@inproceedings{kim-etal-2025-towards,
title = "Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action",
author = "Kim, Tongyoung and
Lee, Jeongeun and
Yoon, SooJin and
Kim, SungHwan and
Lee, Dongha",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.275/",
pages = "5131--5154",
ISBN = "979-8-89176-335-7",
abstract = "Conversational Recommender Systems (CRSs) aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To capture this complexity, we introduce Conversational Sales (CSALES), a novel task that integrates preference elicitation, recommendation, and persuasion within a unified conversational framework. To support realistic and systematic evaluation, we present CSUSER, an evaluation protocol with LLM-based user simulator grounded in real-world behavioral data by modeling fine-grained user profiles for personalized interaction. We also propose CSI, a conversational sales agent that proactively infers contextual user profiles and strategically selects actions through conversation. Comprehensive experiments show that CSI significantly improves both recommendation success and persuasive effectiveness across diverse user profiles."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2025-towards">
<titleInfo>
<title>Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tongyoung</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeongeun</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SooJin</namePart>
<namePart type="family">Yoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SungHwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongha</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Conversational Recommender Systems (CRSs) aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To capture this complexity, we introduce Conversational Sales (CSALES), a novel task that integrates preference elicitation, recommendation, and persuasion within a unified conversational framework. To support realistic and systematic evaluation, we present CSUSER, an evaluation protocol with LLM-based user simulator grounded in real-world behavioral data by modeling fine-grained user profiles for personalized interaction. We also propose CSI, a conversational sales agent that proactively infers contextual user profiles and strategically selects actions through conversation. Comprehensive experiments show that CSI significantly improves both recommendation success and persuasive effectiveness across diverse user profiles.</abstract>
<identifier type="citekey">kim-etal-2025-towards</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.275/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>5131</start>
<end>5154</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action
%A Kim, Tongyoung
%A Lee, Jeongeun
%A Yoon, SooJin
%A Kim, SungHwan
%A Lee, Dongha
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F kim-etal-2025-towards
%X Conversational Recommender Systems (CRSs) aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To capture this complexity, we introduce Conversational Sales (CSALES), a novel task that integrates preference elicitation, recommendation, and persuasion within a unified conversational framework. To support realistic and systematic evaluation, we present CSUSER, an evaluation protocol with LLM-based user simulator grounded in real-world behavioral data by modeling fine-grained user profiles for personalized interaction. We also propose CSI, a conversational sales agent that proactively infers contextual user profiles and strategically selects actions through conversation. Comprehensive experiments show that CSI significantly improves both recommendation success and persuasive effectiveness across diverse user profiles.
%U https://aclanthology.org/2025.findings-emnlp.275/
%P 5131-5154
Markdown (Informal)
[Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action](https://aclanthology.org/2025.findings-emnlp.275/) (Kim et al., Findings 2025)
ACL