@inproceedings{muti-etal-2025-r,
title = "The ``r'' in ``woman'' stands for rights. Auditing {LLM}s in Uncovering Social Dynamics in Implicit Misogyny",
author = "Muti, Arianna and
Emmery, Chris and
Nozza, Debora and
Barr{\'o}n-Cede{\~n}o, Alberto and
Caselli, Tommaso",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.292/",
pages = "5462--5479",
ISBN = "979-8-89176-335-7",
abstract = "Persistent societal biases like misogyny express themselves more often implicitly than through openly hostile language.However, previous misogyny studies have focused primarily on explicit language, overlooking these more subtle forms. We bridge this gap by examining implicit misogynistic expressions in English and Italian. First, we develop a taxonomy of social dynamics, i.e., the underlying communicative intent behind misogynistic statements in social media data. Then, we test the ability of nine LLMs to identify the social dynamics as a multi-label classification and text span selection: first LLMs must choose social dynamics given a prefixed list, then they have to explicitly identify the text spans that triggered their decisions. We also investigate the extent of using different learning settings: zero and few-shot, and prescriptive. Our analysis suggests that LLMs struggle to follow instructions and reason in all settings, mostly relying on semantic associations, recasting claims of emergent abilities."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="muti-etal-2025-r">
<titleInfo>
<title>The “r” in “woman” stands for rights. Auditing LLMs in Uncovering Social Dynamics in Implicit Misogyny</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arianna</namePart>
<namePart type="family">Muti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Emmery</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debora</namePart>
<namePart type="family">Nozza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Barrón-Cedeño</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tommaso</namePart>
<namePart type="family">Caselli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Persistent societal biases like misogyny express themselves more often implicitly than through openly hostile language.However, previous misogyny studies have focused primarily on explicit language, overlooking these more subtle forms. We bridge this gap by examining implicit misogynistic expressions in English and Italian. First, we develop a taxonomy of social dynamics, i.e., the underlying communicative intent behind misogynistic statements in social media data. Then, we test the ability of nine LLMs to identify the social dynamics as a multi-label classification and text span selection: first LLMs must choose social dynamics given a prefixed list, then they have to explicitly identify the text spans that triggered their decisions. We also investigate the extent of using different learning settings: zero and few-shot, and prescriptive. Our analysis suggests that LLMs struggle to follow instructions and reason in all settings, mostly relying on semantic associations, recasting claims of emergent abilities.</abstract>
<identifier type="citekey">muti-etal-2025-r</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.292/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>5462</start>
<end>5479</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The “r” in “woman” stands for rights. Auditing LLMs in Uncovering Social Dynamics in Implicit Misogyny
%A Muti, Arianna
%A Emmery, Chris
%A Nozza, Debora
%A Barrón-Cedeño, Alberto
%A Caselli, Tommaso
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F muti-etal-2025-r
%X Persistent societal biases like misogyny express themselves more often implicitly than through openly hostile language.However, previous misogyny studies have focused primarily on explicit language, overlooking these more subtle forms. We bridge this gap by examining implicit misogynistic expressions in English and Italian. First, we develop a taxonomy of social dynamics, i.e., the underlying communicative intent behind misogynistic statements in social media data. Then, we test the ability of nine LLMs to identify the social dynamics as a multi-label classification and text span selection: first LLMs must choose social dynamics given a prefixed list, then they have to explicitly identify the text spans that triggered their decisions. We also investigate the extent of using different learning settings: zero and few-shot, and prescriptive. Our analysis suggests that LLMs struggle to follow instructions and reason in all settings, mostly relying on semantic associations, recasting claims of emergent abilities.
%U https://aclanthology.org/2025.findings-emnlp.292/
%P 5462-5479
Markdown (Informal)
[The “r” in “woman” stands for rights. Auditing LLMs in Uncovering Social Dynamics in Implicit Misogyny](https://aclanthology.org/2025.findings-emnlp.292/) (Muti et al., Findings 2025)
ACL