailed in Appendix B. We also decontam-
inate the collected dataset against the evaluation
benchmarks mentioned in 4.1 using 15-grams.

3 Sampling at the Subtrajectory Level

3.1 A Deep Dive into Subtrajectories

When responding to a query, DeepSeek-R1, along
with several RL-ed LLMs, initiates a thinking pro-
cess. During this process, the model explores mul-
tiple approaches (Qin et al., 2024), reflects on the
current approach, reverts to previous steps when the
current approach is longer deemed viable, and con-
ducts self-verification. The attempted approaches,
hereafter referred to as subtrajectories, are demar-
cated clearly, typically initiating with phrases such
as "Alternatively", "Another method", and similar
expressions. However, the quality of these subtra-
jectories is inconsistent, which in turn impacts the
overall quality of the thinking process. After re-
viewing dozens of thinkings from OpenSourceR1-
Hard, we identify that low-quality subtrajectories
frequently manifest in the following forms (see
Appendix C for examples):
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1. The subtrajectory proposes a method without
attempting it.

2. The subtrajectory attempts to solve the prob-
lem in an ineffective manner.

3. The subtrajectory has logical discontinuities.

4. The subtrajectory transitions to the next one
without reaching any conclusions.

5. The subtrajectory contains redundant self-
verification(s).

We prompted QwQ-32B (Team, 2025) to assess
whether subtrajectories in the OpenSourceR 1-Hard
dataset exhibit any of the aforementioned issues.
The evaluation result revealed that 50.16% of all
subtrajectories contain at least one of the five de-
fined low-quality characteristics.

3.2 Identifying and Eliminating Suboptimal
Subtrajectories

To identify the five inefficient and counterproduc-
tive components, we have established five specific
criteria. We prompt QwQ-32B with these criteria
to evaluate each subtrajectory. These five criteria
form the "+5" component of our "5+2" framework.

1. Effort: The subtrajectory should not only in-
troduce a method but also demonstrate its rel-
evance to the current context. This involves
providing a detailed explanation of the method
and then applying it to address the problem at
hand, integrating it with the preceding discus-
sion or the problem statement.

2. Effectiveness: The subtrajectory should at-
tempt the problem in an effective manner.
This may involve: simplifying the problem,
refining previously suggested steps, advanc-
ing the problem-solving process, clarifying
the limitations of the applied methods, or sub-
stantiating earlier conclusions.

3. Coherence: Each step within the subtrajec-
tory is logically connected, ensuring no logi-
cal leaps occur in the reasoning process. Every
intermediate result must be derived through
computation or rigorous proof.

4. Preliminary Conclusion: Before transitioning
to the next subtrajectory, this subtrajectory
should draw a preliminary conclusion, which

may include a final answer, intermediate find-
ings, an evaluation of the current approach, or
suggestions of other viable approachs.

5. Valid Verification: The subtrajectory avoids
repetitive verification of the same statement
using the identical method, and it does not
re-verify statements that have been verified in
previous subtrajectories.

If a subtrajectory fails to meet any of the five
criteria, it is classified as a suboptimal subtrajec-
tory. The existence of suboptimal subtrajectories
can degrade the overall quality of the thinking pro-
cess. However, discarding QA pairs that include
any suboptimal subtrajectory would significantly
reduce the data size available for supervised fine-
tuning. Instead, we opt to eliminate any identified
suboptimal subtrajectory within the thinking pro-
cess utilizing the five criteria.

When eliminating subtrajectories, it is crucial
to maintain the overall flow and structure of the
thinking process. An example of non-eliminable
suboptimal subtrajectory is shown in Appendix D.
Note that the first subtrajectory in the example fails
to attempt the approach it proposes, thus violating
the first criterion. However, this subtrajectory can-
not be eliminated because the area fomula derived
in it is revisited in the third subtrajectory, in which
a valid attempt is made. Given this dependency, the
first subtrajectory must be retained.

Therefore, subtrajectories that are suboptimal
should not be removed if their removal impairs the
understanding of the subsequent content. To be
more precise, upon identifying a suboptimal sub-
trajectory, we will prompt QwQ-32B to evaluate
its independence from subsequent subtrajectories.
Should this suboptimal subtrajectory be determined
to be independent, it will be subject to elimination.

1. Independence: Assessing whether the param-
eters, variables, algebraic expressions, conclu-
sions, or verifications defined in the current
subtrajectory are used in later content.

2. Elimination: If the current subtrajectory is
relied upon by subsequent content, it should
be retained. Conversely, if a subtrajectory
is suboptimal and independent of subsequent
subtrajectories, it should be eliminated.

This independence assessment and elimination
mechanism constitutes the "+2" component of our
"5+2" framework.
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3.3 The Sampling Algorithm
3.3.1 Scoring a Thinking Process

Due to the existence of suboptimal subtrajectories
that cannot be eliminated, the revised thinking
process, i.c., thinking process after elimination
of independent suboptimal subtrajectories, cannot
be problem-free. Therefore, we introduce a scor-
ing mechanism to assess the quality of the revised
thinking process, in accordance with the five crite-
ria outlined in the preceding section. This scoring
mechanism will be instrumental in the selection of
QA pairs for supervised fine-tuning.

Given a QA pair, we extract its thinking process.
Next, we prompt QwQ-32B to evaluate each sub-
trajectory within this thinking process against the
five criteria, with the aim of identifying and elim-
inating those suboptimal subtrajectories that are
independent, as detailed in Section 3.2. Each of the
remaining subtrajectories is awarded % points for
each of the five criteria it satisfies:

Score(subtrajectory) :=

> (1)
>
j=1

-1 [subtrajectory satisfies criterionj} .

| =

Note that a score ranging from 0 to 1 is assigned
to each subtrajectory. We will aggregate these in-
dividual scores into a single score that accurately
reflects the overall quality of the thinking process.

3.3.2 Varied Weights Based on Token Counts

The length of subtrajectories is a critical factor. For
longer suboptimal subtrajectories in the revised
thinking process, a larger penalty should be im-
posed in contrast to their shorter counterparts. Con-
sequently, when aggregating the scores of each
subtrajectory, we apply a weight that is determined
by the token count of the respective subtrajectory:

QualityScore(thinking) :=

n .
T (subt tory, 2
E :w (Score(subtrajectory)) , @

where n is the number of subtrajectories within
the thinking process, and 7'(-) returns the number
of tokens of the input string. The flow chart in
Appendix M demonstrates the computation process
of the varied weights based on token counts.

Technically speaking, the quality score is specif-
ically defined on the thinking process within the

answer of a QA pair. Given that each QA pair con-
tains exactly one thinking process, we will adopt
a less rigorous notation: QualityScore(QA pair),
to denote the quality score of the thinking process
within the answer of that QA pair.

3.3.3 Sampling on Quality Score and
Distribution of Subtrajectory Counts

Naturally, after calculating the quality score of
a thinking process, we can establish a threshold
and select QA pairs whose thinking process scored
above this threshold. However, we notice that the
scoring mechanism disproportionately favors think-
ing processes with fewer subtrajectories, as they are
less prone to violate criterion 1, 2, 4. The findings
are detailed in Appendix F.

Theoretically speaking, a SFT dataset compris-
ing an excessive number of QA pairs with an ex-
tremely low number of subtrajectories may lead
to a reduction in the SFTed model’s exploratory
ability, confining its search to a limited space and
thereby impairing its performance on complex rea-
soning tasks. Therefore, when sampling based on
quality scores, it is essential to introduce a con-
straint by incorporating a penalty term that reflects
the percentage change in the frequency of number
of subtrajectories within the thinking process of the
sampled dataset and the entire dataset. The detailed
sampling algorithm is in Appendix G.

Through the sampling algorithm, we may select
QA pairs that are aligned with the five criteria out-
lined in Section 3.2, while considering the number
of subtrajectories as intact as possible.

4 Experimental Results

4.1 Setup

Training: We conduct supervised fine-tuning
on Qwen2.5-Math-7B across two datasets:
OpenSourceR1-Hard and DeepMath-Hard to
evaluate the effectiveness of our methods in the
domain of mathematics. The detailed training
configurations is in Appendix H.

Evaluation: We assess the effectiveness of our
methods using a range of mathematics benchmarks,
including AIME24, AIME25, MATH500, AMC24,
as detailed in Appendix I. The evaluation methods
are detailed in Appendix J.

4.2 Ablation Studies

We conduct ablation studies to assess the ef-
ficacy of the "5+2" framework and the sam-
pling algorithm on both our in-distribution
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dataset OpenSourceR1-Hard, and our out-of-
distribution dataset DeepMath-Hard. Regarding
the OpenSourceR1-Hard dataset (around 60k sam-
ples), we have curated various fractions of the
dataset, including the entire dataset, two-thirds of
the dataset, and one-third of the dataset. Regarding
the DeepMath-Hard dataset (around 12k samples),
we have curated two fractions: the entire dataset
and two-thirds of the dataset. Due to the relatively
limited size of the DeepMath-Hard dataset, we did
not curate a one-third fraction in our analysis.

For each sampled fraction, we consider the
following four configurations, as detailed in Ap-
pendix K: (1) Elimination with Sampling Algo-
rithm (E+SA); (2) No Elimination with Sampling
Algorithm (NE+SA); (3) Elimination without Sam-
pling Algorithm (E+NSA); (4) No Elimination
without Sampling Algorithm (NE+NSA).

For the entire dataset, only the configurations
E+NSA and NE+NSA are employed, as the sam-
pling algorithm is inapplicable in this context.

The performance of the OpenSourceR1-Hard
models is detailed in Table 1. The results demon-
strate that the elimination of suboptimal subtrajec-
tories enhances the model’s performance across
all comparative groups, regardless of the appli-
cation of the sampling algorithm. Specifically,
within the entire dataset, the E+NSA configuration
achieves an accuracy of 59.60%, outperforming
the NE+NSA configuration, which attains 58.06%.
Similarly, in the two-thirds of the dataset, when
the sampling algorithm is applied, E+SA achieves
an accuracy of 58.92%, representing a 1.86% im-
provement over NE+SA. This enhancement can be
attributed to the efficacy in eliminating subopti-
mal subtrajectories, thereby optimizing the overall
solution’s efficiency despite a reduction in token
length. In the one-third of the dataset, elimina-
tion suboptimal subtrajectories achieves approxi-
mately the same accuracy as configurations without
the elimination process. To our best knowledge,
this similarity in performance is partly due to the
7B model’s limited math capabilities compared to
larger models such as the 32B variant, making its
performance highly susceptible to the quantity of
data and tokens utilized in the SFT process. De-
spite eliminating suboptimal subtrajectories further
reducing the number of tokens used in SFT, it man-
ages to maintain a comparable level of accuracy to
configurations with the original solution.

Moreover, the integration of the "5+2" frame-
work with sampling algorithms demonstrates a

pronounced capability in augmenting model per-
formance. Specifically, the implementation of
E+SA significantly enhances model accuracy from
56.23% (as observed in NE+NSA) to 58.92% in
the two-third of the dataset. A similar observa-
tion has been made within the one-third of the
dataset. Additionally, the E+SA model in the two-
third of the dataset demonstrates a 0.86% better
performance compared to the NE+NSA model in
the entire dataset. This suggests that although re-
ductions in sample size and token amounts can
significantly influence a 7B model in SFT process,
the "5+2" framework together with the sampling
algorithm are particularly effective in identifying
optimal QA pairs from the entire dataset, thereby
achieving enhanced performance.

Methods AIME25 AIME24 MATHS500 AMC24 Average
Entire Dataset

E+NSA 35.03 44.15 90.25 68.98 59.60

NE+NSA 29.18 47.50 88.90 66.65 58.06
Two-thirds of the Dataset

E+SA 38.63 39.43 90.55 67.05 58.92

NE+SA 35.85 36.70 89.80 65.90 57.06

E+NSA 37.50 38.35 89.40 60.40 56.41

NE+NSA 31.65 35.80 89.25 68.23 56.23
One-third of the Dataset

E+SA 29.45 35.00 87.20 66.30 54.49

NE+SA 30.55 35.00 87.05 65.33 54.48

E+NSA 27.50 34.15 87.95 60.98 52.65

NE+NSA 27.50 33.90 87.90 61.73 52.76

Table 1: OpenSourceR1-Hard: The "5+2" framework
and the sampling algorithm performance across mathe-
matical benchmarks

A similar trend is observed on our out-of-
distribution dataset DeepMath-Hard, as summa-
rized in Table 2. Specifically, within the entire sub-
set, the E+NSA configuration achieved an accuracy
of 52.53%, significantly surpassing the 50.21% ac-
curacy of the NE+NSA configuration. Moreover,
in the two-third of the dataset, the implementa-
tion of E+SA yielded an accuracy rate of 49.12%,
outperforming the 47.05% achieved by NE+NSA.
These findings indicate that, even when evaluated
on an out-of-distribution dataset, the integration of
the "5+2" framework and the sampling algorithm
exhibits superior performance across various data
sizes, outperforming configurations that do not in-
corporate these methods.

In addition, we conducted two extra sets of ab-
lation studies to validate our methods in Section 3.
The first ablation study compares equal weights, de-
tailed in Appendix E, against varied weights. The
second one contrasts the presence and absence of
the sampling algorithm. The results of these two
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Methods AIME25 AIME24 MATHS00 AMC24 Average
Entire Dataset
E+NSA 29.45 28.60 87.65 64.40 52.53
NE+NSA 25.00 28.60 87.40 59.85 50.21
Two-thirds of the Dataset

E+SA 27.23 27.23 85.20 56.80 49.12
NE+SA 25.03 25.55 86.15 56.25 48.25
E+NSA 24.18 27.50 85.65 56.80 48.53
NE+NSA 20.55 26.38 85.05 56.23 47.05

Table 2: DeepMath-Hard: The "542" framework and the
sampling algorithm performance across mathematical
benchmarks

ablation sturdies are detailed in Appendix O.

4.3 Main Results

4.3.1 Comparison with Other Datasets

In the ablation studies, we have curated datasets
of varying sizes from OpenSourceR1-Hard, em-
ploying both our "5+2" framework and the sam-
pling algorithm with target data size d set to
1k, 20k, 40k, 60k, respectively. These datasets
are labeled as OpenSourceRI-Hard E+SA (1k),
OpenSourceRI1-Hard E+SA (1/3), OpenSourceR1-
Hard E+SA (2/3), OpenSourceR1-Hard E+SA (1),
in ascending order of their size.

We benchmark our four sampled datasets derived
from OpenSourceR1-Hard against several estab-
lished open-source datasets (as shown in Appendix
L). This evaluation was performed by fine-tuning
the Qwen2.5-Math-7B model under the training
configurations detailed in subsection 4.1.

Dataset Size AIME25 AIME24 MATH500 AMC24 Average
sIK-1.1 1k 10.83 18.08 77.15 37.33 35.85
OS-RI-H E+SA (1k) 1k 16.65 18.35 75.15 39.80 37.49
Light-R1-SFT-stage-1 76k 33.05 39.45 88.65 65.53 56.67
OpenR1-Math-94k 94k 30.55 46.10 88.95 64.58 57.55
OpenThoughts-114k 114k 29.45 35.28 88.85 62.88 54.12
OS-RI-H E+SA (1/3) 20k 29.45 35.00 87.20 66.30 54.49
OS-RI-H E+SA (2/3) 40k 38.63 39.43 90.55 67.05 58.92
OS-RI-H E+SA (1) 60k 35.03 44.15 90.25 68.98 59.60

Table 3: Comparison of Our Datasets with Other
Datasets. OS-R1-H stands for OpenSourceR1-Hard

Note that our sampled datasets achieve supe-
rior performance compared to all selected open-
source datasets, despite being only a fraction of
their size. Furthermore, our methods demonstrate
efficacy even when applied to considerably smaller
datasets. Specifically, the dataset comprising 1,000
instances achieved an accuracy rate of 37.49%, out-
performing the 35.85% from slk-1.1, which is a
meticulously curated collection of 1,000 instances
through rigorous refinement processes.

4.3.2 Analysis of underthinking phenomenon

In addition to evaluating model accuracy, recent
studies have identified an "underthining" phe-
nomenon (Wang et al., 2025) in ol-like LLMs,
where the model frequently switches between rea-
soning trajectories without sufficiently exploring
each one. Our "5+2" framework, coupled with
the sampling algorithm, is specifically designed to
eliminate suboptimal subtrajectories and filter out
QA pairs that contain such suboptimal subtrajecto-
ries. Therefore, we hypothesize an improvement
in model’s ability to respond to questions with a
reduced number of subtrajectories and a deeper
analysis within each subtrajectory. To validate our
hypothesis, we analyze the variations in total num-
ber of tokens in the reasoning process, the number
of subtrajectories and the average number of tokens
per subtrajectory before and after fine-tuning with
the following datasets:

* OpenSourceRI1-Hard E+SA (2/3) and
DeepMath-Hard E+SA (2/3), datasets where
both the "5+2" framework and the sampling
algorithm are applied.

* OpenSourceRI-Hard NE+NSA (2/3) and
DeepMath-Hard NE+NSA (2/3), randomly se-
lected datasets with no additional operation.

In Figure 1 (A), we observe a notable reduction
in the total number of tokens involved in the rea-
soning process within the training datasets when
the "5+2" framework and sampling algorithm are
employed. For the OpenSourceR1-Hard dataset,
the total number of tokens decreased by 15.6%
(from 8,586 to 7,247), and for the DeepMath-Hard
dataset, a 14.0% reduction (from 8,652 to 7,438)
was observed. When evaluating models fine-tuned
on these datasets, we noticed a 2.2% decrease
(from 5,306 to 5,189) for OpenSourceR1-Hard and
a more substantial 9.0% decrease (from 6,994 to
6,363) for DeepMath-Hard, respectively.

In Figure 1 (B), in the training data, we observe
an 8.9% increase in the average number of tokens
per subtrajectory, rising from 1,389 to 1,513 for
OpenSourceR1-Hard when applying E+SA. Sim-
ilarly, DeepMath-Hard shows an 27.6% increase
under the same conditions. This phenomenon is
also observed in the evaluation results post fine-
tuning. Models fine-tuned with OpenSourceR1-
Hard exhibits an average increase of 12.5% in the
average number of tokens per subtrajectory, rising
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Figure 1: Comparison of Metrics for Thinking Efficacy between Training Data and Evaluation Results, where
OS-R1-H stands for OpenSourceR1-Hard and DM-H stands for DeepMath-Hard.

from 1,005 to 1,131 tokens. Similarly, models fine-
tuned with DeepMath-Hard shows a 7.2% increase.
This implies a deep thinking paradigm during the
inference process.

In Figure 1 (C), the application of E+SA is
notably associated with a significant decrease in
the average number of subtrajectories. On the
OpenSourceR1-Hard dataset, the average number
of subtrajectories decreases from 12.45to 8.72, a
29.96% reduction. A more pronounced decline:
39.66% is observed on the DeepMath-Hard dataset,
with the average dropping from 12.18 to 7.35. A
consistent trend is also evident in the evaluation
results. When E+SA is both applied, a significant
reduction in the average number of subtrajectories
is observed for models that have been fine-tuned
on the OpenSourceR 1-Hard and DeepMath-Hard
datasets. The average number of subtrajectories
decreases by 21.74%, from 8.51 to 6.66, for the
OpenSourceR1-Hard dataset. Similarly, for the
DeepMath-Hard dataset, the average number of
subtrajectories is reduced by 21.41%, decreasing
from 10.74 to 8.44.

The empirically findings indicate that the "5+2"
framework and the sampling algorithm, or equiv-
alently, models fine-tuned with our datasets effec-
tively mitigate the "underthinking" phenomenon.
This is exemplified by a reduction in the num-
ber of subtrajectories, coupled with an increase
in the number of tokens within each subtrajectory.

This outcome signifies a decrease in the frequency
of switching approaches and a deeper reasoning
within each approach.

4.3.3 Analysis of Suboptimal Subtrajectories
in the Evaluation Results

One major aspect of our methods is that the model
after fine-tunning with the "5+2" framework and
the sampling algorithm is able to generate less num-
ber of suboptimal subtrajectories in the evaluation
results. Specifically, in Figure 2, model fine-tuned
with OpenSourceR1-Hard has a 25.9% (14,234 to
10,554) drop of the number of suboptimal subtrajec-
tories, and with DeepMath-Hard, a 26.4% (18,654
to 13,729) drop of the number of suboptimal subtra-
jectories with our method applied. See Appendix
N for an example.

4.3.4 The Effectiveness of Thinking Budget

To verify the effcetiveness of our method at differ-
ent thinking budgets, we allocated 1k-16k think-
ing budgets on the four evaluation benchmarks.
The resulting scaling curves are given in Figure
3, E+SA demonstrates a significant improvement
over NE+NSA across the 2k-16k budget range
on both OpenSourceR1-Hard and DeepMath-Hard
datasets.
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Figure 3: Accuracy of E+SA and NE+NSA with respect
to the thinking budget.

5 Related Work
5.1 Test-Time Scaling

Test-time scaling refers to the practice of enabling
LLMs to generate a larger number of tokens dur-
ing the inference phase, thereby significantly en-
hancing their problem-solving capabilities. Re-
cent research in this area has primarily focused on
two strategies(OpenAl, 2024; Snell et al., 2024):
(1) Deploy LLMs to generate multiple reason-
ing trajectories, from which the optimal path is
selected through the application of reward mod-
els(Snell et al., 2024; Wu et al., 2024; Brown
et al., 2024). Such test-time scaling methods in-
clude parallel sampling(Brown et al., 2024; Wang
et al., 2022) in which the majority voting mech-
anism is utilized to select the final answer from
multiple generated solutions, and the tree-based
search methods(Yao et al., 2023; Zhang et al., 2024;
Qi et al., 2024) like Monte-Carlo Tree Search
(MCTS). (2) Employ reinforcement learning in
the post-training of large LLMs, exemplified by
models such as DeepSeek-R1, Qwen-QwQ(Qwen,
2024), DeepSeek-R1(DeepSeek-Al et al., 2025),
and Kimi-1.5(Team et al., 2025). These models

are capable of exploration, reflection, backtracking,
and self-verification, therefore generating signifi-
cantly longer outputs during inference time.

5.2 Data Selection Policy

It has been empirically demonstrated that high-
quality data can enable LLMs to achieve optimal
performance with a relatively small number of
training samples(Yang et al., 2024b; DeepSeek-
Al et al., 2024; Yu et al., 2023). For instance,
s1(Muennighoff et al., 2025) demonstrates that
a 32B model trained on a dataset of 1,000 sam-
ples outperforms OpenAl’s ol-preview. Similarly,
LIMO(Ye et al., 2025) substantiates the importance
of data quality by employing three quality metrics:
Optimal Structural Organization, Effective Cogni-
tive Scaffolding, and Rigorous Verification in the
selection of training data; a 32B model trained on a
dataset of 819 samples, selected through these three
criteria, surpasses the performance of ol-preview.

5.3 Thinking Efficacy

Reinforcement learning (RL) enhances model’s
ability to handle complex reasoning tasks by ex-
tending its reasoning process. However, during
the problem-solving process, RL forms a unified
and specific reasoning paradigm, regardless of the
problem’s complexity. This paradigm can become
highly inefficient if not properly constrained(Ye
et al.,, 2025). In the case of simpler problems,
this paradigm may lead to overthinking, as these
problems could be resolved with significantly less
computational resources(Chen et al., 2024). Con-
versely, for more complex problems, this paradigm
may introduce a significant number of ineffective
and counterproductive elements into the reasoning
process. Such elements not only compromise the
model’s accuracy but also diminish its token ef-
ficiency. One of such elements is underthinking,
where the model switches between strategies too
frequently without adequately exploring each one.
To mitigate underthinking, (Wang et al., 2025) pro-
poses a decoding strategy that encourages a deeper
exploration of each attempted strategy, thereby im-
proving overall accuracy and thinking efficiency. In
addition, (Qiao et al., 2025) proposed a ConCISE
framework to decrease redundant reasoning steps
via confidence strategy in during inference time.

6 Conclusion and Future Works

In this paper, we conducted a comprehensive anal-
ysis of the quality of subtrajectories within the
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reasoning process of RL-LLMs. This analysis
led to the identification of five critical quality is-
sues that negatively impact both the accuracy and
thinking efficacy of these models. To address
these issues, we introduce a "5+2" framework to:
(1) systematically identify suboptimal subtrajecto-
ries within the reasoning trajectory based on five
human-established criteria; (2) assess the indepen-
dence of the suboptimal subtrajectories identified
in (1) from the subsequent content, ensuring that
their elimination does not compromise overall flow
and coherence of the reasoning process. Further-
more, we propose a sampling algorithm, built upon
the "5+2" framework, to select data that are free
from the identified quality issues to the maximum
extent. Our experimental findings illustrate that our
methods not only improve model accuracy but also
enhances thinking efficacy by mitigating the "un-
derthinking" issue, reducing the number of subopti-
mal subtrajectories, thereby improving the efficacy
across different thinking budgets. In the future,
we will generalize our method to other disciplines,
such as physics and coding. Additionally, we aim
to investigate the scalability of our framework by
applying it to models of varying sizes, with larger
models such as those with 32B parameters or more.

Limitations

1. It is worth noting that while our methods
demonstrate significant utility in math domain,
where multiple subtrajectories are often pre-
sented, domains with fewer number of sub-
trajectories or those that differ significantly
in their reasoning paradigm may necessitate
customized frameworks to attain comparable
benefits.

2. Our methods primarily emphasize data qual-
ity. Beyond quality, the diversity of the QA
pairs is also a crucial factor. It is noteworthy
that our methods designed to enhance quality
may inadvertently lead to imbalances in the
diversity distribution of the dataset.
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A Example of DeepSeek-R1-distilled QA
Pairs

Example of DeepSeek-R1-distilled QA
Pairs

Question: Let the circles kq and ko inter-
sect at two distinct points A and B, and let
t be a common tangent of k; and ks, that
touches k1 and k9 at M and N, respectively.
Ift L AM and MN = 2AM, evaluate
/NMB.

Think:

<think>

Alright, let’s try to tackle this problem step
by step ...

Alternatively, since O1M and OsN are
both perpendicular to ¢ ...

Alternatively, maybe the problem is from a
math competition like the AIME, where n
is given, ...

Alternatively, since AM is perpendicular to
t,and M N is along ¢, then ...

</think>

Final Answer: Given two intersecting cir-
cles k1 and ky with common points A
and B, ... The measure of /NMB is
\bozed{45°}.

B Data Curation

B.1 Filtering Processes
B.1.1 Basic Quality Filtering

We design a rule-based filtering task, aiming to
remove any entries that meet certain predefined
criteria, including: (1) image-dependent questions:
questions that require images, in forms of hyper-
links or visual references, to be answered; (2) trun-
cated solutions: solutions that are cut off due to
the length of the model output exceeding the pre-
defined maximum token limit; (3) inconsistent lan-
guage use: entries with mixed or incoherent lan-
guage, such as abrupt shifts between English and
Chinese.

B.1.2 Difficulty Filtering

We implement a two-stage difficulty filtering pro-
cess, similar to the ones employed in s1 (Muen-
nighoff et al., 2025) and LIMO (Ye et al., 2025).
The primary objective of this process is to only re-
tain those entries that contain questions requiring
highly complex and intricate reasoning solutions,

thereby exceeding the capabilities of the current
base models. For each entry (question, R1 solu-
tion), we deploy two models: Qwen2.5-Math-7B-
Instruct (Yang et al., 2024a) and R1-Distill-Qwen-
7B (DeepSeek-Al et al., 2025), to independently
generate answers twice. Following the generation,
we deploy a third 7B model, specifically fine-tuned
for the purpose of assessing the correctness of gen-
erated answers in comparison to the ground truth.
In this scenario, the 7B model evaluates the gen-
erated answers against the final answer extracted
from the R1 solution. We exclude any entries where
either model provides a correct answer at least once,
and any entries in which there is no clearly marked
final answer, i.e., boxed{ }, in the R1 solution.

B.2 Curation of OpenSourceR1-Hard

We collect 5 open-source R1-distilled datasets from
Hugging Face, totaling 210k samples after dedu-
plication. The basic information of the collected
datasets is listed as follows:

Dataset Dataset Size
OpenThoughts-114k! 114k
OpenR 1-Math-94k? 94k
s1K-1.13 1k
Light-R1-SFT-stage-14 76k
Light-R1-SFT-stage-2° 3k

Table 4: Basic Information of Collected Datasets

After applying both basic quality filtering and
difficulty filtering, we curated a dataset of 59,759
entries, which we will refer to as OpenSourceR1-
Hard in later discussions. We remark that our
hypotheses and methodologies presented in later
sections are both formulated and validated us-
ing OpenSourceR 1-Hard, thereby making it an in-
distribution dataset.

B.3 Curation of DeepMath-Hard

During the preparation of this paper, we came
across a recently released dataset called DeepMath
(He et al., 2025), a 103K R1-distilled dataset. We

1https://huggingface.co/datasets/
open-thoughts/OpenThoughts-114k

Zhttps://huggingface.co/datasets/1lamafactory/
OpenR1-Math-94k

Shttps://huggingface.co/datasets/
simplescaling/s1K-1.1

4https://huggingface.co/datasets/qihoo360/
Light-R1-SFTData

5https://huggingface.co/datasets/qihoo36®/
Light-R1-SFTData
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apply the same filtering processes to DeepMath,
including both the basic quality filtering and dif-
ficulty filtering, albeit with slightly adjusted sam-
pling parameters. This reduces the original Deep-
Math dataset to a more compact version, referred to
as DeepMath-Hard, which consists of only 12,719
entries. The rationale for treating OpenSourceR1-
Hard and DeepMath-Hard as separate datasets,
rather than concatenating them, stems from the fact
that our hypotheses and methodologies are both for-
mulated and validated using OpenSourceR 1-Hard.
To evaluate the generalization of our approach, we
deliberately isolated the DeepMath-Hard dataset,
which will function as an out-of-distribution test
set.

C Examples of 5 types of subtrajetories

1. The subtrajectory proposes a method without
attempting it.

Example 1

Alternatively, this is similar to a three-
dimensional matching problem, which
is NP-hard, but maybe in this specific
case, with the constraints on the digit
sums, it can be solved more easily.

Example 1 mentions a three-dimensional
matching problem; however, it falls short by
not stating a precise definition of the problem,
its relevance to the current context, and any
attempt to address and resolve the problem
through this approach.

2. The subtrajectory attempts to solve the prob-
lem in an ineffective manner.

Example 2

Alternatively, ...Let’s start testing
numbers step by step, starting from the
smallest natural numbers, checking if
they meet the criteria. Starting with
n=1:...n=2: ...n=119: ...n=120:

... This is getting tedious. . .

Example 2 evaluates numbers from 1 to
120 in a mechanical manner, without an at-
tempt to identify any underlying patterns that
could have simplified or advanced the process,
thereby leading to a lengthy and ineffective
argument.
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3.

5.

The subtrajectory has logical discontinuities.

Example 3

Alternatively, ... This is getting very
complicated. Given that we already
found a critical pointata =1, b = 1,
and that when we check other points,
A is higher, perhaps we can conjecture
that the minimal value is % To con-
firm, let’s check the second derivative
or the behavior around ¢ = 1, but since
it’s time-consuming and given the com-
plexity, I think the minimal value is

. 2
indeed e

Example 3 contains a logical gap, as it cir-
cumvents rigorous computation and instead
relies on speculative assumptions regarding
the outcome.

The subtrajectory transitions to the next one
without reaching any conclusions.

Example 4

Alternatively,...Let me think about
how to approach this. Since each num-
ber is a three-digit number without any
zeros, each digit is from 1 to 9, and
their sum is 9. So first, maybe I should
figure out all possible three-digit num-
bers that satisfy conditions 1 and 2,
and then see how many of them can be
selected such that conditions 3, 4, and
5 are also satisfied.

Alternatively, since the digits in each
place. ..

Example 4 first proposes Approach A; how-
ever, it abruptly shifts to Approach B without
concluding Approach A, assessing its efficacy,
elaborating on the subsequent steps and asso-
ciated challenges, or explaining the rationale
for abandoning Approach A.

The subtrajectory contains redundant self-
verification(s).



Example 5

Alternatively,...Case3: p=2,q="1.
Compute numerator: 27 — 72 = 128 —
49 = 79...

Alternatively,. .. Wait, perhaps check
p = 2 and ¢ = 7 again. Wait, p =
2,q = T gives 128 — 49 = 79. 79
divided by 9 is 8.777..., which is not
integer. . .

Alternatively,. .. Wait, maybe p = 2,
q = 7, numerator= 79. 79 is a prime.
79 divided by 9, which is not divisible.
So, no.

. J

Example 5 redundantly verifies the same case
twice using the same method.

D Example of Non-eliminable Suboptimal
Subtrajectory

Example of Non-eliminable Suboptimal
Subtrajectory

Alternatively, ... using the formula:

Area = § |(za — zp)(yp — yp) — (xB — 2p)(ya — yp)|-
But perhaps a better approach is to find the
coordinates of A and B in terms of h, then
compute vectors PA and P B, and compute
the cross product area.

Alternatively, since we know the equation
of line AB is y = hx — h + 2, and point

P is (h,h — 2). Then, the area of triangle

P AB can be calculated as % - base - height
where the base is the distance between A
and B, and the height is the distance from

P to the line AB ...

Alternatively,

Area = § |(za — zp)(yp — yp) — (xB — 2p)(ya — yp)|-
Plugging in the coordinates: ...

E Equal Weights

Here, each subtrajectory is considered to hold equal
importance. Specifically, we aggregate the scores
of all subtrajectories according to the following
formula:

QualityScore(thinking) :=

Z % (Score(subtrajectory)) , ®)

i=1
where n is the number of subtrajectories within
the thinking process.

F Distribution of Number of
Subtrajectories after Sampling on
Quality Score

Figure 4 presents the distribution of number of
subtrajectories between the entire dataset and top
1/3 of data by quality scores, and we can find the
distribution is clearly shifting towards a direction
with fewer numbers of subtrajectories after quality
filtering.

0.35 Distribution of Number of Subtrajectories
) mmm Entire dataset

Top 1/3 of data by quality scores

Percentage
o o o o
= N N w
w o w o

o
-
15}

o
=}
@

0 5 10 15 20 25 30 35 40
Number of Subtrajectories

Figure 4: Number of Subtrajectories within QA Pairs
Selected by Quality Scores

G Sampling Algorithm

1. Define the following parameters:

FEntire < entire dataset,

d < target size for the sampled,
dataset

I + set of all possible numbers of sub-
trajectories within the thinking
process in a QA pair in

FEntire

2. For each QA pair, calculate its quality score,
denoted as QualityScore(QA pair).

3. Sort Entire by QualityScore(-) descend-
ingly. Select the top d QA pairs to form the
subset

Pseudo_Sampled_init.

4. For i € I, calculate the percentage change in
the frequency of QA pairs whose the thinking
process involves precisely ¢ subtrajectories,
relative to the entire dataset:
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Fg(i) — Fpsinit(1)
Fg(i) ,

where Fg(-) and Fpgini(-) denote the fre-
quencies of QA pairs whose thinking process
contains exactly - subtrajectories in Entire
and Pseudo_Sampled_init, respectively.

A; = 1el, 4

5. For each QA pair, get the number of subtra-
jectories within its thinking process, denoted
by n. For 0 < 5 < 40, compute:

SamplingScore;(QA pair)
= a;QualityScore(QA pair)

o A, — min({A; }ier) 5
+0 J)maX({Ai}iGI) —min({Ai}er)’ ©)
_3 .
Qg = 5 + m

We remark that the weight «; ranges from 0.6
to 1.0, rather than from 0.0 to 1.0, is to place
a larger emphasis on the QualityScore and
to prevent the minimization of KL divergence
from dominating the data sampling process.

6. For 0 < 5 < 40, sort Entire by
SampleScore;(-) descendingly.  Select
the top d QA pairs to form the subset
Pseudo_Sample_j.

7. The sampled dataset

arg min
Pseudo_Sample_j

Dkr(Xel[Xps;),
(6)
where Dk () is the Kullback-Leibler
(KL) divergence, Xg and Xpg; are the
distribution of number of subtrajectories
within the thinking process in Entire and
Pseudo_Sample_j, respectively.

Sampled :=

H Training configurations

Each training process employs full-parameter fine-
tuning and consumes 576 Ascend 910B4 NPU
hours separately. The hyperparameters for training
are configured as follows: training steps = 24,000,
batch size = 5, max sequence length = 16,384 to-
kens, trainings are performed in bfloat16 precision,
learning rate is initially set to 2e-5, linearly warms
up for 1% of the total training steps, and decays
to 2e-9 following a cosine schedule, optimization
is performed using the AdamW algorithm with pa-
rameters 51 = 0.9 and B2 = 0.95.

I Benchmarks

* American Invitational Mathematics Ex-
amination (AIME24 (Committees, 2024a),
AIME25 (Committees, 2025)): a mathemat-
ical competition consisting of two examina-
tions: AIME I and AIME 11, each containing
15 questions. The AIME examination covers a
broad range of mathematical topics, including
arithmetic, algebra, combinatorics, etc.

MATHS00 (Hendrycks et al., 2021): a col-
lection of high school-level competition prob-
lems spanning seven subjects (Algebra, Num-
ber Theory, Geometry, etc.) and five difficulty
levels, ranging from the easiest problems in
the AMC 8 to the most challenging problems
in the AIME.

* American Mathematics Competitions
(AMC24 (Committees, 2024b)): the initial
examination administered by the Mathemati-
cal Association of America before qualifying
for the AIME. In 2024, the AMC12 consisted
of 50 questions, from which we excluded
those involving graphs, leaving us with 44
questions for evaluation.

J Evaluation Methods

When evaluating the performance of SFTed models,
we employ the pass@1 metric across all evaluation
benchmark under a Zero-shot Chain-of-Thought
configuration. Furthermore, we take four recent
checkpoints, corresponding to training stages of
18k, 20k, 22k, 24k steps, respectively. Each
checkpoint is evaluated three times for AIME24,
AIME25, and AMC24, and once for MATHS500;
following this, we compute and report the average
accuracy for each benchmark, based on the 12 (3-4)
evaluations for AIME24, AIME25, and AMC24,
and 4 (1 - 4) evaluations for MATHS500. Through-
out the evaluation, we set the temperature at 0.7
and impose a maximum output length constraint of
16,384 tokens.

We will explain the rationale behind our decision
to report the average accuracy of multiple check-
points, rather than make the standard practice of
selecting the single checkpoint with the lowest val-
idation loss. Our benchmarks, including AIME24,
AIME2S5, and AMC24, consist of a limited number
of questions. Consequently, a fortunate checkpoint
that achieves two additional correct answers could
result in a fluctation of up to 6.6%, significantly
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skewing the evaluation results. To mitigate this
variability and enhance the stability of our perfor-
mance metrics, we have opted for the strategy of
averaging the accuracy of recent checkpoints. This
strategy aims to provide a more reliable and consis-
tent assessment of our methods.

K Ablation Settings

1. Elimination with Sampling Algorithm
(E+SA)
We incorporate all proposed modules within
our methods. Specifically, we use the "5+2"
framework to identify and eliminate subop-
timal subtrajectories and assign token-count-
based weights to evaluate the thinking process.
Subsequently, we employ the sampling algo-
rithm tailored to the appropriate target size to
select the data.

2. No Elimination with Sampling Algorithm
(NE+SA)
This configuration preserves the identical set
of questions as those utilized in the E+SA and
maintains the original solutions, thereby facil-
itating a rigorous comparison of the impact
introduced by the "5+2" framework.

3. Elimination without Sampling Algorithm
(E+NSA)
The questions are randomly selected from the
entire dataset. Furthermore, we employ the
"5+2" framework to identify and eliminate
suboptimal subtrajectories.

4. No Elimination without Sampling Algo-
rithm (VE+NSA)
This configuration retains the identical set
of questions as those utilized in the E+NSA.
However, we employ the original solutions to
facilitate a comparative analysis with E+NSA,
thereby enabling an assessment of the efficacy
of the "5+2" framework.

L Details of the sampled dataset

s1K-1.1: a dataset comprising 1k diverse,
high-quality and challenging QA pairs with
answers generated by DeepSeek-R1.

Light-R1-SFT-stage-1: a dataset consisting
of 76k samples, sourced from publicly avail-
able mathematics datasets.

* OpenR1-Math-94k: a dataset consisting
of 94k problems, extracted from the larger
OpenR1-Math-220k dataset.  Despite its
smaller size, this dataset exhibits superior
performance compared to the entire 220k
dataset. Each question originates from Numi-
naMath1.5, with corresponding answers gen-
erated by DeepSeek-R1.

* OpenThoughts-114k: a comprehensive syn-
thetic reasoning dataset consisting of 114k
samples across mathematics, science, coding,
and puzzles.

M Demonstration of Varied Weights
Based on Token Counts

The Figure 5 demonstrates the varied weights based
on token counts.

N Examples of Inference OQutputs

Figure 6 illustrates a comparative analysis between
the inference outputs of AIME2S utilizing the con-
figurations E+SA (2/3) and NE+NSA (2/3).

O Ablation Studies
0.1 Varied Weights vs Equal Weights

In this study, we introduced two approaches for
scoring a thinking process after eliminating sub-
optimal subtrajectories: 1) equal weights scoring
process (see details in Appendix E), and 2) var-
ied weights scoring process (see details in section
3.3.2). Our experiments are conducted using the
OpenSourceR 1-Hard and DeepMath-Hard datasets.
The experimental analyses are conducted on two-
thirds of each respective dataset, and for each sam-
ple fraction, the following two configurations are
considered:

1. Varied Weights

This configuration mirrors the E+SA setup.
Specifically, we employ the "5+2" framework
to identify and eliminate suboptimal subtra-
jectories, and assign weights based on the to-
ken counts of each subtrajectory during the
scoring process. Subsequently, we utilize the
sampling algorithm to select two-thirds of the
dataset.

2. Equal Weights
We employ the "5+2" framework to identify
and eliminate suboptimal subtrajectories, as-
signing equal weights to each subtrajectory
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Normalize the number of tokens in
each subtrajectory as the weights

Apply the weights to the result
for each citerion

Sum up the weighted score for
each criterion, and compute the
average to get the quality score

Criterion 1

1

Subtrajectory  Tokens

2 2850 0.12

|

| 0
3 7645 @ 0.32 | .
4 861 00a |
5 1425 0.06 |
6 872 0.04 %

Weights | 0 :>
1 9968 0.42 1

Weighting
Process for
Criterion 2to 5

Weighted Score

I
I
I
I
I
0.42 |
0.12 :
0 Criterion ~ Weighted Sum
0.04 % 1 0.62
0 | 2 0.58 Quality
| Score
0.04 | 3 0.87 0.61
| 4 0.36
5 0.60

a

Figure 5: Demonstration of Varied Weights Based on Token Counts

during the scoring process, prior to applying
the sampling algorithm to select two-thirds of
the dataset.

As presented in Table 5, the varied weights
scoring method, utilizing the OpenSourceR 1-Hard
dataset, achieves a performance of 58.92%, outper-
forming the 56.74% accuracy obtained through the
equal weights scoring method. Similarly, when em-
ploying the DeepMath-Hard dataset, the accuracy
improves from 47.94% (equal weights) to 49.12%
(varied weights). These findings suggest that the
token counts of subtrajectories are crucial for as-
sessing the quality of solutions. Specifically, longer
suboptimal subtrajectories should be subjected to
greater penalties compared to shorter ones in the
evaluation of overall performance.

Methods AIME25 AIME24 MATHS00 AMC24 Average
OpenSourceR 1-Hard
Varied Weights 38.63 39.43 90.55 67.05 58.92
Equal Weights 29.73 41.40 89.35 66.48 56.74
DeepMath-Hard
Varied Weights 27.23 27.23 85.20 56.80 49.12
Equal Weights 24.98 23.88 85.10 57.78 47.94

Table 5: Equal weight scoring process and token-count
based scoring process comparison in mathematical do-
main: performance across various benchmarks

0.2 Impact of Sampling Algorithm

The experiments employ the OpenSourceR1-Hard
and DeepMath-Hard datasets. For both datasets,

the experiments are conducted on a two third of the
dataset. Two distinct experimental conditions are
established for each dataset to facilitate compre-
hensive evaluation: with sampling algorithm and
without sampling algorithm.

1. With Sampling Algorithm

This configuration is identical to the E+SA
setup. Following the identification and elimi-
nation of suboptimal subtrajectories according
to the "5+2" framework, a token-count based
weighting scoring process is applied to the
thinking process. Subsequently, the sampling
algorithm is implemented to select two-thirds
of the dataset.

2. Without Sampling Algorithm
This configuration undergoes the identifica-
tion and elimination of suboptimal subtrajecto-
ries based on the "5+2" framework, followed
by the application of a token-count based
weighting scoring process to the thinking pro-
cess.

The findings are elaborated in Table 6. Specif-
ically, in the OpenSourceR1-Hard dataset, the
performance metric with the sampling algorithm
(58.92%) surpasses that without the sampling
algorithm (58.60%). A similar trend is observed
in the DeepMath-Hard dataset, where the result
obtained with the sampling algorithm (49.12%)
is superior to the result without it (48.57%).
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These observations imply that the distribution of
the number of subtrajectories within the dataset
can influence the SFT process.
the significant variation in the frequency of
number of subtrajectories within the sampled
dataset’s thinking process relative to the entire
dataset, an additional enhancement in the model’s
performance is achieved.

Methods AIME25 AIME24 MATHS00 AMC24 Average
OpenSourceR 1-Hard
w/ Sampling Algorithm 38.63 39.43 90.55 67.05 58.92
w/o Sampling Algorithm 33.33 43.35 89.50 68.20 58.60
DeepMath-Hard
w/ Sampling Algorithm 27.23 27.23 85.20 56.80 49.12
w/o Sampling Algorithm 23.88 28.05 84.00 58.35 48.57

By penalizing

Table 6: Sampling algorithm comparison in mathemati-
cal domain: performance across various benchmarks
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Comparative Analysis of Evaluation Results with and without Implementation of Our Methods

Question: In AABC points D and E lie on AB so that AD < AE < AB, while points F and G
lie on AC so that AF < AG < AC. Suppose AD = 4, DE =16, EB = 8, AF = 13, FG = 52, and
GC = 26. Let M be the reflection of D through F, and let N be the reflection of G through E. The
area of quadrilateral DEGF is 288. Find the area of heptagon AFNBCEM.

E+SA (2/3)

Okay, let’s try to tackle this problem. It seems
a bit involved with reflections and areas in a
triangle. I need to find the area of a heptagon
AFNBCEM given some information about the
original triangle ABC and various points. Let
me start by understanding the problem step by
step.

[ommited for brevity]

Let me assign coordinates to the triangle ABC.
...However, in reality, triangle ABC isn’t
necessarily right-angled. Hmm, this com-
plicates things. Maybe we need to use ra-
tios instead or find coordinates based on
the given lengths.

Alternatively, maybe compute areas using vec-
tors or coordinate geometry.

[ommited for brevity]

Now, we need to compute the area of heptagon
AFNBCEM. Let’s list all the vertices in order:
A(0,0), F(y/(6517)/7,6), N(40 — 5 =
V/(6517)/7,—30), B(28,0), C(\f(6517),42),
E(20,0), M(2 * +/(6517)/7 — 4,12), back to
A(0,0).

This seems complex due to the square roots.
However, maybe there is symmetry or cancel-
lation that can simplify the calculation.
Alternatively, use the shoelace formula with
symbolic coordinates. Let’s attempt that.
[ommited for brevity]

Now, applying the shoelace formula:
Suml = (zayr+azryn+rNys+rayctrcys+
TEYM + TmYA)

Sum2 = (yazrt+yren+ynrs+yprotycre+
YETM + YMTA)

[ommited for brevity]

So the area of the heptagon AFNBCEM
is 588.

Wait, that’s surprisingly straightforward. Let
me verify the steps again.

[ommited for brevity]

we arrived at the heptagon area being
588. Let me check if this is plausible.
Alternatively, maybe there’s a relationship be-
tween DEGF and the heptagon.

[ommited for brevity]

Therefore, despite the complex coordinates, the
area simplifies neatly due to cancellation in the
shoelace formula. Therefore, the area of hep-
tagon AFNBCEM is 588.

**Final Answer**

NE+NSA (2/

Okay, let’s try to tackle this geometry problem.
It seems a bit complex at first glance, but I'll
take it step by step.

[ommited for brevity]

Wait, but maybe we can assume that triangle
ABC is right-angled? Wait, no, there’s no infor-
mation given about angles, so we can’t assume
that. Alternatively, perhaps assign coor-
dinates based on ratios? [Violate Criterion
1,2,3,4]

Alternatively, since we know the area of
quadrilateral DEGF is 288. If we can model
the coordinates accordingly, then compute the
area of the heptagon.

[ommited for brevity]

Similarly, coordinates of G would be (65/91 x
¢z,65/91 % ¢,) since AG = 65.

Alternatively, since AC is length 91, we can
use vectors or coordinates scaled accord-
ingly. [Violate Criterion 1,2,3,4]

But perhaps if I assign coordinates to C such
that calculations are manageable. Let me sup-
pose that AC is along some line, but maybe as-
sign coordinates to make computation easier.
Alternatively, set coordinate system such that
AC is vertical? Wait, but unless there is a spe-
cific angle, that might complicate things. Al-
ternatively, use barycentric coordinates?
Not sure. [Violate Criterion 1,2,3,4]
Alternatively, since we know the area of
quadrilateral DEGF is 288. Let’s think about
quadrilateral DEGF. Points D(4,0), E(20,0), G,
F.

[ommited for brevity]

Alternatively, perhaps use mass point ge-
ometry? Not sure. [Violate Criterion 1,2,3,4]
[ommited for brevity]

Alternatively, break the heptagon into
simpler parts whose areas can be calcu-
lated and summed. [Violate Criterion 1,2,3,4]
Alternatively, use the shoelace formula with
the coordinates.

[ommited for brevity]

Therefore, the area of the heptagon AFNBCEM
is 588.

[ommited for brevity]

Given that all steps check out and the mathe-
matical derivation leads to 588, I think the an-
swer is 588.

**Final Answer**

Figure 6: Examples of Inference Outputs
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