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Abstract

While Retrieval-Augmented Generation sys-
tems enhance Large Language Models by in-
corporating external knowledge, they still face
persistent challenges in retrieval inefficiency
and the inability of LLMs to filter out irrelevant
information. We present ParetoRAG, an unsu-
pervised framework that optimizes RAG sys-
tems through sentence-level refinement guided
by the Pareto principle. By decomposing
paragraphs into sentences and dynamically re-
weighting core content while preserving con-
textual coherence, ParetoRAG achieves dual
improvements in retrieval precision and gener-
ation quality without requiring additional train-
ing or API resources, while using only 40%
of the tokens compared to traditional RAG ap-
proaches. This framework has been empiri-
cally validated across various datasets, LLMs,
and retrievers. Furthermore, we show that
ParetoRAG’s architectural improvements are
orthogonally compatible with adaptive noise-
robust models, enabling retrieval-augmented
optimization and robust training to enhance
generation quality mutually. This highlights
complementary architectural refinements and
noise mitigation, offering insights for integrat-
ing retrieval augmentation with robustness en-
hancement.

1 Introduction

With the development of Large Language Mod-
els (LLMs), their general capabilities have become
increasingly powerful (Achiam and Adler, 2023;
Dubey et al., 2024). However, even the most ad-
vanced LLMs still face challenges with factual er-
rors (Min et al., 2023; Huang and Chen, 2024).
One major limitation lies in their static parametric
memory, which prevents them from adapting to
dynamically evolving knowledge demands or cov-
ering unknown domains beyond their training data
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Q: How many episodes are 
in Chicago Fire season 4?
Answer it within 5 words. 

Retriever

The fourth season of Chicago Fire, an 
American drama television series with 
executive producer Dick Wolf, and 
producers Derek Haas, Michael Brandt, 
and Matt Olmstead, was ordered on 
February 5,  2015, by NBC,[1] and 
premiered on October 13, 2015, and 
concluded on May 17, 2016.[2]  The 
season contained 23 episodes.

The second season of Chicago Fire, an 
American drama television series with 
execut ive  producer  Dick Wolf ,  and 
producers Derek Haas, Michael Brandt, 
a n d  M a t t  O l m s t e a d ,  p r e m i e r e d  o n 
September 24, 2013, but on a new timeslot 
on Tuesday at 10:00 pm from Wednesday 
at  10:00 pm, on the NBC televis ion 
network. The season concluded on May 
13, 2014, and consisted of 22 episodes.

Dawson and Casey are back together after 
she has Louie. After spending the night 
with Severide, Stella finds out that her 
unstable ex-boyfriend Grant has escaped 
from psychiatric hold and is after her and 
Severide.  Meanwhile ,  th ings  take  a 
d ra hen  Bore l l i  f i l e s  a 
g  his le       
aderssadaship following his brother's death. 

Dawson and Casey are back together after 
she has Louie. After spending the night 
with Severide, Stella finds out that her 
unstable ex-boyfriend Grant has escaped 
fro ic hold and is after her and 
Sever s  take  a 
d ramat i c  t u rn  when  Bore l l i  f i l e s  a 
grievance against Boden questioning his 
leadership following his brother's death. 

    ⋯⋯

Top k contents 
Large-parameter / 
RAG-finetuned / 
Long-form input / 
Noise-robust LLM

Small-parameter / 
Unoptimized  / 
Short-form input / 
Noise-sensetive LLM

23 episodes.

Chicago 
Fire season 
4 has 22 
episodes.

Figure 1: The examples show that much noise impedes
the LLM from acquiring accurate knowledge from the
retrieved content and could potentially misdirect its rea-
soning. Finding the correct answer relies on the ability
of LLM to identify a small portion of key information.

(Kasai et al., 2023). LLMs are prone to generating
plausible hallucinations but lack factual accuracy
(Huang et al., 2024). These challenges significantly
hinder the performance of LLMs in knowledge-
intensive tasks (Ram et al., 2023). To address
these limitations, Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020a; Xiong et al., 2020;
Izacard et al., 2021) integrates relevant passages
from external databases into the input context, ef-
fectively enhancing the reliability and performance
of models in open-domain question answering and
dynamic knowledge retrieval tasks.

However, the effectiveness of RAG highly de-
pends on the quality of the retrieved information
(Fan et al., 2024). Additionally, interference from
redundant information and increased input length
are critical factors that significantly impact model
performance. In the retrieval stage, the relevance
scores of core sentences can be overshadowed by
redundant content at the same passage level, re-
ducing the prominence of key information in the
retrieved content. In the generation stage, retriev-
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Q: How many 

episodes are 

in Chicago 

Fire season 4? 

Figure 2: Comparison of the traditional RAG (red path) and ParetoRAG(green path). The traditional method
retrieves and directly uses entire passages, often introduces redundant information, leading to inaccurate answers.
In contrast, our method utilizes a preprocessed sentence-level corpus, assigning higher weights to key sentences
while appropriately preserving and weighting contextual information to avoid loss of coherence. Inspired by the
Pareto principle (the 80/20 rule), this design emphasizes critical information while maintaining necessary semantic
consistency. The selected sentences are fed into the LLM, resulting in more accurate answers.

ing excessive content to provide rich context can
result in overly lengthy inputs, which may cause
the model to lose focus and diminish its ability to
concentrate on critical information (Jin et al., 2024;
Shi et al., 2023). Figure 1 shows that core sen-
tences account for only a small portion of the top
k retrieved content. Excessive irrelevant or redun-
dant information hinders the ability of the model to
extract accurate knowledge and increases the risk
of generating hallucinations (Zhang et al., 2024;
Liu et al., 2024a). In addition, in the zero-shot
Chain-of-Thought (Wei et al., 2022) prompting
setup, the ability of LLM to follow instructions
shows a significant decline as the input size in-
creases. The model tends to directly generate an-
swers before completing reasoning steps, and this
tendency becomes more pronounced as inputs grow
longer (Levy et al., 2024).

Retrieval-augmented language models (RALMs)
(Zhang et al., 2024; Lin et al., 2024), Long-context
LLMs (Dubey et al., 2024; Team et al., 2024), and
Adaptive Noise-Robust Model (Yoran et al., 2024;
Fang et al., 2024) can be considered as solutions.
These models enhance the ability to process long-
form text and improve the robustness of noisy in-
formation, enabling them to focus more effectively
on key information and reduce the impact of redun-
dant content. However, these approaches require
additional training resources and high computa-
tional costs for further training and model fine-
tuning. Another possible solution is to reduce the
granularity of retrieval from the document level to
the sentence level (Lee et al., 2021; Chen et al.,
2024). However, this approach may inadvertently
lose some important contextual information (e.g.,

in the example in Figure 1, "The season" refers to
Chicago Fire season 4 in one context and season 2
in another), which is crucial for accurately answer-
ing the given query (Choi et al., 2021). Therefore,
we propose a method that does not require addi-
tional training resources while effectively preserv-
ing contextual information and reducing document
redundancy.

In this work, we present ParetoRAG, an unsu-
pervised framework built upon the RAG system.
Our approach leverages a preprocessed sentence-
level corpus, assigning higher weights to key
sentences while carefully preserving and weight-
ing contextual information to maintain coherence.
Drawing inspiration from the Pareto principle (the
80/20 rule), ParetoRAG prioritizes critical informa-
tion while ensuring semantic consistency, effec-
tively enhancing both the retrieval and generation
stages of the RAG pipeline. Notably, ParetoRAG
requires neither additional training resources nor
extra API calls. The overall ParetoRAG framework
is illustrated in Figure 2.

We validate ParetoRAG across three datasets
over three retrievers. Our main contributions are as
follows:

• A plug-and-play method named ParetoRAG is
proposed to achieve the decomposition from
paragraph level to sentence level, effectively
retaining contextual information during re-
trieval without additional training.

• ParetoRAG achieves notable improvements in
accuracy and fluency while reducing token
consumption to approximately 40% of the
original cost. Furthermore, it demonstrates

4138



strong generalization, as this conclusion is
consistently validated across various datasets,
LLMs, and retrievers.

• We investigate the methodological compatibil-
ity between ParetoRAG’s improvements and
the adaptive noise-robust model. The findings
suggest that retrieval-augmented architectures
and robust training strategies can be orthogo-
nally beneficial, providing architectural-level
enhancements that complement rather than
interfere with existing noise mitigation ap-
proaches.

2 Related Work

Retrieval-Augmented Generation with Noisy
Context RAG (Guu et al., 2020; Lewis et al.,
2020a) is considered a useful method to address
hallucinations, which improves the input questions
of generative LLM with retrieved documents. It
usually provides an extra knowledge source from
a specific corpus, i.e., Wikipedia, which greatly
improves the performance of LLM in a variety of
tasks, especially in the knowledge-intensive ones
(Ram et al., 2023). However, due to the limita-
tion of retrieval capabilities, retrieval-augmented
systems inevitably introduce irrelevant or partially
relevant knowledge to the models (Yin et al., 2023).
In recent years, the impact of noisy information on
the performance of RAG systems has received in-
creasing attention (Zhu et al., 2019; Yu et al., 2024).
Some studies (Jia and Liang, 2017; Creswell et al.,
2022) have shown that the introduction of irrelevant
noise significantly degrades model performance.
Further analyses (Chen et al., 2025) indicate that
as the proportion of noise in the retrieval context
increases, the performance of large language mod-
els (LLMs) deteriorates significantly. In addition,
research (Fang et al., 2024) has explored the effects
of different types of noise on RAG systems and
found that counterfactual retrieval noise has the
most detrimental impact on retrieval systems.

Advanced RAG Many advanced approaches
have been developed from the original RAG in
recent years (Kim et al., 2023; Zhang et al., 2024;
Liu et al., 2024b; Patil et al., 2024). Considering
that retrieval is sometimes unnecessary for some
queries, responses without retrieval are even more
accurate in many situations. SelfRAG (Asai et al.,
2023) is proposed to selectively retrieve knowledge
and introduce a critical model to decide whether
to retrieve it. SAIL (Luo et al., 2023) is tuned on

Passage N Passage (N+1)

⋯

NULL

⋯

⋯

M

Encode Core Sentence M and Context 

⋯

Passage N Passage (N+1)

⋯

NULL

⋯ M+1

Encode Core Sentence (M+1) and Context
⋯

⋯
Figure 3: The example of ParetoRAG encodes core sen-
tence M and core sentence (M+1). The content within
the same dashed box is split from the same passage. The
context of a core sentence consists of sentences from
the same passage, excluding the core sentence itself.

instructions to insert the retrieved documents be-
fore the instructions. RECOMP (Xu et al., 2024)
is designed to refine the retrieved passages by ei-
ther abstractively or extractively summarizing them
with additional models.

Compared with recent studies (Hwang et al.,
2024; Chen et al., 2024) that are the most rele-
vant to our work, a primary difference should be
highlighted. Dense X reduces information redun-
dancy by degrading documents into proposition
sentences. The authors trained a fine-tuned text
generation model to decompose paragraphs into
propositions to supplement contextual information.
In contrast, our approach utilizes the Sentence-
Context Weighted Attention mechanism to supple-
ment contextual information without requiring any
fine-tuning.

3 Method

In this section, we introduce a novel framework,
ParetoRAG, for improving the accuracy of retrieval
results by leveraging sentence-level weighting in-
spired by the Pareto Principle integrated into the
RAG system. Notably, ParetoRAG requires neither
additional training resources nor extra API calls.

3.1 Encoding Step

The encoding step involves extracting the core sen-
tence and its corresponding context from the pas-
sages and encoding them into dense vector repre-
sentations. This process ensures the inclusion of
both the key information from the core sentence
and the supplementary information from its sur-
rounding context, enabling semantically rich repre-
sentation for subsequent retrieval.
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Passage Segmentation. The passages in the
retrieval corpus C are segmented into sentences
using NLTK. The retrieval corpus is represented as
a collection of passages:

C = {P1, P2, . . . , Pm},

where m is the total number of passages. Each
passage Pj ∈ C is represented as a sequence of
sentences:

Pj = {sj1, sj2, . . . , sjnj
},

where sji represents the i-th sentence in the j-th
passage, and nj is the total number of sentences in
Pj .

Core Sentence and Context Extraction.
For each passage Pj ∈ C, every sentence sji is
considered a core sentence, and its corresponding
context is defined as the concatenation of all other
sentences in the same passage, excluding sji itself.
Formally, for a passage Pj = {sj1, sj2, . . . , sjnj},
the context for the core sentence sji is defined as:

Context(sji ) =

{
{sj1, . . . , sji−1, s

j
i+1, . . . , s

j
nj}, if nj > 1,

NULL, if nj = 1.

Here, Context(sji ) captures the surrounding infor-
mation in the passage Pj without including the
core sentence sji itself. This ensures that each core
sentence sji can be analyzed independently while
still being informed by its contextual sentences. If
a passage consists of only one sentence (nj = 1),
the context is defined as NULL.

Encode Core Sentence, Context and Query.
For each core sentence sji and its correspond-
ing context Context(sji ), a configurable encoder
Encθ(·) is applied to obtain their vector represen-
tations. Here, θ represents the model selection
parameter, which determines the specific encoder
to be used (e.g., Contriever, ANCE, or DPR).

The core sentence sji , its context Context(sji ),
and the query are encoded into d-dimensional vec-
tor representations using the same encoder Encθ(·).
The encoding process is as follows:

hi
core = Encθ(s

j
i ),

hi
context = Encθ(Context(sji )),

q = Encθ(Query),

where hi
core, hi

context, and q are all d-dimensional
vectors. These representations are used for similar-
ity computation and ranking.

Figure 3 shows the example of ParetoRAG en-
codes core sentence M and core sentence (M+1).

3.2 Retrieval Step
The retriever step takes the encoded core sentence,
context, and query vectors to compute their similar-
ity and rank the results for retrieval. This process
consists of the following key substeps:

Sentence-Context Weight Adjustment To
balance the contributions of the core sentence
and its context, an attention mechanism assigns
weights based on a hyperparameter α. The
weighted representation is computed as:

hi
weighted =

{
hi

core, if Context(sji ) = ∅},
α · hi

core + (1− α) · hi
context, otherwise.

This mechanism ensures that both the key informa-
tion from the core sentence and the supplementary
information from its context are considered during
similarity computation.

Similarity Computation Following previous
studies (Lewis et al., 2020a; Zou et al., 2024), the
similarity between the weighted sentence represen-
tation hi

weighted and the query vector q is computed
using dot similarity by default.

Sim(sji ,q) = hi
weighted · q.

This step quantifies how closely each sentence-
context pair matches the semantic meaning of the
query.

Top-k Sentence Ranking The top-k sentences
are ranked based on their similarity scores in de-
scending order:

Top-k = arg topk

(
Sim(sji ,q)

)
,

where arg topk returns the indices of the k sen-
tences with the highest similarity scores. These
top-k sentences are selected as the retrieval results,
providing the most relevant information based on
the query.

3.3 Generation Step
After the ranking step, the top-k ranked sentences,
denoted as Top-k, are passed to the language model
M to generate the final answer a for the given query
q. The generation process integrates the query and
the retrieved sentences to produce a response that
is both accurate and contextually relevant. The
generation step can be formalized as:

a = Generate(q,Top-k;M),
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Model
NQ(acc) Hotpot(acc) MS(mauve) MS(rouge)

# tok Contriever ANCE DPR # tok Contriever ANCE DPR # tok Contriever ANCE DPR Contriever ANCE DPR
Without RAG

Vicuna-7B

/

23.2

/

16.1

/

88.3 40.5
Vicuna-13B 28.2 20.2 82.1 40.7
Llama2-7B-chat 20.9 16.0 85.6 36.2
Llama2-13B-chat 29.9 18.4 90.1 39.6

Naive RAG
Vicuna-7B

1277

33.2 36.1 41.9

1202

25.0 22.3 23.9

810

84.1 84.9 87.9 35.8 35.6 37.5
Vicuna-13B 37.4 41.0 45.6 22.6 20.2 22.7 86.8 87.7 87.0 37.8 36.9 36.9
Llama2-7B-chat 33.2 37.9 40.8 23.6 23.4 23.3 85.0 88.6 89.2 33.6 34.4 35.4
Llama2-13B-chat 38.3 39.6 42.7 27.1 25.3 26.8 77.5 87.0 88.8 33.2 33.5 34.7

Recomp (Xu et al., 2024)
Vicuna-7B

26

35.9 39.3 43.4

41

29.0 25.5 27.9

26

79.2 83.8 85.3 40.4 42.3 41.2
Vicuna-13B 36.8 41.5 42.5 28.9 25.4 25.6 85.4 85.7 87.2 40.5 41.6 40.3
Llama2-7B-chat 24.3 31.5 33.9 26.7 22.4 25.2 25.7 41.2 38.5 36.7 39.2 37.6
Llama2-13B-chat 31.5 36.2 39.5 30.1 25.2 28.9 40.4 45.9 41.6 37.0 39.0 37.7

Dense X (Chen et al., 2024)
Vicuna-7B

466

34.1 38.5 41.5

427

15.4 14.4 14.4

396

88.1 87.4 91.5 42.6 45.7 44.3
Vicuna-13B 34.3 38.1 41.9 16.0 17.1 17.6 84.3 88.8 86.7 42.2 44.1 43.8
Llama2-7B-chat 31.7 35.2 37.4 14.1 13.6 13.6 92.0 89.9 92.6 42.2 44.1 43.5
Llama2-13B-chat 34.5 43.1 43.3 15.0 14.6 15.5 70.4 73.9 78.6 40.0 43.1 43.0

ParetoRAG (Ours)
Vicuna-7B

457 ↓ 64%

36.6 43.4 46.7

478 ↓ 60%

25.4 25.3 24.7

326 ↓ 60%

90.9 90.7 91.4 42.5 44.4 43.4
Vicuna-13B 39.1 44.2 48.2 26.7 25.9 26.0 87.7 92.6 88.6 41.6 43.6 42.6
Llama2-7B-chat 34.0 41.7 42.3 24.6 25.0 24.0 92.0 89.9 92.6 40.4 43.3 41.9
Llama2-13B-chat 36.1 41.8 47.4 25.9 26.1 25.2 92.2 90.1 92.0 39.0 42.2 40.8

Table 1: Overall experiment results of three retrievers on three tasks, based on top 10 recall contents. Dense
X top 20 is used to ensure consistent input token numbers. The lower the relative improvement, the deeper the
red background . In contrast, the deeper the blue background , the higher the relative improvement compared to

Naive RAG. The underlined numbers indicate the best-performing results on the current dataset.

where Generate(·) represents the generation func-
tion that combines the query q, the retrieved top-k
sentences Top-k, and the language model M to
produce the output a.

4 Experiment Setups

In this section, we describe the experimental setup
for evaluating ParetoRAG across various scenar-
ios. The specific model parameters can be found
in Appendix E. The selection and meaning of the
evaluation metrics can be found in Appendix F.

4.1 Datasets.

We experiment on three different open-domain
QA datasets as the retrieval source: Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019), HotpotQA
(Yang et al., 2018), and MS-MARCO (Nguyen
et al., 2016), where each dataset has a knowledge
database. The knowledge databases of NQ and Hot-
potQA are collected from Wikipedia. The knowl-
edge database of MS-MARCO is collected from
web documents using the MicroSoft Bing search
engine. These datasets encompass different tasks,
such as open-domain question answering, multi-
hop reasoning. Each dataset also contains a set of
questions. We randomly sampled 1,000 data pairs
for testing. Table 3 shows statistics of text unit
counts before and after ParetoRAG encoding.

4.2 Dense Retrieval Models

We compare the performance of the three follow-
ing unsupervised, semi-supervised, or supervised
dense retriever models. Following previous stud-
ies (Lewis et al., 2020b), by default, we use the
dot product between the embedding vectors of a
question and a text in the knowledge database to
calculate their similarity score.

Contriever (Izacard et al., 2021) is an unsuper-
vised retriever implemented using a BERT-base
encoder. Contriever is contrastively trained on seg-
ment pairs constructed from unlabeled documents
in Wikipedia and web crawl data.

ANCE (Xiong et al., 2020) is a dual-encoder
BERT-base model designed for dense retrieval
tasks. It is trained using weakly supervised sig-
nals from query-document pair labels, typically
sourced from datasets such as MS-MARCO.

DPR (Karpukhin et al., 2020) is a dual-encoder
BERT-base model fine-tuned on passage retrieval
tasks directly using the question-passage pair la-
bels from NQ, TQA (Joshi et al., 2017), SQuAD
(Rajpurkar et al., 2016) and WebQ (Berant et al.,
2013).

4.3 Baselines

For these three baselines, we evaluated publicly
available instruction-tuned models, such as Vicuna-
7B and Vicuna-13B (Zheng et al., 2023), as well
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(a) NQ (Top 10) (b) HotpotQA (Top 10) (c) NQ (400 words) (d) HotpotQA (400 words)

Figure 4: Comparison of ParetoRAG and Naive RAG on the adaptive noise-robust LLM
(llama-2-13b-peft-nq-retrobust and llama-2-13b-peft-hotpotqa-retrobust (Yoran et al., 2024)):
(a)(b) show performance under the same recall size (Top 10), while (c)(d) illustrate performance under the same
input word count (400).

as models trained and reinforced with private data,
including Llama2-7B-Chat and Llama2-13B-Chat
(Touvron et al., 2023).

Baselines without retrievals. We evaluate the
performance of various LLMs without employing
RAG technology across multiple datasets.

Baselines with Naive RAG. We employ the
most basic RAG technique without incorporat-
ing complex retrieval optimization methods or ad-
vanced generation mechanisms, relying solely on
the fundamental retrieval-generation workflow.

Baselines with SOTA methods. We implement
three advanced approaches: (1) Recomp (Xu et al.,
2024) using abstractive summarization (excluding
extractive variants) to synthesize retrieved passages
with dedicated models. (2) LLM trained with ad-
versarial noise to improve robustness (Yoran et al.,
2024). (3) Dense X (Chen et al., 2024) reduces
information redundancy by degrading documents
into proposition sentence.

5 Experimental Results and Analysis

In this section, we show the overall experimental
results with in-depth analyses of our framework.
We also provide a cost analysis in the Appendix I.

5.1 Main Results

Table 1 presents the results of three retrievers on
three datasets, based on top-10 recall contents. Fig-
ure 4 illustrates the performance of ParetoRAG on
llama2-13b-retrobust. From these results, we
can conclude the following findings:

ParetoRAG, while consuming only about 40%
of the original token cost, still delivers notable
improvements in accuracy and fluency. Specif-
ically, as shown in Table 1, in NQ, the accuracy
of Vicuna-7B + ANCE increases from 36.1% to
43.4% (+7.3%), with the token count reduced to
26% of the original. Similarly, the accuracy of

Llama2-13B-Chat + DPR increases from 42.7% to
47.4% (+4.7%), with the token count reduced to ap-
proximately 30% of the original. In HotpotQA, the
accuracy of Vicuna-13B + ANCE improves from
20.2% to 25.9% (+5.7%), with the token count
reduced to approximately 40% of the original.

In addition, in MS-Marco, ParetoRAG achieves
notable improvements in both mauve (fluency) and
rouge (correctness) metrics. For example, the flu-
ency score of Llama2-13B-Chat + Contriever in-
creases from 77.5 to 92.2 (+14.7%), while the token
count is reduced to approximately 32% of the orig-
inal. Similarly, the fluency score of Vicuna-7B +
DPR improves from 87.9 to 91.5 (+3.6%). In terms
of correctness (rouge), the rouge score of Vicuna-
13B + ANCE increases from 46.8 to 55.2 (+8.4%),
while Llama2-13B-Chat + ANCE improves from
46.1 to 55.1 (+9%). These results further high-
light ParetoRAG’s capability to deliver consistent
and measurable improvements in both fluency and
accuracy, even with significantly reduced token
consumption.

ParetoRAG demonstrates strong generaliza-
tions. We analyze its effectiveness from three per-
spectives:

Effectiveness across multiple datasets: Pare-
toRAG consistently improves performance across a
diverse range of datasets, including NQ, HotpotQA
and MS-Marco. In contrast, despite having fewer
tokens, Recomp does not have a specialized ab-
stract model for the MS-MARCO task, resulting
in a significant drop in performance on MAUVE
(fluency) and a smaller improvement on ROUGE-L
(correctness) compared to ParetoRAG.

Compatibility with different types of retrievers:
ParetoRAG proves effective with various dense re-
triever types, including Contriever, ANCE, and
DPR. This shows that the method is not tied to
a specific retriever and adapt well to different re-
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(a) NQ distribution (b) HotpotQA distribution (c) MS-MARCO distribution

Figure 5: Correct answer rank distributions across different datasets under the the same input word count (400).

trieval methods. Specific analysis of the impact on
retrievers can be found in 5.2.2.

Applicability across multiple LLMs: ParetoRAG
achieves improvements when applied to large lan-
guage models, such as Vicuna-7B, Vicuna-13B,
Llama2-7B-Chat, and Llama2-13B-Chat. Notably,
we also test the method on models trained with anti-
noise techniques. As shown in Figure 4, the results
still show improvements. More detailed analysis
can be found in 5.2.4.

5.2 Ablation Study

We study the impact of core sentence weight, re-
triever types, and top k size on ParetoRAG. The
variation of core sentence weight on HotpotQA and
MS-MARCO can be found in Appendix G, while
the impact of model parameters on ParetoRAG is
detailed in Appendix H.

5.2.1 Impact of core sentence weight
From Figure 6, it can be observed that when the
weight of core sentences is adjusted to approxi-
mately 0.80, the Mean Recall@30 for ANCE, DPR
and Contriever methods reaches optimal perfor-
mance. This phenomenon reflects the impact of
weight adjustment on the balance between contex-
tual information and core sentences, which can be
analyzed as follows:

Performance Improvement at Optimal
Weight (Around 0.80): When the core sentence
weight is set to approximately 0.80, the model
effectively integrates contextual information with
the content of core sentences. This balance enables
the model to preserve semantic integrity while
more accurately capturing key information relevant
to the retrieval task, thereby achieving optimal
recall performance.

Performance Decline with Increased Weight
(Beyond 0.80): As the core sentence weight in-
creases further toward 1.0, contextual information
in the text is progressively diminished or even ne-
glected, causing the model to rely more heavily on
core sentences for retrieval. However, excessively

Figure 6: Impact of Core Sentence Weight on Recall
across NQ Dataset.

weakening contextual information leads to a loss
of semantic completeness, which adversely affects
the accuracy of retrieval results. Consequently, per-
formance declines beyond the 0.80 threshold.

High Weight Still Outperforms the Baseline
(At 1.0): Even when the core sentence weight
reaches 1.0, resulting in the complete disregard of
contextual information, the model’s performance
remains superior to the baseline of paragraph-level
retrieval. This indicates that paragraph-level infor-
mation often contains significant redundancy, while
core sentences play a pivotal role in enhancing re-
trieval performance. By adjusting the weighting,
ParetoRAG effectively reduces the spatial burden
of paragraph content while incorporating more core
sentences, thereby improving retrieval precision
and optimizing efficiency simultaneously.

5.2.2 Impact of retriever
Figure 5 compares the ranking distribution of cor-
rect answers across different datasets when using
ParetoRAG and Naive RAG. The y-axis shows the
percentage position of the correct answer within
the ranked retrieval results, and the x-axis shows
the density distribution of correct answer positions
in the retrieval results. 20% indicates that the cor-
rect answer appears in the top 20% of the retrieval
results. Higher percentages correspond to lower po-
sitions in the ranking, and values near -1 represent
cases where the correct answer is not retrieved.

After being optimized by ParetoRAG, the three
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Figure 7: Comparison of accuracy and recall rates of
different retrievers under various top k conditions.

retrievers, DPR, ANCE, and Contriever, exhibit the
following trends: First, the correct answer rankings
for all retrievers form a peak around 20%, indi-
cating that ParetoRAG effectively pushes correct
answers to higher positions in the retrieval results.

Second, the density near -1 is significantly re-
duced, demonstrating that ParetoRAG decreases
the cases where correct answers are not retrieved,
thus improving the retrieval comprehensiveness.
Lastly, the distribution curves of ParetoRAG (blue
lines) are smoother compared to Naive RAG (red
lines), particularly in the mid-to-high ranking re-
gions (e.g., 40% to 80%). This indicates that Pare-
toRAG stabilizes the performance of retrievers and
reduces erroneous distributions.

5.2.3 Impact of wider top k size
Since the input size of ParetoRAG at the top 30 is
similar to that of Naive RAG at the top 10 (more
details can be seen in Appendix C), we set the Top
10 performance of Naive RAG as the baseline. We
then evaluate the performance of ParetoRAG in
the top 10, top 20, and top 30 settings to investi-
gate the impact of different top k configurations on
model performance. As shown in Figure 7, our key
observations are as follows:

Although Naive RAG can achieve high docu-
ment coverage, they often include a large amount
of irrelevant information, which can interfere with
the accuracy of LLM when answering questions.
In contrast, with the fine-grained retrieval approach
of ParetoRAG, although the recall rate is relatively
lower under the same top k settings (e.g., Top 10),
the accuracy of the language model’s responses is
significantly improved. By more precisely select-
ing sentences relevant to the question, ParetoRAG
effectively reduces the interference of irrelevant
content, allowing the language model to focus more
on processing key information and lowering the in-
ference complexity. Ultimately, this fine-grained
retrieval strategy helps the model find the correct
answer more efficiently, improving the overall qual-
ity and efficiency of the responses.

5.2.4 Complementary effect of ParetoRAG
In this section, we evaluate the impact of Pare-
toRAG on robustly trained models, which are fine-
tuned for the NQ and HotpotQA datasets respec-
tively. These models are trained to enhance ro-
bustness against irrelevant context. As shown in
Figure 4, in NQ, under the Top 10 retrieval setting,
the accuracy improved from 44.80% to 48.20%
(+3.4%) when using ANCE. In HotpotQA, with in-
put word length limited to 400 words, the accuracy
increases from 23.3% to 25.3% (+2.0%). These
results demonstrate that ParetoRAG can enhance
performance in addition to robustly trained models.

While robust training improves the model’s re-
silience to noisy contexts, it may still struggle with
redundant or dense information in tasks involving
long texts or multi-hop reasoning. ParetoRAG mit-
igates this limitation by reducing redundancy and
increasing information density through sentence-
level representations, allowing the model to focus
more on relevant content, thereby serving as a valu-
able complement to robustly trained models.

The complementary effect between ParetoRAG
and robust training LLM indicates that combining
these two approaches can further optimize retrieval
and generation quality. Future work could explore
integrating ParetoRAG with other training tech-
niques to further enhance its performance across
broader scenarios.

6 Conclusion

In this work, we propose ParetoRAG, an unsu-
pervised framework that enhances RAG systems
through sentence-level optimization guided by the
Pareto principle. By decomposing paragraphs
into sentences and dynamically re-weighting crit-
ical content while preserving contextual coher-
ence, ParetoRAG achieves dual improvements in
retrieval precision and generation quality without
requiring additional training or API resources. Ex-
tensive experiments demonstrate its effectiveness:
the framework reduces token consumption by 70%
while improving the accuracy and fluency of the
answers in diverse datasets, LLMs, and retriev-
ers. Our analysis further reveals synergistic effects
when integrating ParetoRAG with robustly trained
language models, suggesting enhanced generaliza-
tion capabilities. This study not only validates
the viability of resource-efficient sentence-level
refinement for RAG systems but also opens av-
enues for exploring hybrid methodologies that com-
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bine retrieval-augmented mechanisms with adap-
tive training strategies.

7 Limitation

While ParetoRAG demonstrates promising results
in improving retrieval-augmented generation, it is
important to acknowledge several potential limita-
tions that could be addressed in future work. First,
the sentence-level decomposition and re-weighting
approach may weaken the complex cross-sentence
logic or narrative connections within paragraphs,
especially in tasks requiring multi-step reasoning
or long-range semantic coherence (such as story
generation or scientific argumentation). The local
focus on key information might lead to a loose
overall structure, which could impact the quality of
the generated content. Second, when dealing with
longer documents, ParetoRAG faces challenges re-
lated to segmenting the text and optimizing it at
the sentence level. Breaking down long texts into
sentences for individual optimization might not ef-
fectively preserve the global structure and logical
flow of the document. Lastly, while ParetoRAG
has been tested on open-domain QA datasets, it has
not yet been applied to more specialized domains,
such as law or medicine, which could be explored
in future work.
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A System Prompt

The following is the system prompt used to let a
LLM generate an answer without any information:

You are a helpful assistant. Answer the ques-
tion as concisely as possible, using only the
specific phrase, entity, or number that directly
answers the question. Within five words.
Query: [question]
Short Answer:

The following is the system prompt used in RAG
to let a LLM generate a NQ answer based on the
given context:

You are a knowledgeable assistant tasked with
answering questions based on the Natural
Questions dataset. Each question is accom-
panied by contexts extracted from Wikipedia.
Answer the question by providing only the
specific phrase, entity, or number that directly
answers the question. Within five words.
Contexts: [context]
Query: [question]
Short Answer:

The following is the system prompt used in RAG
to let a LLM generate a MS answer based on the
given context:

You are a knowledgeable assistant tasked with
answering questions based on the MS-marco
dataset. Answer the question given the infor-
mation in those contexts. Answer the question
in a single, brief sentence.
Contexts: [context]
Query: [question]
Answer:

The following is the system prompt used in RAG
to let a LLM generate a HotpotQA based on the
given context:

You are a knowledgeable assistant tasked with
answering questions based on the HotPotQA
dataset. Each question is accompanied by
contexts extracted from Wikipedia. Answer
the question as concisely as possible, using
only the specific phrase, entity, or number
that directly answers the question. Within five
words.
Contexts: [context]
Query: [question]
Short Answer:

B Analysis of Information Utility in
Retrieved Documents

In this section, we conduct a detailed analysis to
quantify the useful/relevant information ratio in
documents retrieved by our approach compared
to baseline methods. This analysis helps demon-
strate the effectiveness of ParetoRAG in preserving
relevant information while reducing redundancy.

We leverage HotpotQA’s sentence-level annota-
tions to measure the percentage of sentences con-
taining supporting facts (i.e., information directly
useful for answering questions) within the retrieved
contexts. For fair comparison, we controll the to-
tal token count to approximately 450 tokens for
both NaiveRAG and ParetoRAG across different
retriever models.

Retriever NaiveRAG ParetoRAG
ANCE 20.79% 26.08%

Contriever 21.74% 28.82%
DPR 21.87% 27.65%

Table 2: Useful information ratio comparison across
different retrievers
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Table 2 presents the results of this analysis, show-
ing the percentage of useful information (sentences
containing supporting facts) in the retrieved con-
texts.

These results quantitatively demonstrate that
ParetoRAG more effectively identifies and pre-
serves relevant information while reducing redun-
dancy, regardless of the underlying retriever used.
Across all three retriever models tested, ParetoRAG
consistently achieves a higher ratio of useful infor-
mation in the retrieved context, with improvements
ranging from 5.29 to 7.08 percentage points over
NaiveRAG.

This analysis provides additional evidence for
ParetoRAG’s ability to optimize the information
density of retrieved contexts, which contributes
to the performance improvements observed in our
main experimental results.

C Calculation of Document Retrieval
Ratio for Input Size Consistency

In the original corpus, the average token count
per paragraph for the top 30 retrieved paragraphs
is 80.8575 tokens. After applying the Sentence-
RAG, the average token count per paragraph for
the top 30 retrieved paragraphs decreases to 23.85
tokens. Therefore, to maintain consistency in the
total token count of input paragraphs, Sentence-
RAG would theoretically need to retrieve the top
80.8575/23.85 ≈ 34 paragraphs to match the to-
ken scale of the top 10 paragraphs retrieved by
naive-RAG. While strict calculations suggest re-
trieving approximately 34 paragraphs, selecting 30
paragraphs strikes a balance between maintaining
the validity of experimental results and ensuring
clarity and simplicity in presentation.

D Statistics of Datasets

NQ HotpotQA MS-MARCO
Passages 2,681,468 5,233,329 8,841,823

Ours 9,320,506 12,425,366 30,137,968

Table 3: Statistics of text unit counts before and after
ParetoRAG encoding.

Table 3 shows statistics of text unit counts before
and after ParetoRAG encoding.

E Statistics of Models

All model weights are derived from Hugging Face,
which were used without additional training. In the

following, we list the specific hugging face model
names corresponding to the weights used in the
experiment:

E.1 Model Weights
• DPR:

– facebook/dpr-question_
encoder-multiset-base

– facebook/dpr-ctx_encoder-multiset-base

• Contriever:

– facebook/contriever

• ANCE:

– sentence-transformers/
msmarco-roberta-base-ance-firstp

• RECOMP:

– fangyuan/nq_abstractive_compressor

– fangyuan/hotpotqa_abstractive_compressor

• Llama2:

– meta-llama/Llama-2-7b-chat-hf

– meta-llama/Llama-2-13b-chat-hf

• Viccuna:

– lmsys/vicuna-7b-v1.3

– lmsys/vicuna-13b-v1.3

• RetRobust:

– Ori/llama-2-13b-peft-nq-retrobust

– Ori/llama-2-13b-peft-hotpotqa-retrobust

E.2 Model Hyperparameter
The model’s configuration is as follows: max_
output_tokens is set to 150, limiting the maxi-
mum number of tokens in the generated output;
temperature is set to 0.1, which controls the ran-
domness of the generation process, ensuring more
deterministic and focused outputs; seed is fixed at
100 to ensure reproducibility of the results across
different runs; and per_gpu_batch_size is set to
16, specifying the number of samples processed per
GPU in each batch during training or inference.

F Evaluation Metrics

Following the experimental setup in (Asai et al.,
2023), we use MAUVE(Pillutla et al., 2021) and
ROUGE-L (Lin, 2004) as evaluation metrics for
long-form generation. For short-form generation,
we use accuracy (ACC). For each question, if the
standard answer is contained within the generated
answer and the length of the generated answer is
less than or equal to 15, it is counted as 1. Here’s a
brief explanation of the evaluation metrics:
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(a) HotpotQA (b) MS-MARCO

Figure 8: Impact of Core Sentence Weight on Recall across HotpotQA and MS-Marco Dataset.

• Accuracy: Measures the percentage of cor-
rect predictions made by the model. It’s a ba-
sic metric that indicates how well the model
is performing on a classification or question-
answering task.

• ROUGE: Evaluates text summarization or
generation by comparing the overlap between
generated text and reference text. It focuses
on recall, ensuring the generated text captures
key information from the reference. Common
variants include ROUGE-N (n-gram over-
lap) and ROUGE-L (longest common subse-
quence).

• MAUVE: Assesses text generation quality by
comparing the distribution of generated text to
reference text in an embedding space. It uses
divergence measures to evaluate semantic and
structural alignment, making it particularly
useful for open-ended tasks like story or dia-
logue generation.

G Impact of core sentence weight

As shown in the Figure 8, HotpotQA and MS-
MARCO generally follow the trends analyzed
in Section 5.2.1, where increasing the core sen-
tence weight typically improves recall performance.
However, there are noticeable differences in the de-
tails of recall variations between these two datasets.
Specifically, in the MS-MARCO dataset, the recall
rates of ParetoRAG-DPR and ParetoRAG-ANCE
decrease significantly in the core sentence weight
range of 0.3 to 0.6. This phenomenon can be at-
tributed to the following key factors:

G.1 Differences in Retrieval Model Training
Approaches

• Asynchronous Global Index Updates ver-
sus Local Contrastive Learning: ANCE re-
lies on asynchronous global index updates,
whereas DPR and Contriever adopt local con-
trastive learning with positive and negative
samples. This distinction makes ANCE more
susceptible to contextual noise when the core
sentence and contextual sentence weights are
close (0.3–0.6), leading to less precise re-
trieval and subsequently lower recall perfor-
mance.

• In contrast, DPR and Contriever primarily
depend on local contrastive learning during
training. Since they do not suffer from the
lag introduced by global index updates, their
recall rate decline in the 0.3–0.6 weight range
is relatively less pronounced.

G.2 Differences in Task Types and
Information Requirements

• MS-MARCO (Single-hop QA): In this
dataset, queries typically require matching a
specific core sentence in the text to retrieve
the correct answer, while paragraph-level in-
formation may contain substantial redundant
content. Consequently, when the core sen-
tence weight falls within the 0.3–0.6 range,
paragraph-level information introduces inter-
ference in the retrieval process, leading to a
decline in recall performance.

• HotpotQA (Multi-hop QA): In contrast, Hot-
potQA involves multi-hop reasoning, where
queries require integrating information from
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Table 4: Computational Resource Comparison

Method Processing Time GPU Memory Usage Total Processing Time Estimated Cost*
Dense X 51.39s per batch 37.57 GB peak 50.03 hours $150.09
ParetoRAG 46.53s per batch 35.08 GB peak 4.02 hours $12.06
NaiveRAG 49.00s per batch 42.87 GB peak 1.23 hours $3.69
*Cost estimation based on cloud GPU pricing of $3.00 per hour for A100 GPU.

multiple paragraphs to derive the final an-
swer. As a result, even when the core sentence
weight is relatively low, the model can still
leverage other paragraphs to improve retrieval
performance. Therefore, unlike MS-MARCO,
HotpotQA does not exhibit a sharp decline in
recall within the 0.3–0.6 weight range.

H Impact of Model Size on Accuracy with
Varying Top K in ParetoRAG

As show in Figure 7, for smaller models (such as
Vicuna-7b), their ability to process a large number
of documents is weaker, leading to a faster decline
in accuracy as the Top K increases. However, this
decline is not due to a lack of retrieval quality by
ParetoRAG, but rather because smaller models are
unable to fully utilize the richer information pro-
vided. On the other hand, for larger models (such
as Vicuna-13b), their greater parameter size and
reasoning capability enable them to handle more
information within a larger scope. As a result, even
when the Top K is increased to a certain extent (e.g.,
Top 20 or Top 30), they still maintain high accu-
racy. Notably, larger Top K settings (e.g., Top 20)
outperform Top 10 and the baseline, demonstrating
that ParetoRAG can provide richer information re-
trieval, offering more effective context for language
models.

I Cost Analysis

We conduct a comprehensive analysis of the com-
putational resources required for each method in
our study. All experiments were performed on an
NVIDIA A100 80GB GPU.

Method-Specific Configurations. ParetoRAG
and NaiveRAG are both configured with a batch
size of 512 documents. This larger batch size is
possible due to their efficient encoding mechanisms
that process documents in a single forward pass.

Dense X is limited to a batch size of 256
documents due to its more memory-intensive
processing requirements. The primary perfor-
mance bottleneck for Dense X is the docu-

ment atomization process, which requires the
propositionizer-wiki-flan-t5-large model.
This model breaks down documents into atomic
propositions, a computationally expensive opera-
tion that significantly increases processing time
compared to the other methods.

The memory usage patterns reflect these differ-
ences in processing approaches. While all meth-
ods are configured to use approximately 35-43GB
of GPU memory at peak, Dense X exhibits a
distinctive pattern of high memory usage during
generation followed by significant reduction post-
generation, indicating its intensive but ephemeral
computational requirements during the atomization
process.

These configuration differences explain the sub-
stantial variation in total processing time across
methods, with Dense X requiring significantly
more time to process the complete dataset despite
similar per-batch processing durations.
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