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Abstract

Recent advances in Large Language Models
(LLMs) have significantly enhanced their ca-
pabilities, highlighting the need for compre-
hensive evaluation frameworks that extend be-
yond task-specific benchmarks. However, ex-
isting benchmarks often focus on isolated abil-
ities, lacking a holistic framework for assess-
ing LLM capabilities. To address this gap, we
propose the Cognition-Domain-Task (CDT)
framework, which comprehensively measures
a model’s capabilities across three dimensions.
We expand the scope of model capability defini-
tions at the cognitive level by incorporating the
Cattell-Horn-Carroll cognitive theory, refining
the categorization of model capabilities. We
apply CDT in two directions: dataset capabil-
ity evaluation and data selection. Experiments
show that our capability metrics correlate well
with downstream performance and can support
effective dataset analysis and construction. The
experiments on data selection also show sig-
nificant improvements in both general and spe-
cific benchmarks, achieving scores of 44.3 and
45.4, with an increase of 1.6 and 2.2 points
over the baselines, respectively. These results
validate the effectiveness and practicality of
CDT. Source code and models are available at
https://github.com/Alessa-mo/CDT.

1 Introduction

Recent advances in Large Language Models
(LLMs) have significantly expanded their capa-
bilities. The introduction of reinforcement learn-
ing (Kumar et al., 2024; Wang et al., 2024a;
Hu et al., 2023) and chain-of-thought reason-
ing (Wei et al., 2022; Wang et al., 2023a) has
further enhanced their reasoning abilities. No-
table LLMs such as OpenAI’s o1 (OpenAI,
2024b) and DeepSeek R1 (DeepSeek-AI, 2025)
have demonstrated remarkable reasoning capabil-
ities. As LLMs become more sophisticated, ac-
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Framework Open Source
Tagging Models

Multiple
Dimensions

Capability
Decomposition

Cognition
Oriented

Domain
Oriented

Task
Oriented

FLASK % ! % ! ! %

FAC2E % ! ! ! % !

INSTAG ! % % % ! %

CDT (Ours) ! ! ! ! ! !

Table 1: Comparison between our CDT framework with
existing capability frameworks. “Open Source Tagging
Models” denotes if it provides trained models for ca-
pability annotation. “Multiple Dimensions” reflects
whether the framework supports more than one capa-
bility dimension. “Capability Decomposition” refers
to the ability to break down complex capabilities into
finer-grained sub-skills. The last three columns assess
whether the framework explicitly covers cognition, do-
main, and task dimensions. As shown, our CDT frame-
work addresses the gaps and limitations of existing meth-
ods across multiple dimensions.

curately evaluating their underlying abilities is
increasingly crucial. Current benchmarks, such
as MMLU (Hendrycks et al., 2021), AlpacaE-
val (Dubois et al., 2024), and GSM8K (Cobbe et al.,
2021), are widely used to assess these capabilities.

However, many of them focus on isolated aspects
of model capabilities, such as coding, common-
sense reasoning, or specific task performance, and
the ability dimensions are always task-oriented and
limited, without a holistic framework that system-
atically categorizes and defines the full spectrum
of LLM capabilities. For instance, benchmarks
like MMLU evaluate knowledge mastery across
academic disciplines but overlook dimensions like
code generation. Recent efforts like FLASK (Ye
et al., 2024) and FAC2E (Wang et al., 2024b) focus
on multi-model comparisons but fall short in capa-
bility decomposition and multi-dimensional anal-
ysis. Additionally, while works like INSTAG (Lu
et al., 2024) explore capability applications, defini-
tions remain underdeveloped. Those works raise
the fundamental question: What core capabilities
are essential for an effective large language model?
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To address this, we propose the Cognition-
Domain-Task (CDT) framework, a comprehensive
multi-dimensional taxonomy for defining, annotat-
ing, and utilizing LLM capabilities across three
dimensions: cognition, domain, and task. Our core
motivation is that a comprehensive capability anal-
ysis must answer three fundamental questions for
any given instruction: how to do it, which corre-
sponds to Cognition; what it is about, which cor-
responds to Domain; and what to do, which cor-
responds to Task. By deconstructing instructions
along these three orthogonal dimensions, CDT pro-
vides a holistic and systematic approach to catego-
rizing the full spectrum of LLM capabilities. At
the cognitive level, CDT incorporates Cattell-Horn-
Carroll (CHC) theory (Flanagan and Dixon, 2014),
selecting and refining 18 core cognitive abilities
suited to LLM behavior. At the domain level, we
identify nine domain scenarios commonly encoun-
tered by LLMs and further refine these into 33
distinct subdomains. At the task level, drawing
inspiration from prior work on dataset construc-
tion (Wang et al., 2022, 2023b; Ouyang et al., 2022;
Wang et al., 2024c), we systematically categorize
task types across diverse instructions, culminat-
ing in a taxonomy of 16 task types. We conduct
a comparative analysis between existing capabil-
ity frameworks and our proposed CDT framework,
with the results summarized in Table 1.

After constructing the CDT framework, we ex-
tend its application to LLMs in two directions. We
first conduct dataset evaluation using two metrics:
Coverage and Balance, which correlate well with
downstream performance, demonstrating that CDT
can provide practical guidelines for capability-
aware data curation in future dataset construction.
Then, we apply CDT in data selection to enhance
model performance, proposing a diversity-driven
selection method to ensure general capability and
a capability-oriented strategy which identifies the
specific capabilities required by the target test sets.
Across both general and specific scenarios, ex-
periments show that our data selection methods
achieve average scores of 44.3 and 45.4, with an
increase of 1.6 and 2.2 points over the baselines,
respectively. These results significantly outperform
other capability-related methods and baseline ap-
proaches. Our main contributions are as follows:

• We propose CDT, a comprehensive framework
that systematically categorizes LLMs’ abilities
across cognition, domain, and task.

• We develop specialized tag models for each di-
mension to enable fine-grained tagging of capac-
ities at the instruction level.

• We explore the application of the CDT frame-
work in dataset evaluation and data selection,
which effectively reflect dataset quality and lead
to notable improvements in model performance.

• We will release all the data, tag models, and
training scripts used in our CDT framework.

2 Related Works

Definitions of LLMs’ Capability Research on
defining LLM capabilities can be grouped into two
approaches. The first integrates capabilities with
data, optimizing learning through data distribution
adjustments (Nottingham et al., 2024; Polo et al.,
2025; Chen et al., 2023; Wu et al., 2024; Rao et al.,
2024; Lu et al., 2024). For example, Chen et al.
(2023) propose a method based on a skill set graph,
where mastering one skill aids the acquisition of
others, though this method is dataset-specific. Sim-
ilarly, Wu et al. (2024) use an MLP-based scoring
network for data allocation in fine-tuning, treating
datasets as distinct capabilities. The second ap-
proach defines model capabilities from task- and
domain-specific perspectives, often relying on la-
beled data for evaluation. Zhong et al. (2025)
present a hierarchical framework with foundational
and complex abilities, while Ye et al. (2024) an-
alyze open-source LLMs to identify four capabil-
ities, subdividing them into 12 skills for compre-
hensive evaluation. While these approaches offer
valuable insights, they often define capabilities in
narrow ways, either focusing on isolated aspects,
overlooking the underlying cognitive processes, or
lacking a holistic, multi-dimensional structure. Our
work addresses this gap by introducing the CDT
framework, which integrates cognitive principles
to systematically organize LLM capabilities across
cognition, domain, and task.

Applications of LLMs’ Capability Capability
frameworks are often applied to develop evaluation
benchmarks for large models. Xia et al. (2024)
introduce FoFo, which evaluates LLMs’ abilities
across domains based on format-following. For
general evaluation, Hendrycks et al. (2021), Dubois
et al. (2024), and Srivastava et al. (2022) have devel-
oped broad competency benchmarks. Zhong et al.
(2025) assess capabilities using prompts, while Ye
et al. (2024) evaluate models based on responses
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and instruction alignment. For domain-specific im-
provements, several studies have proposed different
approaches: Wang et al. (2024d) integrate capabil-
ity frameworks with Chain-of-Thought (CoT) to
enhance task-specific abilities; Lee et al. (2024)
introduce THANOS for multi-turn dialogue; Xu
et al. (2023) present LaRS to improve reasoning
by selecting data with similar capabilities; Rao
et al. (2025) focus on enhancing weak capabil-
ities through error-based learning; and Ke et al.
(2025) aim to build specialist capabilities by syn-
thesizing high-relevance data from unlabeled text.
While prior studies have extended capability frame-
works in certain contexts, most still focus on eval-
uating LLM capabilities, with limited exploration
of broader applications. To address this, we apply
the proposed CDT framework to scenarios such as
dataset analysis and data selection, thereby extend-
ing its utility beyond conventional evaluation.

3 Method

3.1 Capability Framework Construction
In our proposed CDT framework, we define model
capabilities from three perspectives: cognition, do-
main, and task. The three dimensions are designed
to be orthogonal, allowing for a context-dependent
analysis of full instructions. A detailed discussion
of the framework’s design rationale is provided in
Appendix A.1. While the domain and task per-
spectives have been extensively explored in recent
research, we build upon this foundation with ad-
justments to better capture their nuances. From
the cognition perspective, we define capabilities
through the lens of the CHC theory in cognitive sci-
ence. The CHC theory, grounded in earlier explo-
rations of human cognition (Carroll, 2003; Cattell,
1963; Horn, 1965; Flanagan et al., 2000), serves
as a foundational model in cognitive science (Mc-
Grew and Evans, 2004). In the realm of computer
science, numerous studies have demonstrated the
critical role of cognitive capabilities in LLMs and
artificial intelligence (Zhao et al., 2022; Lieto et al.,
2018; Song et al., 2024). Our overall capability
framework is shown in Figure 1.

Cognition The CHC theory categorizes human
cognitive abilities into three hierarchical levels.
Stratum I consists of “narrow” abilities, which
represent specialized skills developed through ex-
perience, learning, or the application of targeted
methodologies (Carroll, 1993). Stratum II encom-
passes “broad” abilities, which are more abstract

Linguistics Literature Multilingualism

Tradition Art Sports

Mass Media Music Food

Health Biology Earth Science

Astronomy Chemistry Physics

Mathematics Logic Economics

Law Politics Education

Sociology Agriculture Computer
Science

Automation Electronics Engineering

Coding Communication Religion

Philosophy Ethics History

Pattern
Recognition 

Concept
Abstraction

Hypothesis
Generation

Problem
Decomposition

Quantitative
Reasoning

Logical
Analysis
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Facility

Reading
Decoding Writing Ability

Naming
Facility

Associational
Fluency

Expressional
Fluency

General Sequential
Reasoning

Sensitivity to Problems/
Alternative Solution FluencyWord Fluency

Generation

Extraction Program
Execution Detection

Brainstorming Sentiment Completion

Natural Language
Inference

Bias and
Fairness

Word Sense
Disambiguation

Multiple
Choice QA Closed  QA Open QA

Rewrite Summarization Classification

Abstract
Coding Concept

Originality/
Creativity

Ideational
Fluency

Figure 1: The model capability framework we define,
where the blue section represents the Cognition dimen-
sion, the green section represents the Domain dimension,
and the brown section represents the Task dimension.
The shaded region is used to visually emphasize our
CDT framework.

and general in nature. Stratum III represents the
highest level, with a single general cognitive ability
acting as an overarching factor. In our framework,
we focus exclusively on the Stratum I abilities de-
fined by Flanagan and Dixon (2014), as they pro-
vide specific abilities and detailed definitions that
are more directly applicable than those found in the
other two levels. The process of constructing LLM
cognitive capabilities follows these steps:

• Cognition Construction: To align with the lin-
guistic focus of LLMs, we begin by filtering the
cognitive abilities defined by CHC, which span
multiple human modalities such as vision, hear-
ing, and speech. We exclude non-linguistic abili-
ties and domain-specific knowledge, as domain
expertise is addressed separately in our frame-
work. We also remove skills that are essential
for humans but not as crucial for models, such
as memory-related abilities. While this CHC-
based foundation is robust, it may still overlook
certain skills exhibited by LLMs. To address
this, we augment the set with capabilities partic-
ularly relevant to LLMs, such as logical analysis,
abstract coding concepts, and problem decompo-
sition. After this process, the number of abilities
is reduced from 82 to 16.

• Definition Refinement: To better align with
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language models, we refine certain ability defini-
tions. Notably, the ability Induction, originally
defined as “the ability to discover the underlying
characteristic (e.g., rule, concept, process, trend,
class membership) that governs a problem or a
set of materials,” often leads to ambiguity in ca-
pability tagging. Its broad and abstract nature
makes it frequently assigned across diverse in-
structions. To address this, we subdivide it into
three specific capabilities: pattern recognition,
concept abstraction, and hypothesis generation.
After these refinements, the total number of cog-
nitive capabilities is Nc = 18, and we define
the cognition dimension as C = {ci}Nc

i=1, where
each ci denotes a specific cognitive capability.
The detailed cognitive capability construction
procedure is provided in Appendix A.2.

Domain Based on Ye et al. (2024), which cate-
gorizes 38 domains, we construct the domain di-
mension of our framework. However, we observe
that certain domains, such as business and mar-
keting, exhibit considerable similarity, potentially
introducing ambiguity in capability tagging mod-
els and leading to label distribution dispersion in
the following process of annotating capabilities.
So, we manually refine the domain set. First, we
merge similar domains into one domain to reduce
ambiguity. Then, we expand the domain coverage
by adding underrepresented domains such as earth
science and tradition. After refinement, the total
number of domains is Nd = 33, and the domain
dimension is defined as D = {di}Nd

i=1, where each
di represents a specific categorized domain.

Task For task categorization, we draw inspira-
tion from Wang et al. (2024c), who classify the 76
tasks in SuperNI (Wang et al., 2022) into 16 tax-
onomies, as well as from related work such as Bach
et al. (2022) and Ouyang et al. (2022), which offer
widely accepted, fine-grained, and comprehensive
categorizations. Taking task granularity and com-
pleteness into account, we ultimately categorize
Nt = 16 task taxonomies. For task definition, we
synthesize information from Wikipedia and prior
work (Ding et al., 2023) to formulate detailed defi-
nitions for each task. The task dimension is defined
as T = {ti}Nt

i=1, where ti is the task we define.
Finally, the whole capability framework F is:

F = {(c, d, t) | c ∈ C, d ∈ D, t ∈ T } (1)

Details on the categorization and definitions of each
capability are provided in Appendix A.3.

3.2 Capability Tagging Model Training
To facilitate the practical use of our framework, we
train a capability tagging model for each dimen-
sion. We first prompt GPT-4o (OpenAI, 2024a) to
annotate fine-grained capability labels for each in-
struction in the training data due to its exceptional
comprehension abilities. Given the importance of
cognitive abilities in human intelligence, each data
point is annotated with up to two cognitive capabil-
ities, and one tag for both domain and task.

We construct a training set of 49K samples from
seven public instruction datasets, with 1K held out
as a test set. Then we use the annotated dataset
to fine-tune three annotators on the Qwen2.5-7B-
Base (Team, 2024) model. To validate the perfor-
mance of the trained annotators, we use the GPT-
generated labels as the ground truth and evaluate
the models on the test set. The accuracy rates for
cognition, domain, and task tags are 93.1%, 81.2%,
and 80.9%, respectively, with an average score of
85.1%, supporting the validity and reliability of
the CDT tagging system. Further training details,
datasets, prompt designs, human evaluation results,
and a cost-benefit analysis of our annotation strat-
egy are provided in Appendix A.4.

4 CDT for Dataset Evaluation and Data
Selection

While the CDT framework offers a comprehen-
sive definition of model capabilities, its application
to LLMs remains an area requiring further explo-
ration. Leveraging CDT’s ability to classify data
at the instruction level based on capabilities, we
focus on two key application scenarios: evaluating
the capability characteristics of existing instruction
datasets and guiding the selection of training data
to enhance model performance.

4.1 Capability-Aware Dataset Evaluation
To understand the quality and capability distribu-
tion of existing instruction datasets, and thereby
guide future dataset construction more effectively,
we introduce a capability-aware evaluation ap-
proach based on CDT. Given a labeled instruction
dataset Di where each instance is annotated with
composite capability triplet (c, d, t), we then define
the capability composites within Di as Ti.

Ti = Composites(Di) (2)

where Composites means getting all the capability
composites in a given labeled dataset. We then
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define two quantitative metrics for dataset-level
capability assessment: Coverage and Balance.

• Coverage measures how many distinct capa-
bility composites the dataset contains rela-
tive to the full capability space, defined as
Coverage = |Ti|/|F|.

• Balance reflects the uniformity of the dis-
tribution over composite capabilities in the
dataset. It is computed as the Shannon en-
tropy: Balance = −∑

ti∈Ti
p(ti) log p(ti),

where p(ti) is the empirical probability of
composite triplet ti in dataset Di.

A higher Coverage indicates broader capability
representation. This concept aligns with existing
research. For example, INSTAG defines a similar
metric, referred to as the unique tag coverage rate
for the overall tag set, emphasizing the importance
of diverse capability representation. Similarly, re-
search by Zhang et al. (2024) explicitly states that
the diversity of the instruction set largely deter-
mines generalization to unseen tasks, underscor-
ing the critical role of diversity in enabling perfor-
mance on novel tasks. It also points out that the un-
even distribution within the training set can affect
generalization ability, which in turn leads to our def-
inition of the Balance metric. A higher Balance
reflects a more uniform distribution across capabil-
ities. This observation is echoed in other studies
that stress the importance of data balance for ro-
bust model training (Kandpal et al., 2023; Shao
et al., 2024). Both of the metrics are desirable for
building generalizable models. We employ these
metrics in Section 5 to evaluate a range of popular
instruction datasets.

4.2 Capability-Guided Data Selection

Beyond supporting capability evaluation and analy-
sis, CDT can also serve practical purposes in down-
stream applications. To demonstrate its effective-
ness, we apply CDT to data selection scenarios for
LLM instruction fine-tuning. This approach en-
ables the systematic enhancement of training data
quality and relevance, ultimately improving LLM
performance on downstream tasks.

Prior to implementing the data selection pro-
cess, we first annotate the collected data pool
Dpool using the CDT framework to ensure precise
capability-based categorization, resulting in the la-
beled dataset D

′
pool. As in the previous section, we

define the capability composites within D
′
pool as:

Td = Composites(D
′
pool ) (3)

We then explore two practical strategies under this
framework: a diversity-driven selection method
to improve general capability coverage, and a
capability-oriented filtering method to support spe-
cific scenario enhancement.

Diversity-Driven General Scenario Data Selec-
tion When training LLMs, data diversity plays
a crucial role in enhancing model performance
and generalization (Miranda et al., 2024; Zhou
et al., 2023). Therefore, we propose a diversity-
driven general data selection method based on CDT.
Firstly, we define the selected training dataset as
Dtrain and the composite capability assigned to
Dtrain as Ts.

Ts = Composites(Dtrain) (4)

For diversity-driven applications, our goal is to
enlarge Ts as much as possible. Then we define
a threshold R, which denotes the ratio of Ts to
Td. We quantify the attribute diversity as R =
|Ts|/|Td|, where | · | denotes the cardinality (i.e.,
the number of elements) of a set. The value of
R reflects the coverage rate of unique composite
capabilities within the selected sub-dataset relative
to the entire data pool. Our selection criterion aims
to maximize the proximity of R to 1. Based on this,
if a data point d ∈ Dpool could increase R, we add
the composite of d to Ts and d itself to Dtrain as
training data. When R can no longer be increased,
we perform an average selection from Dpool to fill
the gaps in the capability composite of Ts.

Capability-Oriented Specific Scenario Data Se-
lection When applying the capability framework
in the capability-oriented specific scenario, we first
label the validation set of the test task to obtain the
labeled dataset Dvalid. Then, we tag Dvalid with
our annotators to form D

′
valid and use the same

method as in the diversity-driven approach to ex-
tract all combinations of abilities Tv from D

′
valid.

Tv = Composites(D
′
valid ) (5)

We aim to perform an average selection of the
data from D

′
pool based on the combinations of ca-

pabilities in Tv. However, in practice, Tv may be
limited to a small subset of combinations of capabil-
ities, and the amount of data corresponding to these
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Figure 2: Open-source instruction datasets analysis
based on their capability Coverage and Balance. The
Z-axis and the point color both indicate AlpacaEval
score, with brighter colors corresponding to higher per-
formance.

combinations in D
′
pool may not be sufficient to sup-

port our selection. To address this issue, we further
decompose the capabilities in Tv. Specifically, we
break down the triplet of capabilities f = (c, d, t)
into binary pairs (c, d), (c, t), (d, t), creating a bi-
nary set T ∗

v , and further into individual dimensions
(c), (d), (t), forming a unary set T ⋆

v . When the
triplet set Tv does not yield enough data, we first
perform random selection on T ∗

v , followed by se-
lection on T ⋆

v in successive stages. This approach
ensures sufficient data collection while preserving
the concentration of capabilities. We present the
details of the two algorithms in Appendix A.5.

5 Empirical Analysis of Instruction
Dataset Capabilities

Datasets We conduct an empirical analysis on
eight publicly available instruction datasets widely
used in LLM instruction tuning. These datasets
include: Chain of Thought (Wei et al., 2022),
Dolly (Conover et al., 2023), Open Assistant (Köpf
et al., 2023), Flan V2 (Longpre et al., 2023), Wiz-
ardLM (Xu et al., 2024), Alpaca-GPT4 (Peng et al.,
2023), Self-Instruct (Wang et al., 2023b), and Un-
natural Instructions (Honovich et al., 2023). Each
dataset is annotated using our capability taggers to
extract the composite tuples. We then compute the
metrics introduced in Section 4.1. Following Lu
et al. (2024), we collect the AlpacaEval (Li et al.,
2023) score for model performance.

Analysis Figure 2 visualizes the relationship be-
tween Coverage, Balance, and AlpacaEval scores
for these datasets. As shown, there is a positive

correlation between the two metrics and the model
performance. Datasets achieving higher scores on
both Coverage and Balance generally yield mod-
els with superior AlpacaEval scores. Notably, top-
performing datasets such as Wizard, Alpaca-GPT4,
and Open Assistant are positioned in the upper-
right region of the plot, indicating high values for
both our proposed metrics. Interestingly, Open
Assistant, despite a moderate Coverage score,
achieves a strong AlpacaEval score, potentially due
to its exceptional Balance score, highlighting the
crucial impact of data balance. Conversely, datasets
like CoT and Flan, which score lower on these two
quality indicators, correspondingly result in models
with lower AlpacaEval scores.

Performance Variance We also observe that
datasets with similar quantitative scores may lead
to very different model performance. For example,
Alpaca, Unnatural Instructions and Self-Instruct
show similar metrics, but differ widely in effective-
ness. We attribute this to the quality of the response
annotations: Alpaca uses GPT-4-generated outputs,
while the latter two rely on earlier models such
as text-davinci-002/003, which are substantially
weaker. Since our capability taggers operate on the
instruction side, they may overlook differences in
response quality, resulting in the observed discrep-
ancy. We believe this also explains the performance
gap between Open Assistant and Dolly. Although
both are human-annotated, Open Assistant relies
on global crowdsourcing, which results in higher-
quality responses compared to Dolly, whose anno-
tations come from Databricks employees.

Our empirical analysis demonstrates that
Coverage and Balance are effective indicators of
dataset quality, and that a combination of compre-
hensive Coverage and well-distributed Balance is
crucial for training models with high performance.
These findings suggest that CDT can serve as prac-
tical guidelines for capability-aware data curation
in future dataset construction.

6 Data Selection Experiments

6.1 Experiment Setup
Data Pool and Base Model To evaluate and
apply our proposed capability framework, CDT,
across both diversity-driven general scenario and
capability-oriented specific scenario, we utilize the
following datasets: (1) Aggregated high-quality
datasets, including Flan V2 and CoT; and (2) Open-
ended generation datasets with human-annotated
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Methods ARC-C MMLU BBH CEVAL TYDIQA AVG.

Baselines
Base 43.5 45.2 41.6 31.9 47.8 42.0
All 44.5 45.9 39.6 35.6 53.3 43.8
Random 45.0 45.5 39.8 32.9 50.4 42.7
InsTag 44.8 45.8 39.3 33.2 51.9 43.0

Our Methods
CDT_Cognition 45.3 45.3 38.2 36.6 51.9 43.5
CDT_Domain 45.9 46.1 38.5 34.3 52.2 43.4
CDT_Task 45.7 46.1 39.3 35.9 50.5 43.5
CDT 46.1 46.3 38.8 36.9 53.2 44.3

Table 2: Results of applying CDT in diversity-driven
general data selection, using 20% of the data pool for
training. Bold indicating the best performance and
underline indicating the second-best performance.

responses, such as Dolly and Open Assistant. From
these four datasets, we compile a pool of approxi-
mately 270K data points. Since our annotators are
trained using Qwen2.5-7B1, we select Llama2-7B-
Base2 as the base model to mitigate any potential
bias between the tagging model and the experimen-
tal model. We use open-instruct3 and lm-eval (Gao
et al., 2024a) for all tests.

Baselines We conduct the following experiments
for comprehensive comparison:

• Base: We evaluate the pre-trained Llama2-7B-
Base model on the benchmarks.

• ALL: We train the Llama2-7B-Base model using
all the data from the data pool.

• Random: We randomly sample data from the
data pool to train the Llama2-7B base model.

• INSTAG: (1) For the diversity-driven general
scenario, we adopt the diversity approach out-
lined by Lu et al. (2024), utilizing their anno-
tation model to label the training data.(2) For
the capability-oriented specific scenario, we use
only the INSTAG annotator for tag labeling. We
then average the sample data from the data pool
based on the capabilities tagged in the valid set.

Configuration We fine-tune the Llama2-7B-
Base model using Low-Rank Adaptation (LoRA)
(Hu et al., 2022), specifically targeting the attention
module. Distributed training is conducted using
DeepSpeed (Rasley et al., 2020). During training,
the maximum sequence length is set to 2048, with
a batch size of 64 and training epochs as 3.

1https://huggingface.co/Qwen/Qwen2.5-7B
2https://huggingface.co/meta-llama/Llama-2-7b
3https://github.com/allenai/open-instruct

6.2 Experiments on the General Scenario
We first apply CDT to data selection in the diversity-
driven general scenario. By extracting capability
distributions from the data pool, we select diverse
training data and evaluate performance on Llama2-
7B-Base. Additional results on Mistral-7B-Base
are provided in Appendix A.6 to demonstrate the
generalizability of our method.

Benchmarks We conduct experiments using the
following benchmarks: ARC-C (Clark et al.,
2018): We use the Challenge portion for test-
ing, with accuracy as the evaluation metric.
MMLU (Hendrycks et al., 2021): We report
the average accuracy score under 5-shot set-
tings. BBH (Srivastava et al., 2022): We use the
CoT prompt and report the accuracy score. C-
Eval (Huang et al., 2023): We use accuracy on
5-shot as the evaluation metric. TyDiQA (Clark
et al., 2020): We use the GoldP task and report the
average F1 score under 1-shot settings.

Results As shown in Table 2, our method
achieves the best overall performance, ranking first
on most benchmarks. For BBH, all the methods
exhibit performance degradation compared to the
base model. We hypothesize that this may be due
to a certain degree of overlap between the fine-
tuning data and the model’s training data, which
compromises the model’s ability to generalize to
complex reasoning tasks. Furthermore, since our
method considers the capabilities from three dimen-
sions, we also conduct separate experiments for
each dimension. Notably, even when using a single
capability dimension, our method consistently out-
performs Random and INSTAG. Among these, the
approach that jointly considers all three dimensions
outperforms those that consider only a single di-
mension across the majority of evaluation metrics.
These results highlight the accuracy of our CDT
framework in defining capabilities and demonstrate
the effectiveness of our diversity-driven data selec-
tion method in practice.

Impact of Data Volume on CDT Performance
We conduct experiments by selecting 5%, 20%,
and 40% of the data from the overall data pool.
The results are presented in Table 3. Using 20%
of the data, our method, CDT, yields the best per-
formance compared to other volumes. However,
even at these data volumes, our CDT data selec-
tion methods still outperform INSTAG in all cases.
These results highlight the robustness and stabil-
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Volume Methods ARC-C BBH MMLU CEVAL TYDIQA AVG.

5%
INSTAG 44.3 38.3 44.4 32.1 49.4 41.7
CDT 45.6 39.4 45.7 32.7 50.1 42.7

20%
INSTAG 44.8 39.3 45.8 33.2 51.9 43.0
CDT 46.1 38.8 46.3 36.9 53.2 44.3

40%
INSTAG 45.2 39.4 46.3 33.7 51.5 43.2
CDT 45.1 38.1 46.7 36.9 51.6 43.7

Table 3: The results of our method across different data
selection volumes and our approach achieve the optimal
results at 20%. The results are presented with bold
indicating the best performance and underline indicating
the second-best performance.

Figure 3: Diversity analysis using t-SNE on the data
selected by Random, Instag, and CDT. Blue dots repre-
sent the distribution of all data, while red dots indicate
the distribution of data selected by different methods.

ity of our approach across different data volumes.
Based on these findings, we choose to use the 20%
data configuration for the remaining experiments.

Comparison of Data Diversity Across Methods
In the diversity-driven general scenario, training
data diversity is critical to model performance. To
assess the effectiveness of CDT, we analyze the di-
versity of data selected by Random, INSTAG, and
CDT. Following Gao et al. (2024b), we use Llama2-
7B-Chat to extract data representations and apply
t-SNE for visualization. As shown in Figure 3, the
red points of CDT are more widely dispersed than
those of INSTAG and Random, indicating that the
data selected by the CDT method exhibits greater
diversity. This advantage in data diversity aligns
with the performance improvements observed in
our benchmark tests, explaining why CDT outper-
forms other methods in the diversity-driven general
scenario. It further reinforces the rationale behind
the capability definitions in our CDT framework.

6.3 Experiments on the Specific Scenario

After validating CDT in the general scenario,
we further test its effectiveness in the capability-
oriented specific scenario, where models require
data tailored to specific capabilities. Using the
method introduced in Section 4.2, we conduct a
detailed analysis of three target test sets.

DROP GSM HISTORY
Methods

EM F1 EM Acc.
AVG.

Base 0.0 1.3 14.5 51.0 16.7
All 49.0 58.3 21.0 51.3 44.9
Random 46.7 55.8 19.0 51.2 43.2
InsTag 47.9 57.2 19.0 52.4 44.1
CDT 49.3 58.3 21.5 52.5 45.4

Table 4: The results of using CDT for data selection
in the capability-oriented specific scenario, using 20%
of the data pool for training. The best performance is
marked in bold, and the second-best is marked with
an underline. Our method achieves the highest perfor-
mance across all three test sets.

Test Datasets We conduct experiments using the
following test datasets: DROP (Dua et al., 2019),
GSM (Cobbe et al., 2021), and HISTORY, where
HISTORY is a resampled subset of four history-
related tasks from the MMLU benchmark. To
align with the application method proposed in Sec-
tion 4.2, we select a maximum of 200 samples from
the validation set of each task for tagging and data
selection. For datasets that do not include a valida-
tion set, we randomly split 200 samples from test
set to form one. If a dataset contains fewer than 200
samples, we use the full validation set available.

Result As shown in Table 4, CDT consistently
achieves the highest performance across all test
sets. While full-data training approaches achieve
similar results on DROP and GSM, our approach
attains better results using only 20% of the full
dataset, demonstrating significantly improved data
efficiency. Furthermore, on the HISTORY test
set, the full-data baseline performs similarly to
Random, yet remains 1.2 points below our ap-
proach. These results highlight the exceptional
performance of CDT in capability-oriented specific
scenario, demonstrating its effectiveness.

Reasonability of Selected Data To further com-
pare CDT with INSTAG, we use DROP as the
targeted test set and analyze capability distribu-
tions by comparing the data selected by the IN-
STAG method with the tags annotated by CDT. As
shown in Figure 4, CDT consistently aligns more
closely with the target test set across the three di-
mensions. In cognition, both methods focus on key
capabilities like HP (Hypothesis Generation), CA
(Concept Abstraction), and RD (Reading Decod-
ing). Although INSTAG shows a slightly higher
distribution in the HP capability, CDT surpasses it
in both CA and RD capabilities, demonstrating a
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(a) Cognition (b) Domain (c) Task

Figure 4: A comparison of the capability distributions
of the data selected for the DROP test set using the CDT
and INSTAG methods. The gray areas in the figure
represent the capabilities required by DROP. MCQA
stands for Multiple Choice QA.

more concentrated and dominant distribution. In
the domain dimension, CDT selects substantially
more data from relevant areas like history, sports,
and mass media, which are central to the construc-
tion of DROP, as it prioritizes articles from these
areas to support complex question generation. Re-
garding task dimension, CDT better captures the
Closed QA capability, with a higher proportion of
targeted samples. These results confirm that CDT
effectively identifies and prioritizes the capabilities
needed for the target test, thereby validating the
strength and reliability of our framework.

7 Conclusion

In this work, we introduce the Cognition-Domain-
Task (CDT) capability framework, offering a com-
prehensive and systematic approach to classify and
decompose the capabilities of LLMs. By defining
cognitive abilities based on Cattell-Horn-Carroll
(CHC) theory and organizing domain and task ca-
pabilities into a structured taxonomy, we enable
more nuanced categorization of LLM capabilities
across various scenarios. Additionally, we trained
a high-quality annotator on the Qwen2.5 model
using the CDT framework.

We demonstrate the utility of CDT in two key
applications. We first apply CDT to dataset evalua-
tion using Coverage and Balance metrics to assess
capability diversity and distribution. We then pro-
pose diversity-driven and capability-oriented data
selection methods, both of which lead to substan-
tial performance gains across multiple benchmarks.
These results confirm the stability and effectiveness
of CDT in guiding both dataset evaluation and data
selection, highlighting the robustness and practical
applicability of the framework.

Limitations

Our method constructs a detailed three-dimensional
LLM capability framework, CDT, and explores its
application in dataset evaluation and data selection.
However, there are still some limitations.

First, although the annotator trained on the
Qwen-2.5 model achieves higher labeling accuracy
across the three dimensions compared to INSTAG,
there is still significant room for improvement. This
could be addressed by adding more training data
or incorporating specific knowledge from human
experts to guide more accurate annotator training.

Second, when defining the three dimensions, we
filter out multimodal capabilities, limiting the appli-
cability of the CDT framework to a broader range
of multimodal models. Future research could ex-
pand CDT to include relevant multimodal capa-
bility classifications and conduct experiments on
multimodal models such as Qwen-VL (Bai et al.,
2023) and Llama-3.2 (Grattafiori et al., 2024).

Lastly, in our application of the CDT framework
to LLMs, we have only explored its application in
two scenarios. Future research may benefit from
combining curriculum learning methods, such as
Regmix (Liu et al., 2024b), with the CDT frame-
work to dynamically adjust data distribution during
training, potentially leading to even better results.
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A Appendix

A.1 Design Rationale of CDT
This section elaborates on the foundational princi-
ples and design choices of the CDT framework. Its
purpose is to provide deeper insight into the frame-
work’s application, particularly regarding the role
of context and the relationship between the three
capability dimensions.

Contextualized Instructions A central design
principle of the CDT framework is that it operates
on entire instructions rather than isolated keywords
or concepts. As a result, capability tagging is inher-
ently context-dependent. This approach is critical
for resolving the inherent ambiguity of language,
since the capabilities required to interpret a term
can vary substantially based on the instructional
context. For example, consider the term “com-
pany”, which can invoke different capabilities de-
pending on the prompt. In the instruction “Sug-
gest creative names for my new internet company,”
the context provided by “internet” and “creative
names” indicates a Domain in Computer Science
and a Cognition of Ideational Fluency. By contrast,
in the instruction “Explain the legal definition of
a limited liability company,” the context of “le-
gal definition” shifts the relevant Domain to Law
and the required Cognition to Concept Abstraction.
This context-driven methodology enables the CDT
framework to provide a precise and nuanced anal-
ysis of the capabilities demanded by each unique
user instruction.

Relationship Between CDT Dimensions The
three dimensions of CDT are structured to be or-
thogonal, not hierarchical. They function as a multi-
dimensional coordinate system. The Cognition axis
describes how the model needs to reason or process
information to fulfill the request, corresponding to
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how to think. The Domain axis identifies what the
subject area or field of knowledge is, correspond-
ing to what the topic is. The Task axis specifies
what the user’s explicit intent or the required output
format is, corresponding to what to do.

This structure ensures that a concept in one di-
mension is independent of the others. For example,
a model might apply Pattern Recognition to per-
form a Detection task in the Literature domain by
identifying the rhyme scheme in a poem, or use the
same cognitive skill for a Generation task in the
Economics domain to summarize cyclical trends in
market data.

A.2 Cognitive Capability Construction

Starting with the “narrow” level of the CHC theory
as defined in Flanagan and Dixon (2014), we make
systematic adaptations to tailor the taxonomy to the
specific characteristics of LLMs, which differ from
human cognition in both modality and operational
dynamics. The adaptation process involves the
following steps:

• Exclusion of non-linguistic modalities (e.g.,
speaking, listening, action, visual, olfactory abil-
ities) since LLMs are text-based. This reduction
brings the set from 82 to 33 abilities.

• Exclusion of non-core abilities (e.g., memory
and speed-related) that are less relevant to LLMs,
as LLMs operate differently from humans in
these aspects. We exclude abilities such as read-
ing speed, writing speed, memory span, and oth-
ers. This refinement reduces the set to 24.

• Exclusion of domain knowledge-related abil-
ities, as domain knowledge is a separate CDT
dimension. We exclude abilities such as gen-
eral information, lexical knowledge, geography
achievement, and others. This step brings the
number down to 13.

• Augmentation with LLM-relevant abilities,
such as logical analysis, abstract coding con-
cepts, and problem decomposition, which are
not emphasized in CHC but play a critical role in
core LLM applications like code generation, rea-
soning, and instruction following. This increases
the count to 16.

• Refinement of overlapping or broad defini-
tions, e.g., splitting Induction into pattern recog-
nition, concept abstraction, and hypothesis gen-

eration. This final step results in a set of 18
distinct cognitive abilities.

A.3 Capability Definition

The detailed definitions and abbreviations for the
cognition, domain, and task dimensions are pro-
vided in Table 5, Table 6, and Table 7, respec-
tively. In defining the domain dimension, we first
established the overarching domain and then care-
fully subdivided it into subdomains for labeling
purposes.

A.4 Capability Tagging Details

Training Data We collect 49K instruction sam-
ples from seven widely-used datasets: Selective
Alpaca (Liu et al., 2024a), Dolly (Conover et al.,
2023), Open Assistant (Köpf et al., 2023), Super-
Natural Instructions (Wang et al., 2022), Tulu
3 (Lambert et al., 2025), Flan V2 (Longpre et al.,
2023), and WizardLM (Xu et al., 2024). We ran-
domly sample 7K queries per dataset and reserve
1K for testing.

Training Configuration We fine-tune Qwen2.5-
7B-Base for 1 epoch with a batch size of 32 and a
cosine learning rate schedule initialized at 2e-5.

Prompts We design our prompts following the
approaches proposed by Lu et al. (2024); Ye et al.
(2024). To mitigate position bias, we randomize
the order of capabilities in the prompt for each
data point. Additionally, when tagging cognitive
capabilities, we ask the models to generate an ex-
planation paired with each tag, as cognitive tasks
require a deeper understanding of the instructions.
All prompts are presented in Figure 5. We con-
catenate the detailed descriptions of the query, tag,
and instruction into a single input prompt. When
labeling the cognition dimension, we restrict the
model to output at most two tags, along with their
corresponding explanations.

Human Evaluation To evaluate the validity of
the annotations generated by GPT-4o, we randomly
selected 100 annotated entries from the training
dataset to conduct a manual assessment. We eval-
uated the annotations based on the explanation of
the labels in the cognition dimension, as well as
the consistency of the task and domain dimensions
with the original data, to determine whether GPT-
4o’s annotations should be accepted as the ground
truth.
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Cognition Abbreviation Definition

Pattern Recognition PR Ability to identify recurring patterns, trends, or sequences within
a given set of data or materials (e.g., detecting similarities in a
sequence of numbers or text).

Concept Abstraction CA Ability to form abstract concepts or categories based on shared
characteristics or relationships among a set of materials.

Hypothesis Generation HP Ability to propose plausible explanations or predictions for in-
complete information (e.g., inferring causes of a fictional conflict,
suggesting scientific hypotheses).

General Sequential Rea-
soning

RG Ability to start with stated rules, premises, or conditions, and to
engage in one or more steps to reach a solution to a novel problem.

Quantitative Reasoning RQ Ability to inductively and deductively reason with concepts involv-
ing mathematical relations and properties.

Reading Decoding RD Ability to recognize and decode words or pseudowords in reading.
Writing Ability WA Ability to write with clarity of thought, organization, and good

sentence structure.
Naming Facility NA Ability to rapidly produce names for concepts when presented

with a text cue.
Associational Fluency FA Ability to rapidly produce a series of original or useful ideas

related to a particular concept.
Expressional Fluency FE Ability to rapidly think of different ways of expressing an idea.
Number Facility NM Ability to rapidly and accurately manipulate and deal with num-

bers, from elementary skills of counting and recognizing numbers
to advanced skills of adding, subtracting, multiplying, and divid-
ing numbers.

Logical Analysis LA Ability to identify and apply logical structures, rules, and patterns
within code or algorithms (e.g., recognizing logical constructs
such as loops, conditions, or recursion in programming tasks).

Problem Decomposition PD Ability to systematically break down complex tasks into modular
functional components, identify inter-component dependencies,
and reconstruct solutions through controlled composition.

Abstract Coding Concept AC Ability to form abstract representations of programming concepts
and apply them across different programming languages or envi-
ronments (e.g., understanding concepts such as functions, vari-
ables, data structures, and algorithms in a generalized form, and
applying them to solve problems in multiple programming lan-
guages).

Sensitivity to Prob-
lems/Alternative Solution
Fluency

SP Ability to rapidly think of a number of solutions to particular
practical problem.

Originality/ Creativity FO Ability to rapidly produce original, clever, and insightful responses
(expressions, interpretations) to a given topic, situation, or task.

Ideational Fluency FI Ability to rapidly produce a series of ideas, words, or phrases
related to a specific condition or object. Quantity, not quality, is
emphasized.

Word Fluency FW Ability to rapidly produce words that have specific phonemic,
structural, or orthographic characteristics (independent of word
meanings).

Table 5: The full definition of Cognition.

We involved two human evaluators to assess
the annotations, and the consistency of their as-
sessments was as follows: cognition dimension
consistency (95%), domain dimension consistency

(95%), task dimension consistency (85%). Addi-
tionally, we calculated the average acceptance rates
for GPT-4o’s annotations, which reflect the degree
to which the evaluators agreed with GPT-4o’s judg-
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Domain Sub-domain

Language Linguistics,Literature,Multilingualism
Culture Tradition,Art,Sports,Mass Media,Music,Food
Health Health
Natural Science Biology,Earth Science,Astronomy,Chemistry,Physics
Math Mathematics,Logic
Social Science Economics,Law,Politics,Education,Sociology
Technology Agriculture,Computer Science,Automation,Electronics,Engineering
Coding Coding
Humanities Communication,Religion,Philosophy,Ethics,History

Table 6: The full definition of Domain.

ments across each dimension: cognition (97.5%),
domain (87.5%), task (87.5%) and overall accep-
tance rate (90.5%). From these results, we observe
that GPT-4o’s annotations on the cognition dimen-
sion aligned more closely with human evaluations.
This may be due to the fact that, in the cognition
dimension, the cognitive abilities are more abstract
and require a deeper understanding of the instruc-
tions. As a result, we not only require GPT-4o to
output cognitive ability labels but also to provide
explanations corresponding to these labels.

The strong performance of GPT-4o validates the
quality of our initial annotated dataset. However,
relying on such a proprietary model for large-scale
labeling of our 270K data pool is expensive and
limits the broader adoption of the CDT framework.
Therefore, to create a scalable and accessible solu-
tion, we use this high-quality dataset to train our
own open-source capability annotators. The de-
tailed cost-benefit analysis of this two-stage anno-
tation approach is discussed below.

Annotation Cost Considerations While the pro-
cess of training the capability taggers requires an
initial annotation phase, this process is largely au-
tomated using GPT-4o to generate fine-grained la-
bels. This is a one-time, upfront investment de-
signed not merely to label data for a single experi-
ment, but to distill the nuanced definitions of our
CDT framework into a set of efficient and open-
source Qwen2.5-based annotators. The necessity
of this approach is validated by our experiments:
using the GPT-4o annotations as ground truth, we
evaluate zero-shot performance on our test set.
The Qwen2.5-7B-Base model achieves an average
tagging accuracy of only 33.5% across the three
dimensions, while Qwen2.5-7B-Instruct reaches
53.5%. In contrast, our annotators achieve an av-
erage accuracy of 85.1%. This significant perfor-

mance gap demonstrates that our initial data distil-
lation is a crucial step for developing a reusable tag-
ging tool. Once trained, our annotators can be ap-
plied to any number of future datasets at a low and
predictable computational cost, far cheaper than
repeated API calls to proprietary models, which
makes the CDT framework highly scalable. As
shown in Section 6, this workflow strategically
trades the upfront annotation investment for signifi-
cant downstream efficiency: by precisely selecting
data based on these capability labels, we achieve
improved model performance using only a fraction
of the total data, thereby substantially reducing the
computational cost of the final fine-tuning phase.

A.5 Data Selection Algorithm
We present our diversity-driven general sce-
nario data selection algorithm in Algorithm 1
and capability-oriented specific scenario in Algo-
rithm 2.

A.6 Experiments on Mistral Model
In addition to the LLama2-7B-Base model, we also
conducted experiments on the Mistral-7B-Base
model, using 20% of the training data in the general
scenario as an example. The results are presented
in Table 8. As shown, our method achieves the
highest score of 55.5 among all baselines, further
demonstrating the generalizability of our approach.
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Task Definition

Generation Creating new information with human-input conditions, involving
the automatic generation of various text materials follow the in-
struction given by the user.

Rewrite Taking a piece of text and rephrasing it while preserving its original
meaning, which may involve simplifying the language, changing
the structure, or adjusting the tone.

Summarization Condensing longer texts into shorter versions while retaining the
key information and main ideas, making it easier to digest complex
information.

Classification Assigning predefined labels or categories to text based on its
content, such as topic categorization.

Brainstorming Generating ideas, encouraging creative thinking, or exploring
possibilities.

Sentiment Determining the emotional tone or sentiment expressed in a piece
of text.

Completion Continuing a given prompt with relevant and contextually appro-
priate content, such as finishing sentences or filling in blanks.

Natural Language Infer-
ence

Assessing the relationship between two sentences to determine if
one logically follows from the other (entailment), (contradiction),
or if the relationship is unclear (neutral).

Bias and Fairness Evaluating models for potential bias, fairness, or harmfulness in
their outputs.

Word Sense Disambigua-
tion

Determining which meaning of a word is used in a given context,
especially for words that have multiple meanings.

Multiple Choice QA Answering questions by selecting the correct option from a pre-
defined set of possible answers based on provided information or
context.

Closed QA Answering questions directly without access to external knowl-
edge.

Open QA Answering open-ended questions that can cover a wide range of
topics, often without a single, definitive answer.

Extraction Identifying and extracting specific pieces of information from a
given text.

Program Execution Executing or simulating the execution of a given program or script,
processing inputs, performing operations, and returning outputs
based on the specified instructions, often including code interpre-
tation or debugging.

Detection Identifying the presence of specific elements, patterns, or anoma-
lies in a given text, such as detecting spam or certain linguistic
features like named entities or grammatical errors.

Table 7: The full definition of Task.

Methods ARC-C MMLU BBH CEVAL TYDIQA AVG.

Base 50.3 62.3 57.6 46.8 55.8 54.6
All 52.1 60.6 56.2 46.3 57.3 54.5
Random 52.1 59.9 58.1 46.4 57.0 54.7
InsTag 52.7 60.5 56.0 46.3 57.7 54.6
CDT 52.6 61.5 60.0 46.6 56.7 55.5

Table 8: Results of applying CDT in diversity-driven general data selection on the Mistral-7B-Base model.
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You are a helpful and precise assistant that selects the necessary skills required to respond to instructions. You are given the
following 18 skills.

[Skill Options]
{tags}

Note that the 'RQ' skill focuses on math problems. What are the relevant skills that are needed to answer the following
instruction? Especially, select the primary skills that this instruction particularly requires rather than skills that could be
applied to common instructions.

[Instruction]
{instruction}

Select and write the name of the primary skills. The number of skills you select should be no more than 2. You don't need to
select exactly 2 skills. Also, write a brief explanation of the reason why you choose this skill. The explanation should not be
the definition of the skill that I provide to you. The skills you return should be arranged in descending order of importance,
from the most important to the least. Your response have to strictly follow this JSON format:[{'skill': str, 'explanation': str}].

[Assistant]

(a) Cognition tagging prompt

You are a helpful and precise assistant in labeling the domain of the instruction. You will be given a list of 9 main domains
with 33 subdomains. After you see the instruction, you need to label the subdomain that the instruction is most likely to be.

[Domains]
{tags}

[Instruction]
{instruction}

Which subdomain best fits the above instruction? Please select only one subdomain from the list I provide. Please provide
only the subdomain behind the colon rather than the main domain. Your response have to strictly follow this JSON format:
{"domain": str}.

[Assistant]

(b) Domain tagging prompt

You are a helpful and precise assistant in labeling the task type of the instruction. You will be given a list of 16 task types.
After you see the instruction, you need to label the task type that the instruction is most likely to be.

[Task Type]
{tags}

[Instruction]
{instruction}

Which task type best fits the above instruction? Please select only one task type from the list I provide. Please provide only
the task name without the definition. Your response have to strictly follow this JSON format:{"task": str}.

[Assistant]

(c) Task tagging prompt

Figure 5: The prompts we used on tagging.
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Algorithm 1: Diversity-driven General Scenario Data Selection

Data: D′
pool: The capacity labeled data pool; N : Selection set size;

Result: Dtrain: The selected training dataset;
1 initialization: Td: All composite capabilities in the data pool; Dtrain ← ∅;
2 Sorting Td in descending order based on the number of corresponding data points in D

′
pool;

3 while |Dtrain| < N do
4 Flag ← False;
5 for each capability f ∈ Td do
6 Df ← Find_Data(f,D

′
pool);

7 // Select data tagged with composite capability f from D
′
pool

8 if Df ̸= ∅ then
9 d← Random(Df , 1);

10 // Randomly select one data point from Df

11 Dtrain ← {d} ∪Dtrain;
12 D

′
pool ← D

′
pool\{d};

13 Flag ← True;
14 end
15 if |Dtrain| = N then
16 break;
17 end
18 end
19 if Flag = False then
20 break;
21 // All data points related to capability set Td are selected
22 end
23 end
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Algorithm 2: Capability-oriented Specific Scenario Data Selection

Data: D′
pool: The capacity labeled data pool; D

′
valid: The capacity labeled validation set; N :

Selection set size;
Result: Dtrain: The selected training dataset;

1 initialization: Tv: Triplet capability set of validation set; T ∗
v : Binary capability set; T ⋆

v : Unary
capability set; Dtrain ← ∅;

2 for each capability set T ∈ {Tv, T
∗
v , T

⋆
v } do

3 Sorting T in descending order based on the number of corresponding data points in D
′
pool;

4 while |Dtrain| < N do
5 Flag ← False;
6 for each capability f ∈ T do
7 if N = |Dtrain| then
8 break;
9 end

10 Df ← Find_Data(f,D
′
pool);

11 // Select data tagged with composite capability f from D
′
pool

12 if Df ̸= ∅ then
13 d← Random(Df , 1);
14 // Randomly select one data point from Df

15 Dtrain ← {d} ∪Dtrain;
16 D

′
pool ← D

′
pool\{d};

17 Flag ← True;
18 end
19 end
20 if Flag = False then
21 break;
22 // All data points related to capability set T are selected
23 end
24 end
25 end
26 if |Dtrain| < N then
27 // Not enough data points labeled with the desired capabilities
28 Dr ← Random(D

′
pool, N − |Dtrain|);

29 Dtrain ← Dr ∪Dtrain;
30 end
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