@inproceedings{lucas-etal-2025-chain,
title = "Chain-of-Interactions: Multi-step Iterative {ICL} Framework for Abstractive Task-Oriented Dialogue Summarization of Conversational {AI} Interactions",
author = "Lucas, Jason S and
Al Lawati, Ali and
Nahar, Mahjabin and
Chen, John and
Mehrabani, Mahnoosh",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.191/",
pages = "3560--3599",
ISBN = "979-8-89176-335-7",
abstract = "Large Language Models (LLMs) have introduced paradigm-shifting approaches in natural language processing. Yet, their transformative in-context learning (ICL) capabilities remain underutilized, especially in customer service dialogue summarization{---}a domain plagued by generative hallucinations, detail omission, and inconsistencies. We present Chain-of-Interactions (CoI), a novel single-instance, multi-step framework that orchestrates information extraction, self-correction, and evaluation through sequential interactive generation chains. By strategically leveraging LLMs' ICL capabilities through precisely engineered prompts, CoI dramatically enhances abstractive task-oriented dialogue summarization (ATODS) quality and usefulness. Our comprehensive evaluation on real-world and benchmark human-agent interaction datasets demonstrates CoI{'}s effectiveness through rigorous testing across 11 models and 7 prompting approaches, with 9 standard automatic evaluation metrics, 3 LLM-based evaluations, and human studies involving 480 evaluators across 9 quality dimensions. Results reveal CoI{'}s decisive superiority, outperforming all single-step approaches and achieving 6{\texttimes} better entity preservation, 49{\%} higher quality scores, and 322{\%} improvement in accuracy compared to state-of-the-art multi-step Chain-of-Density (CoD). This research addresses critical gaps in task-oriented dialogue summarization for customer service applications and establishes new standards for harnessing LLMs' reasoning capabilities in practical, industry-relevant contexts."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lucas-etal-2025-chain">
<titleInfo>
<title>Chain-of-Interactions: Multi-step Iterative ICL Framework for Abstractive Task-Oriented Dialogue Summarization of Conversational AI Interactions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Lucas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Al Lawati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahjabin</namePart>
<namePart type="family">Nahar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahnoosh</namePart>
<namePart type="family">Mehrabani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) have introduced paradigm-shifting approaches in natural language processing. Yet, their transformative in-context learning (ICL) capabilities remain underutilized, especially in customer service dialogue summarization—a domain plagued by generative hallucinations, detail omission, and inconsistencies. We present Chain-of-Interactions (CoI), a novel single-instance, multi-step framework that orchestrates information extraction, self-correction, and evaluation through sequential interactive generation chains. By strategically leveraging LLMs’ ICL capabilities through precisely engineered prompts, CoI dramatically enhances abstractive task-oriented dialogue summarization (ATODS) quality and usefulness. Our comprehensive evaluation on real-world and benchmark human-agent interaction datasets demonstrates CoI’s effectiveness through rigorous testing across 11 models and 7 prompting approaches, with 9 standard automatic evaluation metrics, 3 LLM-based evaluations, and human studies involving 480 evaluators across 9 quality dimensions. Results reveal CoI’s decisive superiority, outperforming all single-step approaches and achieving 6× better entity preservation, 49% higher quality scores, and 322% improvement in accuracy compared to state-of-the-art multi-step Chain-of-Density (CoD). This research addresses critical gaps in task-oriented dialogue summarization for customer service applications and establishes new standards for harnessing LLMs’ reasoning capabilities in practical, industry-relevant contexts.</abstract>
<identifier type="citekey">lucas-etal-2025-chain</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.191/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>3560</start>
<end>3599</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chain-of-Interactions: Multi-step Iterative ICL Framework for Abstractive Task-Oriented Dialogue Summarization of Conversational AI Interactions
%A Lucas, Jason S.
%A Al Lawati, Ali
%A Nahar, Mahjabin
%A Chen, John
%A Mehrabani, Mahnoosh
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F lucas-etal-2025-chain
%X Large Language Models (LLMs) have introduced paradigm-shifting approaches in natural language processing. Yet, their transformative in-context learning (ICL) capabilities remain underutilized, especially in customer service dialogue summarization—a domain plagued by generative hallucinations, detail omission, and inconsistencies. We present Chain-of-Interactions (CoI), a novel single-instance, multi-step framework that orchestrates information extraction, self-correction, and evaluation through sequential interactive generation chains. By strategically leveraging LLMs’ ICL capabilities through precisely engineered prompts, CoI dramatically enhances abstractive task-oriented dialogue summarization (ATODS) quality and usefulness. Our comprehensive evaluation on real-world and benchmark human-agent interaction datasets demonstrates CoI’s effectiveness through rigorous testing across 11 models and 7 prompting approaches, with 9 standard automatic evaluation metrics, 3 LLM-based evaluations, and human studies involving 480 evaluators across 9 quality dimensions. Results reveal CoI’s decisive superiority, outperforming all single-step approaches and achieving 6× better entity preservation, 49% higher quality scores, and 322% improvement in accuracy compared to state-of-the-art multi-step Chain-of-Density (CoD). This research addresses critical gaps in task-oriented dialogue summarization for customer service applications and establishes new standards for harnessing LLMs’ reasoning capabilities in practical, industry-relevant contexts.
%U https://aclanthology.org/2025.findings-emnlp.191/
%P 3560-3599
Markdown (Informal)
[Chain-of-Interactions: Multi-step Iterative ICL Framework for Abstractive Task-Oriented Dialogue Summarization of Conversational AI Interactions](https://aclanthology.org/2025.findings-emnlp.191/) (Lucas et al., Findings 2025)
ACL