@inproceedings{antebi-etal-2025-tag,
title = "Tag{\&}Tab: Pretraining Data Detection in Large Language Models Using Keyword-Based Membership Inference Attack",
author = "Antebi, Sagiv and
Habler, Edan and
Shabtai, Asaf and
Elovici, Yuval",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.283/",
pages = "5273--5286",
ISBN = "979-8-89176-335-7",
abstract = "Large language models (LLMs) have become essential tools for digital task assistance. Their training relies heavily on the collection of vast amounts of data, which may include copyright-protected or sensitive information. Recent studies on detecting pretraining data in LLMs have primarily focused on sentence- or paragraph-level membership inference attacks (MIAs), usually involving probability analysis of the target model{'}s predicted tokens. However, these methods often exhibit poor accuracy, failing to account for the semantic importance of textual content and word significance. To address these shortcomings, we propose Tag{\&}Tab, a novel approach for detecting data used in LLM pretraining. Our method leverages established natural language processing (NLP) techniques to tag keywords in the input text, a process we term Tagging. Then, the LLM is used to obtain probabilities for these keywords and calculate their average log-likelihood to determine input text membership, a process we refer to as Tabbing. Our experiments on four benchmark datasets (BookMIA, MIMIR, PatentMIA, and the Pile) and several open-source LLMs of varying sizes demonstrate an average increase in AUC scores ranging from 5.3{\%} to 17.6{\%} over state-of-the-art methods. Tag{\&}Tab not only sets a new standard for data leakage detection in LLMs, but its outstanding performance is a testament to the importance of words in MIAs on LLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="antebi-etal-2025-tag">
<titleInfo>
<title>Tag&Tab: Pretraining Data Detection in Large Language Models Using Keyword-Based Membership Inference Attack</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sagiv</namePart>
<namePart type="family">Antebi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edan</namePart>
<namePart type="family">Habler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asaf</namePart>
<namePart type="family">Shabtai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuval</namePart>
<namePart type="family">Elovici</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Large language models (LLMs) have become essential tools for digital task assistance. Their training relies heavily on the collection of vast amounts of data, which may include copyright-protected or sensitive information. Recent studies on detecting pretraining data in LLMs have primarily focused on sentence- or paragraph-level membership inference attacks (MIAs), usually involving probability analysis of the target model’s predicted tokens. However, these methods often exhibit poor accuracy, failing to account for the semantic importance of textual content and word significance. To address these shortcomings, we propose Tag&Tab, a novel approach for detecting data used in LLM pretraining. Our method leverages established natural language processing (NLP) techniques to tag keywords in the input text, a process we term Tagging. Then, the LLM is used to obtain probabilities for these keywords and calculate their average log-likelihood to determine input text membership, a process we refer to as Tabbing. Our experiments on four benchmark datasets (BookMIA, MIMIR, PatentMIA, and the Pile) and several open-source LLMs of varying sizes demonstrate an average increase in AUC scores ranging from 5.3% to 17.6% over state-of-the-art methods. Tag&Tab not only sets a new standard for data leakage detection in LLMs, but its outstanding performance is a testament to the importance of words in MIAs on LLMs.</abstract>
<identifier type="citekey">antebi-etal-2025-tag</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.283/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>5273</start>
<end>5286</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tag&Tab: Pretraining Data Detection in Large Language Models Using Keyword-Based Membership Inference Attack
%A Antebi, Sagiv
%A Habler, Edan
%A Shabtai, Asaf
%A Elovici, Yuval
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F antebi-etal-2025-tag
%X Large language models (LLMs) have become essential tools for digital task assistance. Their training relies heavily on the collection of vast amounts of data, which may include copyright-protected or sensitive information. Recent studies on detecting pretraining data in LLMs have primarily focused on sentence- or paragraph-level membership inference attacks (MIAs), usually involving probability analysis of the target model’s predicted tokens. However, these methods often exhibit poor accuracy, failing to account for the semantic importance of textual content and word significance. To address these shortcomings, we propose Tag&Tab, a novel approach for detecting data used in LLM pretraining. Our method leverages established natural language processing (NLP) techniques to tag keywords in the input text, a process we term Tagging. Then, the LLM is used to obtain probabilities for these keywords and calculate their average log-likelihood to determine input text membership, a process we refer to as Tabbing. Our experiments on four benchmark datasets (BookMIA, MIMIR, PatentMIA, and the Pile) and several open-source LLMs of varying sizes demonstrate an average increase in AUC scores ranging from 5.3% to 17.6% over state-of-the-art methods. Tag&Tab not only sets a new standard for data leakage detection in LLMs, but its outstanding performance is a testament to the importance of words in MIAs on LLMs.
%U https://aclanthology.org/2025.findings-emnlp.283/
%P 5273-5286
Markdown (Informal)
[Tag&Tab: Pretraining Data Detection in Large Language Models Using Keyword-Based Membership Inference Attack](https://aclanthology.org/2025.findings-emnlp.283/) (Antebi et al., Findings 2025)
ACL