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Abstract

Few-shot multi-intent spoken language under-
standing (SLU) aims to identify users’ multiple
intents and key slots using a tiny amount of
annotated data. Recent advances in large lan-
guage models (LLMs) have utilized instruction
learning frameworks to model intent-slot in-
terdependencies, typically requiring abundant
data for effective training. However, in few-
shot scenarios, these frameworks face chal-
lenges such as mismatches between the num-
ber of generated slots and input lengths, re-
lational confusion in multi-intent scenarios
and neglect of task-specific variations in in-
tent counts across utterances. To overcome
the challenges, we propose PICD-Instruct, a
novel generative framework based on Basic
Instructions (BI), Pairwise Interaction Instruc-
tions (PII) and Contrastive Distinct Instruc-
tions (CDI). Specifically, BI directs LLMs to
generate entities along with associated words,
thereby mitigating mismatches in quantitative
correspondences. PII explicitly captures dual-
task interdependencies by guiding LLMs to
pair each intent with its related entities. CDI
enhances understanding of utterances by guid-
ing LLMs to determine whether two utterances
share the same intent count. Experimental re-
sults on public datasets indicate that PICD-
Instruct achieves state-of-the-art performance1.

1 Introduction

Spoken Language Understanding (SLU) (Young
et al., 2013) is a fundamental component of task-
oriented dialogue systems. Among the various as-
pects of SLU, multi-intent SLU has gained sig-
nificant attention due to its practical necessity in
complex interactive scenarios. This task involves
two closely linked subtasks: multi-intent detection
and slot filling. Multi-intent detection focuses on

*Corresponding author
1Our source code is available at https://github.com/

heavenCSH/LLM_SLU

identifying the intents embedded within a user ut-
terance, whereas slot filling extracts key semantic
information from the utterance. In practical ap-
plications, however, obtaining sufficient labeled
data for domain-specific SLU models is often time-
intensive and costly. These challenges highlight the
critical importance of exploring multi-intent SLU
in few-shot settings.

Given the bidirectional relationship between in-
tents and slots, recent models leverage multi-task
joint frameworks to capture these interdependen-
cies, achieving strong performance with sufficient
training data (Goo et al., 2018; Li et al., 2018; Niu
et al., 2019; Liu et al., 2019a; Qin et al., 2020,
2021; Song et al., 2022; Chen et al., 2022; Xing
and Tsang, 2022a,b; Mei et al., 2023; Song et al.,
2024). Meanwhile, large language models (LLMs)
show promise in the zero-shot SLU task (Pan et al.,
2023; Zhu et al., 2024) but remain largely de-
signed for single-intent scenarios. For instance,
Pan et al. (2023) explored prompt-based zero-shot
SLU with ChatGPT, but its slot filling lagged far
behind fine-tuned models. Similarly, Zhu et al.
(2024) proposed a pseudo-labeling framework to
enhance task collaboration but faced error propaga-
tion issues. To address these limitations, Xing et al.
(2024) first introduced instruction learning into gen-
erative multi-intent SLU. Their framework lever-
ages instruction learning and contrastive learning to
model intent-slot relationships through mutual pre-
diction of ground-truth labels. By distinguishing
task-specific semantics across utterances, this ap-
proach enhances SLU reasoning. This raises a key
question: Can instruction-guided LLMs achieve su-
perior performance in few-shot multi-intent SLU?

Beyond addressing traditional SLU challenges,
LLMs introduce new opportunities by enhancing
structured and reliable information extraction (Li
et al., 2024). SLU plays a crucial role in intelligent
agent-driven task completion, where accurate in-
tent detection ensures effective execution of user
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Figure 1: An example from MixSNIPS dataset. Traditional LLMs-generated slot labels are in orange, while golden
slot labels and our proposed entity labels are in green. Intent labels are in blue.

commands (Caren Han et al., 2022). Unlike open-
ended generation, SLU requires structured output
to maintain schema consistency, which is critical
for applications in domains such as voice assistants,
customer service automation, and smart device con-
trol (Saxon et al., 2021; Irugalbandara, 2024).

However, we discover three core challenges
in leveraging LLMs for few-shot multi-intent
SLU. Firstly, the uncontrollable nature of LLM-
generated outputs poses significant challenges for
slot filling, as the number of generated slots often
fails to correspond with the input length. This issue
is exacerbated in few-shot settings, where limited
training data restricts the model’s ability to accu-
rately map slots to tokens. As shown in Fig. 1,
the example demonstrates the over-generation and
mismatch of slot labels. Secondly, existing gener-
ative frameworks exhibit a strong dependence on
extensive annotated data and fail to effectively cap-
ture the semantic dependencies between intents and
slots. DC-Instruct (Xing et al., 2024) predicts slot
labels based on the provided utterance and intent
labels, but it falls short in establishing a one-to-one
correspondence between each intent and its associ-
ated slots. This leads to confusion in multi-intent
scenarios, making it harder for models to learn
dual-task interdependencies with limited training
data. Thirdly, unlike single-intent scenarios, the
number of intents contained in a user’s utterance
in multi-intent scenarios is often uncertain, mak-
ing it more challenging for models to accurately
identify all intents. Therefore, improving the sen-
sitivity of LLMs to the variations in intent counts
across utterances can enhance their understanding
of such cases. However, current approaches of-
ten overlook this task-specific feature, potentially
hindering the models’ ability to effectively compre-
hend utterances with multiple intents.

To overcome these challenges, we propose
PICD-Instruct, a novel generative model based on
instruction learning. PICD-Instruct employs three
types of instructions: Basic Instructions (BI), Pair-
wise Interaction Instructions (PII) and Contrastive
Distinct Instructions (CDI). BI shifts from the tra-

ditional approach of assigning a slot label to each
word to a formulation based on entity-word pair-
ings, effectively mitigating mismatches between
generated slots and input lengths commonly en-
countered when using LLMs for direct slot gener-
ation. Considering that each green entity label in
Fig. 1 aligns exactly with its associated words, PII
incorporates an auxiliary intent-slot pairing task
that explicitly models the bidirectional dependen-
cies between intents and slots. By aligning golden
intent labels with corresponding entity labels, PII
mitigates relational confusions in multi-intent sce-
narios. CDI enhances the ability to perceive varia-
tions in the number of intents within an utterance
by introducing a task that determines whether two
utterances contain the same number of intents. By
leveraging positive and negative samples alongside
the current utterance, CDI trains the model to dis-
tinguish between utterances based on intent counts,
thereby improving its comprehension capabilities.

We conduct experiments on two few-shot
datasets, FewShotMixATIS and FewShotMixS-
NIPS (Hua et al., 2024). Experimental results show
that PICD-Instruct significantly outperforms exist-
ing baselines, achieving state-of-the-art (SOTA)
performance in the few-shot multi-intent SLU
task. Moreover, it demonstrates strong gener-
alization capability, transferring from a single-
domain dataset (FewShotMixATIS) to a multi-
domain dataset (FewShotMixSNIPS).

In summary, our contributions are three-fold:
(1) We propose PICD-Instruct, a novel genera-

tive instruction-learning framework that integrates
pairwise interactive instructions and contrastive dis-
tinct instructions to overcome challenges in the
few-shot multi-intent SLU task.

(2) We advance the explicit modeling of bidirec-
tional dependencies between intents and slots in
few-shot settings, reducing relational confusions
in multi-intent scenarios through the application of
instruction learning.

(3) PICD-Instruct achieves SOTA performance
in the few-shot multi-intent SLU task, as evidenced
by extensive experiments and analyses.
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2 Related Work

Multi-intent SLU Prevailing models (Kim et al.,
2017; Gangadharaiah and Narayanaswamy, 2019)
often employ joint modeling to simultaneously
learn the two tasks in SLU and capture their rela-
tions. Gangadharaiah and Narayanaswamy (2019)
jointly model multiple intent detection and slot fill-
ing via a slot-gate mechanism. To better model the
two tasks’ interactions, graph neural networks have
been widely utilized (Qin et al., 2020, 2021; Xing
and Tsang, 2022a,b; Song et al., 2022). The Co-
guiding Net (Xing and Tsang, 2022a) pioneers in
achieving mutual guidance between the two tasks
through a two-stage framework. DC-Instruct (Xing
et al., 2024) employs instructions for LLMs to
predict one subtask’s labels based on the other’s
golden labels, effectively capturing the relation-
ships between intents and slots. UGEN (Wu et al.,
2022) and PromptSLU (Song et al., 2024) performs
multi-intent SLU based on the paradigm of prompt
learning.

The above approaches primarily focus on scenar-
ios with abundant training data. However, in few-
shot settings, capturing the correlations between
the two tasks in SLU becomes more challenging,
leading to degraded performance for most models
(Hua et al., 2024). While UGEN and DC-Instruct
have demonstrated performance in low-resource
settings, the few-shot training data they utilize does
not align well with real-world application scenarios
in terms of sample quantity and distribution. To
better simulate practical application scenarios, we
employ FewShotMixATIS and FewShotMixSNIPS,
two datasets specifically tailored for few-shot sce-
narios, as the data for model training. Different
from recent works, we propose a novel generative
framework incorporating various instructions to en-
sure the accuracy of LLM outputs. Our approach
explicitly captures dual-task interdependencies by
reducing relational confusions and effectively har-
nesses the variations of intent counts across differ-
ent utterances, enabling improved performance in
the few-shot multi-intent SLU task.
Instruction Learning Recently, the rise of
LLMs in the natural language processing (NLP)
field has positioned instruction learning as a com-
petitive approach across various NLP tasks (Lou
et al., 2024; Safa et al., 2024). This paradigm effec-
tively leverages the advanced conversational abili-
ties of LLMs to perform generative tasks, bridging
the gap between pre-training and fine-tuning stages.

In this work, we investigate instruction learn-
ing for few-shot multi-intent SLU and propose a
novel model characterized by pairwise interactive
instructions and contrastive distinct instructions.

3 Task Definition

As shown in the example in Fig. 1, multi-intent
SLU aims to detect all possible intents within an ut-
terance and identify the slot label corresponding to
each word. Therefore, multi-intent detection is con-
sidered as a multi-label text classification task and
slot filling is regarded as a sequence labeling task.
The task can be formulated as follows: given an
input utterance X = {W1,W2, . . . ,Wn}, where
n is the length of the utterance. The objective is
to predict the correct intents from the candidate
intents I = {i1, i2, . . . , im} and identify the slot la-
bel for each word Wi from the candidate slot types
S = {s1, s2, . . . , sk}, where m is the number of
intent categories, and k is the number of slot types.
In the slot filling task, slot labels are typically an-
notated in the BIO format, where B indicates the
beginning of an entity, I denotes the continuation
of the entity, and O represents words that do not
belong to any entity. As illustrated in Fig. 1, vimy
ridge is an entity representing a city, and thus it
is annotated as {B-city I-city}. Due to the nature
of the approach proposed in this paper, the task
first predicts the entities and their corresponding
words within an utterance, and then reassigns the
entities with the BIO annotation. For instance, the
word corresponding to the city entity would be vimy
ridge.

4 Methodology

In this section, we introduce our proposed PICD-
Instruct framework. As depicted in Fig. 2, we for-
mulate our instructions in a question-answer (QA)
form. The framework includes three types of in-
structions, each corresponding to a specific task.
This approach mitigates the effects of uncontrol-
lable generation by LLMs and more explicitly mod-
els the correlations between the two tasks in SLU,
reducing relational confusions. In addition, it en-
hances the model’s ability to understand utterances
with multiple intents. The following subsections
provide a detailed explanation of our proposed ba-
sic instructions (I1), pairwise interaction instruc-
tions (I2) and contrastive distinct instructions (I3).
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Figure 2: Overview of our framework. Detailed instructions are shown in Appendix A.

4.1 Basic Instructions

The basic instructions (I1) are designed to guide
the model in generating the intents, named
entities and their corresponding words expressed
in the utterance. The key components of the
basic instructions are illustrated as follows:
             You are an expert in multi-intent 

spoken language understanding. Your task is to 

extract all possible intents and named entities 

from user utterances while strictly following 

guidelines for quality and formatting.

                  First, identify the intents 

in the utterance. The intent options are: 

{Intent Label Set}. Next, identify the named 

entities and list each entity with its 

corresponding words, the entity options are: 

{Entity Label Set}.

[Persona]:

[Instructions]:

where the persona specifies the model’s role and
the tasks to be performed, while the instructions
detail the step-by-step procedures and require-
ments. To facilitate result extraction and ensure
the controllability of model outputs, the response
format for all tasks is standardized in the JSON
format. It can be formulated as:

R = L(SP, I) (1)

where SP represents the system prompt, I is the
input, L denotes the LLM and R is the response.
By converting R into a Python dictionary, we can
extract the intents and entities. After obtaining all
entities and their corresponding words, inspired by
(Wang et al., 2023), we map the words back to their
original slot labels using the BIO rule, adhering to
the natural left-to-right order of the utterance. This

approach allows the LLM to concentrate solely on
establishing correspondence between entities and
words, disregarding the requirement that the num-
ber of final slot labels matches the utterance length.
This effectively circumvents the difficulty LLMs
face in learning such quantitative correspondences
in few-shot scenarios.

4.2 Pairwise Interaction Instructions

To explicitly model dual-task dependencies
and reduce relationship confusion, we propose
the pairwise interaction instructions (PII). PII
is designed to pair each intent with its re-
lated entities based on the provided utterance,
along with its intent and entity labels. The
key components of the PII are as follows:
             You are an expert in multi-intent 

spoken language understanding. You need to 

correspond each intent and its associated named 

entities based on a user utterance and the 

intent(s) and named entities it contains.

                  There is a close relationship 

between each intent and certain named entities. 

You need to pair them separately.

[Persona]:

[Instructions]:

As shown in Fig. 2, during training, dual-task
dependencies are captured by achieving two kinds
of alignments. First, in the input part, both the
utterance semantics and the labels for the two
subtasks are included, achieving a semantic-label
alignment for the tasks. Second, dual-task label
alignment is established by pairing intent and
entity labels in the generation side. With the
straightforward mechanism of separate pairing
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Statistic FewShotMixATIS FewShotMixSNIPS

# K-shot 2-shot 4-shot 6-shot 8-shot 10-shot 2-shot 4-shot 6-shot 8-shot 10-shot
# Original training instances 34 66 100 137 172 14 27 40 54 70
# PICD-Instruct training instances 1,717 6,501 14,950 27,948 44,290 287 1,053 2,380 4,347 7,315
# Training slot types 47 53 57 61 65 30 44 50 54 58
# Testing slot types 82 70
# Testing instances 828 2199

Table 1: Detail Statistics of FewShotMixATIS and FewShotMixSNIPS.

between each intent and its related entities, the
mutual dependencies of the two subtasks can
be more easily and directly captured by LLMs
with their strong few-shot learning capabilities.
In addition, it also subtly reduces relational
confusions in multi-intent scenarios.

4.3 Contrastive Distinct Instructions

Unlike single-intent scenarios, the number of
intents contained in an utterance in multi-intent
scenarios is often uncertain. Previous works over-
look variations in intent counts among utterances,
a factor that aids in understanding utterances with
multiple intents. Inspired by (Xing et al., 2024),
we leverage contrastive relationships centered
around intent count differences to enhance the
comprehension of utterances and further improve
SLU performance. As shown in Fig. 3 (a),
traditional contrastive learning aims to optimize
representations by pulling similar samples closer
in the latent space while pushing dissimilar
samples away. To adapt this approach to generative
models, we propose straightforward yet effective
instructions to implement contrastive learning in
the instruction learning paradigm, as shown in
Fig. 3 (b). We first sample a positive utterance
P and a negative utterance N in relation to the
current utterance C. Then we construct instructions
to ask the LLM whether C and P, or C and N
have the same amount of intents. The expected
output is a simple binary response:"true" or "false".
The key components of the CDI are as follows:
             You are an expert in multi-intent 

spoken language understanding. You need to 

determine whether two user utterances contain 

the same amount of intents.

                  You will be given two user 

utterances. Each utterance may contain single 

or multiple intents. You need to judge whether 

the two utterances contain the same amount of 

intents.

[Persona]:

[Instructions]:

This approach leverages contrastive relationships
to improve the ability of generative LLMs to
perceive variations in the number of intents within
an utterance in multi-intent scenarios.
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Figure 3: Traditional contrastive learning and our pro-
posed CDI based on instruction learning.

4.4 Training and Inference
Training First, an I3 is constructed for every two
samples. Next, an I1 and an I2 are created for each
sample. To facilitate efficient annotation, GPT-4o2

is employed to label I2. Details of the prompt
settings are provided in Appendix B. The shuffled
training data is then utilized to train the model in a
text-to-text generation form. The training objective
is to minimize the negative log-likelihood for each
instruction: L = −∑N

n=1 log p(yn | y<n, I). N is
the length of the golden output sequence y1, ..., yN
and I denotes the current input instruction.
Inference In the inference stage, only I1 is used
to generate predictions for both multiple intent de-
tection and slot filling.

5 Experiments

5.1 Experiment Setup
5.1.1 Dataset
We compare our method with the baselines on two
few-shot multi-intent SLU datasets, FewShotMix-
ATIS and FewShotMixSNIPS. They are derived
from MixATIS and MixSNIPS datasets (Qin et al.,
2020) using the dynamic sampling algorithm pro-
posed by (Wang et al., 2023). As shown in Table 1,
each dataset includes five types of few-shot sam-
ples, ranging from 2-shot to 10-shot for training.
For testing, we use the test sets of original standard

2https://chatgpt.com/
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datasets (i.e., MixATIS and MixSNIPS). Notably,
the test sets contain more slot types than the train-
ing sets, better reflecting models’ generalization
ablility to unseen labels. This setup effectively sim-
ulates a realistic application scenario for the task.

To ensure a balanced number of the three in-
struction types, oversampling (repetitive sampling)
is applied to I1 and I2 to match the scale of I3
(C2

n). The final dataset sizes ranging from 2-shot
to 10-shot are presented in the third row of Table 1.

5.1.2 Implementation Details
For PICD-Instruct, we use Qwen2.5-7B3 as its
backbone model. The model employs AdamW
(Loshchilov and Hutter, 2017) as the optimizer with
an initial learning rate of 3e-5, along with a sched-
uler that applies linear warm-up for learning rate
adjustment. We adopt low-rank adaptation (LoRA)
(Hu et al., 2021) to fine-tune the model, with only
55M/28M trainable parameters for FewShotMix-
ATIS/FewShotMixSNIPS. We set the LoRA rank to
128/64 for FewShotMixATIS/FewShotMixSNIPS.
The batch size is 16 for both datasets. We con-
duct experiments based on the llamafactory (Zheng
et al., 2024) framework to improve the efficiency of
implementation. The Experiments are conducted
on two NVIDIA A5000 GPUs. In multi-intent
SLU, accuracy (Acc), F1 score and overall accu-
racy are used as evaluation metrics for multiple
intent detection, slot filling and the SLU semantic
frame parsing.

5.2 Main Results
We compare our model with BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019b), gpt-3.5-turbo,
and several top-performing models. Specifically,
AGIF (Qin et al., 2020) presents an adaptive in-
teraction network to achieve fine-grained multiple
intent information integration for token-level slot
filling. GL-GIN (Qin et al., 2021) introduces a
Global-Locally Graph Interaction Network which
explores a non-autoregressive model for joint mul-
tiple intent detection and slot filling. Wu et al.
(2022) proposes a Unified Generative framework
(UGEN) based on a prompt-based paradigm and
formulates the task as a question-answering prob-
lem. BERT-SIF introduces a separate intent-slot
interaction framework based on prompt learning to
mitigate relational confusions. The results of above
baselines are sourced from Hua et al. (2024), who
implemented the above models using their official

3https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

code. To more comprehensively evaluate the effec-
tiveness of our model, we include Uni-MIS (Yin
et al., 2024a), ENSI-Qwen2.5 (Yin et al., 2024b)
and gpt-4o-mini in the performance comparisons.
Specifically, Uni-MIS models multi-intent SLU
through a three-view intent-slot interaction fusion
mechanism to better capture the interaction infor-
mation. As an early attempt to apply LLMs to
the multi-intent SLU task, ENSI-Qwen2.5 extends
Qwen2.5(7B) by introducing the concepts of entity
slots and sub-intents to facilitate task completion.
For Uni-MIS, results are obtained by executing the
official code provided by the authors. For ENSI-
Qwen2.5, since the complete code has not yet been
released, we reproduce the model’s training pro-
cess to obtain the reported results. The GPT-4o-
mini experiment is conducted following the same
methodology as in Hua et al. (2024). Due to limita-
tions in prompt length and costs, the gpt-4o-mini
experiment is conducted exclusively in the 2-shot
setting. As the source code for DC-Instruct is un-
available and key experimental parameters are not
fully reported, we are unable to include it in our
comparative experiments. Performance compar-
isons are presented in Tabel 2 and 3, from which
we have the following observations:
(1) PICD-Instruct achieves new state-of-the-art
performance on both datasets. On the FewShot-
MixATIS dataset, PICD-Instruct surpasses BERT-
SIF in the 2-shot setting by 39.26%, 2.63%, and
13.16% on intent accuracy, slot F1 and overall ac-
curacy, respectively. On the FewShotMixSNIPS
dataset, it outperforms BERT-SIF in the 2-shot
setting by 48.84%, 20.21% and 4.86% on intent
accuracy, slot F1 and overall accuracy. As the
amount of training data increases, the performance
of our model and all baselines consistently im-
proves across both datasets. This improvement
is attributed to our model’s explicit capture of dual-
task dependencies via pairwise interaction instruc-
tions. The straightforward and effective mecha-
nism significantly reduces training complexity in
few-shot scenarios. In addition, our designed con-
trastive distinct instructions enhance the LLM’s ca-
pability to differentiate variations in intent counts
across utterances, which further improves its un-
derstanding in multi-intent scenarios. Furthermore,
our method of guiding the LLM to generate en-
tities along with their corresponding words effec-
tively mitigates the mismatch between the number
of slots and the utterance length, a challenge that
LLMs typically face when learning quantitative
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Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

PLM-based Models
BERT 0 57.38 0 4.47 68.37 2.66 12.44 69.54 6.40 25.36 74.23 10.99 36.11 76.66 17.15
RoBERTa 0 48.90 0 0 56.68 0 6.04 65.17 1.33 6.52 68.27 2.17 16.79 70.96 9.18
AGIF(BERT) 0 38.28 0 0.60 32.73 0 10.75 48.13 3.02 15.10 38.79 3.50 29.83 56.91 8.94
GL-GIN(BERT) 1.21 6.49 0 6.52 21.32 1.57 14.49 32.09 2.90 18.84 33.89 3.26 23.67 49.54 5.56
UGEN(T5) 4.47 54.31 1.33 21.98 68.44 6.52 53.50 72.78 15.94 59.30 74.84 19.57 66.67 76.40 22.71
Uni-MIS(RoBERTa) 10.75 29.91 1.93 40.10 46.68 6.16 67.15 62.02 12.56 70.65 62.16 16.43 70.65 68.86 21.14
BERT-SIF 30.31 62.51 5.80 37.56 65.74 7.97 58.09 68.20 13.53 61.47 74.90 21.26 62.56 77.61 23.55

LLM-based Models
gpt-3.5-turbo 30.07 6.85 0.60 - - - - - - - - - - - -
gpt-4o-mini 58.21 8.87 2.05 - - - - - - - - - - - -
ENSI-Qwen2.5 25.60 41.99 4.47 39.98 46.62 6.52 45.41 52.73 7.13 47.58 54.90 9.42 51.09 56.78 9.66
PICD-Instruct 69.57 65.14 18.96 70.29 69.07 21.38 72.71 72.11 24.76 78.86 73.84 27.54 81.64 74.38 28.02

Table 2: Overall results on FewShotMixATIS. I-Acc, S-F1, O-Acc refer to the intent accuracy, slot F1, and overall
accuracy (both intents and slots need to be correct), respectively. PLM denotes pre-trained language model.

Model
FewShotMixSNIPS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

PLM-based Models
BERT 4.46 24.84 0.14 3.91 34.59 0 23.78 38.96 0.73 38.06 49.29 3.00 50.34 57.61 4.91
RoBERTa 0.55 8.87 0 1.36 19.04 0 24.51 33.05 0.50 30.38 33.41 0.68 37.79 37.25 0.68
AGIF(BERT) 1.27 2.74 0 6.23 7.11 0 17.69 9.12 0.09 21.15 10.03 0.05 14.78 12.53 0.68
GL-GIN(BERT) 7.50 0.61 0 14.19 1.48 0 28.06 2.03 0.09 34.20 5.49 0.27 58.21 9.62 0.18
UGEN(T5) 2.64 13.10 0 29.65 33.07 0.23 38.84 40.31 1.96 61.57 46.80 4.37 73.08 58.38 7.78
Uni-MIS(RoBERTa) 33.33 9.39 0.36 45.70 13.24 0.68 49.89 12.53 0.45 67.03 30.43 2.68 68.17 35.81 4.14
BERT-SIF 37.61 26.29 0.64 56.34 38.32 2.18 64.39 43.34 3.23 65.39 50.18 7.14 74.12 61.75 11.10

LLM-based Models
gpt-3.5-turbo 64.48 3.91 0.18 - - - - - - - - - - - -
gpt-4o-mini 86.95 8.29 0.73 - - - - - - - - - - - -
ENSI-Qwen2.5 5.41 6.66 0.18 25.24 15.20 0.77 36.74 22.93 1.36 41.47 28.32 2.05 47.61 29.66 2.50
PICD-Instruct 86.45 46.50 5.50 86.77 50.18 7.32 86.99 52.26 8.64 88.18 55.10 10.55 88.09 58.14 11.51

Table 3: Overall results on FewShotMixSNIPS.

correspondences from a limited amount of anno-
tated data. An additional point of interest lies in
the use of GPT-4o to assist in annotating pairwise
interaction instructions for the sake of efficiency,
which may introduce a certain level of annotation
noise. Nevertheless, PICD-Instruct consistently
and significantly outperforms the baseline models,
highlighting the robustness of our approach to po-
tentially noisy annotations.
(2) Current LLM-based approaches can hardly
handle few-shot multi-intent SLU. The perfor-
mance of ChatGPT is consistent with recent find-
ings (Pan et al., 2023; Qin et al., 2023). While gpt-
4o-mini outperforms earlier pre-trained language
models in the multiple intent detection task, its per-
formance in slot filling falls significantly behind
most of them. We suspect there are two main rea-
sons. First, insufficiently descriptive prompt word-
ing may negatively impact ChatGPT’s performance.
We believe advanced in-context learning strategies,
such as chain-of-thought prompting, could partially
enhance ChatGPT’s performance, while this is be-
yond the scope of this paper. Second, multi-intent
SLU requires task-specific knowledge, which is
more effectively acquired through fine-tuning. This

finding underscores the need for vertical domain-
specific development, particularly for tasks requir-
ing high levels of domain-specific expertise. ENSI-
Qwen2.5 addresses the mismatch between the slot
generation length of LLMs and the actual utterance
length, as well as improve alignment between sub-
intents and clauses, by introducing the concepts
of entity slots and sub-intents. However, it falis
to capture the relationships between intents and
slots and does not effectively model the varying
informational richness across different utterances.
As a result, its performance on multi-intent SLU
remains limited in few-shot settings.

5.3 Ablation Study

In this section, we conduct ablation experiments to
explore the effect of each component of our PICD-
Instruct model. The results are shown in Table. 4.
Basic Instructions (BI). Retaining only BI (I1)
still yields significant improvements compared to
the previous best-performing model, BERT-SIF,
especially in slot filling, where it outperforms Chat-
GPT. This demonstrates that BI effectively guides
the LLM to generate entities along with their corre-
sponding words, simplifying the process of slot fill-
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Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

w/o PII, CDI (I2, I3) 67.51 64.43 17.75 68.84 68.07 20.65 71.50 70.65 22.83 78.02 72.75 26.69 77.66 73.54 26.81
w/o PII (I2) 68.24 64.57 17.87 68.96 68.24 20.77 71.62 70.98 22.95 78.26 72.91 26.81 78.14 73.68 27.05
w/o CDI (I3) 68.48 64.86 18.24 69.20 68.71 21.01 71.98 71.46 23.67 78.50 73.13 27.05 79.23 73.84 27.17
PICD-Instruct 69.57 65.14 18.96 70.29 69.07 21.38 72.71 72.11 24.76 78.86 73.84 27.54 81.64 74.38 28.02

FewShotMixSNIPS

w/o PII, CDI (I2, I3) 84.86 45.14 4.50 85.31 48.27 6.18 86.08 51.16 7.64 86.22 54.31 9.23 86.45 56.25 10.56
w/o PII (I2) 85.08 45.48 4.64 85.54 48.62 6.41 86.36 51.48 7.82 86.45 54.58 9.64 86.68 56.64 10.83
w/o CDI (I3) 85.54 46.11 4.96 85.95 49.03 6.82 86.90 51.93 8.05 86.81 54.97 10.14 87.04 57.13 11.28
PICD-Instruct 86.45 46.50 5.50 86.77 50.18 7.32 86.99 52.26 8.64 88.18 55.10 10.55 88.09 58.14 11.51

Table 4: Results of ablation experiments.

ing. Besides, well-crafted instructions fully lever-
age the few-shot learning capabilities of LLMs,
enabling a deeper understanding of the multi-intent
SLU task and improving task execution.
Pairwise Interaction Instructions (PII). Adding
PII (I2) results in obvious improvements across
all metrics and in all few-shot settings. It indi-
cates that PII effectively and explicitly captures
the dual-task correlations, leading to substantial
performance enhancements. Moreover, PII helps
mitigate relational confusions in multi-intent sce-
narios. The results further verify the fact that a
direct and effective interaction mechanism in the
instruction learning paradigm is highly beneficial
for few-shot learning.
Contrastive Distinct Instructions (CDI). The aim
of CDI is to enhance the LLM’s capability to under-
stand variations in intent counts across utterances.
The experimental results reveal that including CDI
contributes to improvements in all metrics, verify-
ing its necessity. Besides, combining CDI and PII
further enhances the model’s performance. This
synergy arises from their individual contributions:
CDI and PII excel at their respective tasks, and their
integration establishes a strong interdependence.
CDI improves the LLM’s initial comprehension
of an utterance’s intent count, thereby facilitating
multiple intent detection. PII explicitly captures
dual-task dependencies, reinforcing the relation-
ship between tasks and enhancing slot filling per-
formance. Therefore, removing any one of CDI
and PII leads to performance decreases on all of
intent accuracy, slot F1 and overall accuracy.

5.4 Effects of Model Size

To further evaluate the impact of model size on
performance, we experiment with 3B, 7B and 14B
versions of Qwen2.5 on both datasets. Due to space
limitation, we only put results in the 2-shot setting
in Table 5, detailed results for other settings are

Model FewShotMixATIS FewShotMixSNIPS

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

Qwen2.5-3B 57.25 57.78 16.55 73.22 36.00 3.32
Qwen2.5-7B 69.57 65.14 18.96 86.45 46.50 5.50
Qwen2.5-14B 71.74 70.04 23.67 88.45 51.12 8.23

Table 5: Results comparison of different model sizes in
the 2-shot setting.

provided in Appendix C. This analysis will help
determine whether it is necessary to pursue larger
model sizes and understand the trade-offs involved.

As shown in Table 5, the experimental results
indicate that an increase in Qwen model size leads
to improved performance. However, the perfor-
mance gains in multiple intent detection and slot
filling diminish as the model size increases further.
For FewShotMixATIS dataset, increasing model
parameters from 3B to 7B results in improvements
of 12.32% and 7.36% in intent accuracy and slot F1,
respectively. However, further increasing param-
eters from 7B to 14B only yields gains of 2.17%
and 4.9% in intent accuracy and slot F1, respec-
tively. A similar trend is observed for the Few-
ShotMixSNIPS dataset, although overall accuracy
shows more pronounced improvements when pa-
rameters are scaled from 7B to 14B. This suggests
that the overall reasoning capability of the LLM
improves significantly with increased model size.
Consequently, pursuing larger-scale language mod-
els may not be essential for achieving substantial
performance gains across all metrics in the con-
text of multi-intent SLU. Moreover, we conduct
experiments to explore the impact of model type
on the performance in few-shot multi-intent SLU.
Detailed results are provided in Appendix D and
Appendix E.

5.5 Evaluation of GPT-4o Annotation Quality

This section presents a comprehensive analysis of
the GPT-4o annotation quality on PII, with detailed
prompt settings provided in Appendix B. Specifi-
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Input

Utterance: rate rajinikanth: the definitive biography one out of 6 stars and then
what’s the movie schedule for b&b theatres

Intents: [RateBook, SearchScreeningEvent]
Entities: [object_name, rating_value, best_rating, rating_unit, object_type,

location_name]

Output
RateBook: [object_name, rating_value, rating_unit]

SearchScreeningEvent: [object_type, location_name]

Table 6: Case Study of a GPT-4o Annotation Error.

Model FewShotMixATIS FewShotMixSNIPS

GPT-4o 71.51 72.86

Table 7: Results of PII quality labeled by GPT-4o. The
score represents the proportion of correctly labeled sam-
ples to the total samples.

Model FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

w/o CDI(I3) 95.17 95.41 95.77 96.50 97.83
PICD-Instruct 96.62 97.83 97.71 98.55 98.67

FewShotMixSNIPS

w/o CDI(I3) 95.68 95.82 95.82 96.82 97.14
PICD-Instruct 96.04 96.32 96.50 97.31 97.68

Table 8: Ablation results of CDI’s impact on intent
count. The score represents the proportion of samples
where the number of intents predicted by the model for
an utterance is equal to the number of true intents.

cally, we manually verify the accuracy of the PII
labels generated by GPT-4o for FewShotMixATIS
and FewShotMixSNIPS. As shown in Table 7, the
annotation accuracy is 71.51% for the FewShot-
MixATIS dataset and 72.86% for the FewShot-
MixSNIPS dataset. This indicates that there is still
potential for improvement in annotation accuracy.
To further investigate the causes of annotation er-
rors, we analyze the most frequent errors made by
GPT-4o in specific cases, discovering that it often
omits certain entities. For example, as shown in
Table 6, GPT-4o fails to annotate the best_rating en-
tity, which should have been linked to the RateBook
intent. Although we explicitly instruct GPT-4o in
the prompt to annotate all entities, its adherence
to this instruction is imperfect, introducing some
noise into the PII annotations. Nevertheless, em-
ploying large language models for data annotation
remains a valuable direction worth exploring. De-
spite the noise in the PII annotations, experimen-
tal results show that our proposed PICD-Instruct
model still significantly outperforms other baseline
models, demonstrating its robustness in practical
applications.

5.6 Effects of CDI on Intent Count

The ablation experiment has demonstrated the ef-
fectiveness of CDI, and this section will further
explore the impact of CDI on the number of intents
generated by our proposed PICD-Instruct. Specifi-
cally, since CDI enhances the LLM’s capability to
understand variations in intent counts across utter-
ances, we evaluate the proportion of samples where
the predicted number of intents matches the true
number, further demonstrating its effectiveness. As
shown in Table 8, experimental results from both
datasets indicate that incorporating CDI enables the
model’s predicted intent count to better align with
the true number of intents within utterances. This
improvement is attributed to CDI’s significant en-
hancement of the model’s ability to perceive intent
counts in utterances through a contrastive learning
mechanism, which further enhances intent detec-
tion accuracy and overall model performance in the
few-shot multi-intent spoken language understand-
ing task.

6 Conclusion

In this paper, we conduct an in-depth investigation
of few-shot multi-intent SLU. We propose PICD-
Instruct, a framework designed to address the chal-
lenges of generative few-shot multi-intent SLU
from three key perspectives. Firstly, we propose
basic instructions to tackle mismatches between the
number of generated slots and input lengths. Sec-
ondly, we introduce pairwise interaction instruc-
tions to explicitly model dual-task dependencies
while minimizing relational confusions in multi-
intent scenarios. Thirdly, we present contrastive
distinct instructions that leverage contrastive re-
lations in intent counts to enhance understanding.
Experimental results demonstrate that our proposed
model achieves SOTA performance on FewShot-
MixATIS and FewShotMixSNIPS, thereby high-
lighting our model’s robust generalization capabili-
ties in a simulated real-world application scenario.
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Limitations

This paper presents a comprehensive analysis of
generative few-shot multi-intent SLU and intro-
duces the PICD-Instruct model, which is based on
the paradigm of instruction learning. In fact, de-
tailed descriptions of intent and slot labels could
significantly enhance LLMs’ comprehension of
multi-intent SLU, as high-quality external knowl-
edge helps mitigate the hallucination issue in LLMs
(Wan et al., 2024). In the future, we will explore
how to integrate external label knowledge into
LLMs to further improve the performance of few-
shot multi-intent SLU.
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Figure 4: Details of BI (I1).
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Figure 5: Details of PII (I2).

A The Detailed Instructions

This section presents the detailed instructions for
BI, PII, and CDI, as illustrated in Figs. 4, 5, and 6,
respectively.

B The Prompt Used by GPT-4o

To ensure efficient annotation, we employ GPT-4o
to label I2, with the corresponding prompt illus-
trated in Fig. 7. First, we define GPT-4o’s role and
provide an example annotation. Next, we intro-
duce a labeling technique designed to improve the
quality of the annotations. Finally, we specify the
output format.
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Figure 6: Details of CDI (I3).

 

Figure 7: The prompt used by GPT-4o.

C The Detailed Experimental Results for
Model Size

This section presents the detailed experimental re-
sults for three parameter sizes across all few-shot
settings. As shown in Table 9, performance im-
proves with an increase in model size. Consistent
with the findings in Section 5.4, performance gains
for most metrics diminish as the model size con-
tinues to increase. Therefore, it is crucial to con-
sider both model size and performance together,
especially in scenarios with limited computational
resources.

D Effects of Model Type

To investigate the effectiveness of different model
types, we compare the recently released versions
of two mainstream LLMs, LLaMA4 and Qwen.

As shown in Table 10, the results reveal that
Qwen outperforms LLaMA in terms of all metrics
in most few-shot settings. A possible explanation
for this performance gap lies in their foundational

4https://huggingface.co/meta-llama
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Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

Qwen2.5-3B 57.25 57.78 16.55 64.86 63.06 17.27 63.89 64.95 20.17 69.57 67.16 21.38 72.83 68.26 21.50
Qwen2.5-7B 69.57 65.14 18.96 70.29 69.07 21.38 72.71 72.11 24.76 78.86 73.84 27.54 81.64 74.38 28.02
Qwen2.5-14B 71.74 70.04 23.67 78.38 70.77 24.76 78.86 72.14 25.36 80.92 75.38 30.68 77.17 76.16 29.71

FewShotMixSNIPS

Qwen2.5-3B 73.22 36.00 3.32 74.90 40.71 4.14 79.04 41.51 4.73 81.08 45.21 6.23 82.36 46.53 7.23
Qwen2.5-7B 86.45 46.50 5.50 86.77 50.18 7.32 86.99 52.26 8.64 88.18 55.10 10.55 88.09 58.14 11.51
Qwen2.5-14B 88.45 51.12 8.23 86.77 56.65 9.00 88.49 57.50 11.41 91.27 61.58 13.78 90.81 63.02 14.51

Table 9: Results comparison of different model sizes on FewShotMixATIS and FewShotMixSNIPS.

Model
FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc I-Acc S-F1 O-Acc

w/o PII, CDI 48.03 54.21 8.06 56.28 59.08 9.84 58.21 59.96 11.72 56.64 60.81 11.35 63.41 64.41 15.22
LLaMA3.2-3B 49.52 55.66 9.30 56.64 59.68 11.23 58.21 61.55 12.08 56.76 62.98 15.10 67.63 68.92 18.96

Qwen2.5-3B 57.25 57.78 16.55 64.86 63.06 17.27 63.89 64.95 20.17 69.57 67.16 21.38 72.83 68.26 21.50

FewShotMixSNIPS

w/o PII, CDI 62.26 30.02 0.82 66.58 37.12 2.84 67.76 40.75 3.87 75.22 44.91 5.46 76.81 47.86 6.87
LLaMA3.2-3B 68.62 32.79 2.05 69.40 37.31 3.05 68.49 41.08 4.09 77.67 45.12 6.37 81.95 48.54 7.19

Qwen2.5-3B 73.22 36.00 3.32 74.90 40.71 4.14 79.04 41.51 4.73 81.08 45.21 6.23 82.36 46.53 7.23

Table 10: Results comparison of different model types on FewShotMixATIS and FewShotMixSNIPS.

Model FewShotMixATIS

2-shot 4-shot 6-shot 8-shot 10-shot

LLaMA3.2-3B 1.33 0.97 1.33 0.36 0.24
Qwen2.5-3B 0.24 0.12 0.24 0.24 0.24

FewShotMixSNIPS

LLaMA3.2-3B 2.36 1.23 0.68 0.36 0.59
Qwen2.5-3B 0.09 0.27 0.18 0.09 0.05

Table 11: Error rate of JSON parsing on FewShotMix-
ATIS and FewShotMixSNIPS.

capabilities. While LLaMA is primarily trained on
English corpora, Qwen excels in both Chinese and
English, potentially allowing it to learn more di-
verse language patterns during pre-training, which
could benefit multi-intent SLU. Another notewor-
thy observation is the disparity in their JSON out-
put format capabilities. As shown in Table 11,
Qwen exhibits superior JSON output capabilities
compared to LLaMA, likely due to its tailored post-
training process for generating structured outputs
as ducumented in the official source5. Specifically,
LLMs frequently generate content such as "Cut-
ting Knowledge Date: December 2023 Today Date:
...", where the ellipsis represents the original in-
put, often resulting in errors during JSON parsing.
Despite inferior performances of LLaMA, it still
outperforms the strong baseline model BERT-SIF,
which demonstrates the effectiveness of our pro-
posed instructions in few-shot multi-intent SLU.
Notably, removing PII and CDI for LLaMA results

5https://huggingface.co/Qwen/Qwen2.5-3B-Instruct

in significant performance declines across all met-
rics. In summary, this analysis underscores the
critical importance of model selection, particularly
with respect to capabilities relevant to the task at
hand.

E Case Study of Model Type

This section presents two case studies to further
examine the effectiveness of different model types.
A detailed illustration is provided in Fig. 8.

In case 1, both Qwen and LLaMA successfully
detect all intents; however, LLaMA fails to predict
the slot for "last". This indicates that while LLaMA
performs well in intent detection, it struggles with
modeling fine-grained semantic details, particularly
in interpreting the semantically implied word "last".
The word "last" is highly functional and context-
dependent. However, LLaMA may not have effec-
tively learned or modeled its role within specific
contexts. This suggests that LLaMA’s generaliza-
tion ability may be somewhat limited, particularly
in predicting abstract functional slots associated
with non-entity words.

In case 2, LLaMA cannot identify "SearchCre-
ativeWork" intent and outputs a wrong intent
"SearchScreeningEvent", while Qwen can give
the correct prediction. LLaMA’s incorrect intent
prediction directly results in misclassifying "su-
pernatural: the unseen powers of animals" as a
"movie_name". Moreover, LLaMA incorrectly
identifies "réunion" as a city. It suggests that
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Case 1

Utterance: whatꞌs the weather 
forecast for croatia on July 
25th and also play the last 
sound track by soko from 
around 1975

Predictions of Qwen2.5-3B

Intents: [GetWeather,PlayMusic]
Entities: {country:[[croatia]],timeRange:[[July,  
25th]],sort:[[last]],music_item:[[sound, 
track]],artist:[[soko]],year:[[1975]]}

Predictions of LLaMA3.2-3B

Intents: [GetWeather,PlayMusic]
Entities: {country:[[croatia]],timeRange:
[[July, 25th]],music_item:[[sound, 
track]],artist:[[soko]],year:[[1975]]}

Case 2

Utterance: will it be chillier 
at 06:05:48 in wagener 
réunion and also I  want to 
watch supernatural: the 
unseen powers of animals

Predictions of Qwen2.5-3B

Intents: [GetWeather,SearchCreativeWork]
Entities: {condition_temperature:[[chillier]],
timeRange:[[06:05:48]],city:[[wagener]],
country:[[réunion]],object_name:[[supernatural:
,the,unseen,powers,of,animals]]}

Predictions of LLaMA3.2-3B

Intents: [GetWeather,SearchScreeningEvent]
Entities: {condition_temperature:[[chillier]],
timeRange:[[06:05:48]],city:[[wagener,réunion]
],movie_name:[[supernatural:,the,unseen,powers
,of,animals]]}

Figure 8: Illustrative case studies comparing Qwen2.5-3B and LLaMA3.2-3B predictions.

LLaMA exhibits a shallow understanding of the
phrase "I want to watch" in the utterance, tending to
associate it with movie screening events rather than
with abstract content search. In contrast, Qwen ac-
curately interprets "supernatural: the unseen pow-
ers of animals" as the title of a work, correctly
associating it with the content rather than screening-
related information, demonstrating a stronger con-
textual understanding. Furthermore, Qwen demon-
strates more accurate entity classification, particu-
larly with respect to geographical locations.
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