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Abstract

Auctions are a vital economic mechanism used
to determine the market value of goods or ser-
vices through competitive bidding within a spe-
cific framework. However, much of the cur-
rent research primarily focuses on the bidding
algorithms used within auction mechanisms.
This often neglects the potential benefits of
incorporating individual users’ unique prefer-
ences into the valuation process. Our theoret-
ical and empirical analysis demonstrates that
valuation errors can significantly impact the
overall utility. To bridge this gap, we propose
a personalized valuation framework, namely
Large Language Models-powered Personalized
Valuation (LaMP-Val), which integrates Large
Language Models to incorporate personalized
semantic preference into users valuation pro-
cess. LaMP-Val integrating three components:
data, learning, and evaluation. The data compo-
nent tackles the challenge of building a novel
dataset specifically for LLMs fine-tuning in
personalized valuation modeling. The learn-
ing component introduces a diversity template
to enhance LLMSs’ capacity for modeling fine-
grained personal valuation patterns. The evalu-
ation component establishes a closed-loop sys-
tem where LLM-generated valuations interact
with bidding strategies and auction. It proposes
two novel metrics to quantify valuation preci-
sion and bidding intention accuracy in person-
alized scenarios. Extensive experiments show
that LaMP-Val more accurately captures per-
sonalized values and achieves greater profits
than baseline approaches.

1 Introduction

An auction, covering valuation and bidding, is
a crucial economic mechanism that helps deter-
mine the market value of commodities or services
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Figure 1: (a) Existing works mainly focus on bidding
algorithms (from value to bidding price) but neglect the
valuation process (from user needs to determine value).
(b) Existing works use experts to generate features for
predicting values, but are limited to fixed features (e.g.,
“retro” not in training feature). (c) Using LLMs to ana-
lyze semantic information to predict value, accurately
capturing user preferences.

through competitive bidding (Weber, 2003; Aggar-
wal and Badanidiyuru, 2024; Chen and Nabi, 2023).
Valuation is the process by which bidders assess an
item’s worth of an item based on their individual
needs and the product description (Zhang and Niu,
2023). Bidding, on the other hand, refers to a com-
petitive process in which participants try to win
ownership of the items and maximize their prof-
its by developing strategic algorithms that comply
with specific auction rules (Klemperer, 1999). The
rise of online exchange platforms has broadened
the use of auctions beyond traditional advertising.
Nowadays, auctions are commonly utilized for sell-
ing data (Janin and Qin, 2020; Travizano and Sar-
raute, 2018) and second-hand goods (Han and Yin,
2020, 2019; Yamaura and Kanemaki, 2019). This
rapid expansion underscores the need for improved
methods that help users achieve fair value based on
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their individual needs.

As in Figure 1(a), most auction stud-
ies (Schlosser and Boissier, 2018; Balseiro
and Deng, 2021; Bachrach and Talgam-Cohen,
2022; Golrezaei and Sahoo, 2024; Hajiaghayi
and Lahaie, 2024b) focus on theoretical bidding
strategies and mechanisms but overlook individual
valuation, despite their theoretical robustness.
However, our preliminary experiments (Sec
4.1) indicates that 1% valuation errors result in
approximately 10% utility losses, demonstrating
that valuation errors significantly affect final utility.

While existing studies (Zhang and Niu, 2023;
Leme and Pél, 2016; Peri and Curry, 2021) have
investigated feature-based personalized valuation,
these efforts rely on expert-engineered features for
training valuation models. Such approaches face
challenges in scenarios requiring fine-grained user
preference modeling, particularly when process-
ing unstructured user-generated content. These
synthetic, feature-based methods inherently strug-
gle with representation inadequacy when manag-
ing user-provided textual descriptions that go be-
yond predefined feature boundaries as shown in
Figure 1(b). This limitation leads to valuation er-
rors, which ultimately reduce the final profit. More-
over, traditional advertising auction metrics, such
as utility and value (Lv and Zhang, 2022), tend
to focus solely on economic gains. They often
overlook the emotional factors that influence user
decisions, like collectible value and sentimental at-
tachment. To our knowledge, there is currently no
systematic text-based method that addresses indi-
vidual preferences for item valuation, nor are there
established evaluation metrics that correspond to
these preferences.

The advanced capabilities of Large Language
Models (LLMs) in semantic comprehension and
following instructions (Brown and Mann, 2020;
OpenAl, 2023) make them promising for captur-
ing personalized preferences, such as interpreting
ambiguous descriptions (e.g., “retro style”). State-
of-the-art closed-source models, such as Gem-
ini (Team and Georgiev, 2024) and o3 (Pfister
and Jud, 2025), demonstrate strong reasoning abili-
ties. However, their dependency on API-based ac-
cess necessitates data transmission to cloud servers,
which poses significant risks to privacy. In personal
auction scenarios, the potential misuse of sensi-
tive user information, such as transaction histories,
severely limits the use of closed-source models in
contexts where privacy is a concern. Therefore,

local deployment is essential to meet the require-
ments for privacy preservation. While open-source
models like DeepSeek R1 (DeepSeek-Al, 2025)
show similar reasoning performance, their substan-
tial computational resource requirements lead us to
seek more lightweight and efficient models. Cen-
tral to this investigation is the crucial question:
How can we use LLMs to model personalized pref-
erences and achieve accurate product valuation?

In this paper, we introduce a framework called
Large Language Models-powered Personalized
Valuation (LaMP-Val) to address this problem.
LaMP-Val consists of three main components: data,
learning, and evaluation. The data module ad-
dresses the critical challenge of constructing a
novel dataset for LLM fine-tuning in personalized
valuation modeling, a domain previously hindered
by three fundamental limitations: the value-price
paradox (Kehoe, 1989), preference distribution
skewness (De Langhe and Fernbach, 2016), and
rationale absence in economic decision traces (Wei
and Wang, 2022). The learning component devel-
ops a diversity template to fine-tune LLMs that
enables LL.Ms to model nuanced personal valua-
tion patterns, overcoming traditional approaches’
inability to model item valuation influenced by per-
sonalized preference. The evaluation module pio-
neers a closed-loop system where LLM-generated
personalized valuations dynamically interact with
bidding strategies and market environments. To
address the inadequacy of conventional metrics in
personalized scenarios, we propose Personalized
Utility (PU) and Personalized Value (PV) These
metrics are designed to assess both the precision
of users’ personalized valuations and the accuracy
of their decision-making regarding bidding inten-
tions. Extensive experiments demonstrate that our
methods can achieve significant profits compared
to baseline approaches. Our codes are available at
https://github.com/sunjie279/LaMP-Val.

The following sections introduce the preliminary
material, our proposed framework, present and ana-
lyze the empirical results, related works, and finally
conclude the paper.

2 Preliminary

The Vickrey auction, a distinctive variant of the
sealed-bid auction (Liu and Wu, 2021), is widely
used due to its incentive-compatible design. This
auction model has garnered significant interest
from both academia (M and Paul, 2006; Zhang
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and Zhang, 2015; Huang et al., 2025) and indus-
try (Sureka and Wurman, 2002; Bikhchandani and
De Vries, 2011), as it encourages bidders to place
honest bids based on their item’s valuation, as the
winning bidder pays the second-highest bid, effec-
tively mitigating the “winner’s curse” of potentially
overpaying (Karl, 2016).

We will now define the key notations related to
personalized valuation. Consider a user participat-
ing in an auction system with M items and a total
budget constraint of B. Let B,, represent the re-
maining budget when valuing the m-th item. Each
item m is linked to a personalized preference sig-
nal s,,, which captures relevant information and
reviews about the item.

The valuation model V processes these prefer-
ence signals to jointly generate dual outputs:

Fos O = V(sm), me{l,---, M}, (1)

where fm € {0, 1} represents the predicted pref-
erence of user and ©,,, denotes the estimated val-
uation. These outputs drive two subsequent pro-
cesses: the bidding algorithm A computes the bid
price b, = A( fm, Um, Bm ), followed by the auc-
tion mechanism £ that determines the allocation
outcome:

ZmsPm = E(bm,b;’n), ()

where z,,, € {0, 1} indicates the winning status, py,
is the actual payment, and b9, denotes the highest
competing bid for the m-th item.

The total profits of the users, specifically their
utility and value (Liu and Wu, 2021), are given by
the following equations:

M M
Zm‘(vm_pm)v v = Z Zm U (3)

m=1 m=1

The optimization objective integrates utility with
preference modeling accuracy:

max u+)\1'v—)\2-D(f,f),
M 4)
s.t. Z Zm - Pm < B,

m=1

where D( f, f ) measures the discrepancy between
true preferences f and predicted scores f using
weighted F1 score (Tao and Yi, 2013). The parame-
ters A1 and A2 balance economic gain against users’
preferences.

3 Method

In this section, we present the LaMP-Val frame-
work, which integrates data, learning, and evalua-
tion for personalized valuation. Section 3.1 intro-
duces our innovative dataset through LLM-driven
data augmentation. Building upon this foundation,
Section 3.2 details the learning paradigm that en-
ables LLMs to capture personalized valuation and
preference from users’ needs. Finally, Section 3.3
presents the evaluation environment and the pro-
posed personalized metrics specifically designed
for this scenario.

3.1 Data: Desensitive, Reasonable, Consistent
Data Augmentation

To address the issue of personalized valuation, we
need data that includes preferences for item valu-
ation. However, there is a scarcity of datasets that
encompass semantic descriptions, user preferences,
and item valuations in this field. To overcome this
challenge, we implemented an LLM augmentation
method to create a fine-tuning dataset. The Epin-
ions™ (Zhao and McAuley, 2014) dataset is a classic
shopping dataset containing 508k product rating
information. This rich semantic diversity supports
comprehensive preference and valuation modeling
while maintaining privacy compliance through dei-
dentification. We utilized Epinions, as our primary
data source, construct the desensitized, reasonable,
consistent valuation dataset.

Desensitized. Each data sample includes item
name, item prices, item reviews, and consumer rat-
ings, as well as sensitive information like user_id.
As illustrated in Figure 2(a), we first drop out the
privacy parts, leaving only item name, transaction
price, item reviews, and consumer ratings.
Reasonable. To create a suitable valuation dataset,
we tackle the significant challenge of developing
a new dataset for fine-tuning LL.Ms in personal-
ized valuation modeling, which has been previ-
ously impeded by three key limitations. First,
in auction scenarios, the final selling price often
diverges from the bidder’s valuation (a.k.a., per-
ceived value) (Kehoe, 1989). Existing works (Sat-
terthwaite and Shneyerov, 2008; Easley and Klein-
berg, 2010; Virag, 2010) show that in large-scale
markets, the price mechanism can achieve optimal
allocation of resources, and prices tend to converge
to buyers’ accurate valuations. Thus, we filter the

“https://www.shopping.com/, ©2019-2025 eBay Inc.
All Rights Reserved
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Figure 2: Overview of our method: (1) Data: Transac

to bid, value $105.

N
value at $95 Bidding Results |

tion data undergoes desensitization processing, extracting

information such as price, item name, rating, and review. LLMs are employed to analyze individual preferences,
complete product descriptions, user preferences, valuations, and their justifications. Then, check the consistency and
rationality of the generated data. If they are not met, retry. (b) Learning: Utilize diverse instruction templates to
template item information and user reviews in the valuation dataset into a fine-tuning dataset. Train the pre-trained

LLMs via SFT to form the final model (LLM FINAL).

(c) Evaluation: LLM FINAL generates bidding decisions

(e.g., preference #YES, valuation of $95) based on item information and reviews. Combined with other users’
information, the final bidding result is determined through the bidding algorithm and auction mechanism.

items with fewer than 15 user purchase records
to ensure sufficient market participation. Second,
we address the prevalent rating bias (De Langhe
and Fernbach, 2016) where bidders’ average rat-
ings systematically diverge from objective quality
metrics. Building on recent work (Guo and Kong,
2025a) demonstrating the effectiveness of extreme
rating conversion, we transform the highest and
lowest scores into binary preference labels (“liked”
vs. “disliked”). This approach reduces rating bias
from inconsistent rating scales while preserving
essential signals for modeling subjective valuations
in auction environments. Lastly, drawing from
existing literature (Wei and Wang, 2022), it has
been illustrated that the organization of thoughts
can significantly augment the capability of LLMs
to tackle complex reasoning challenges (Liyanage
and Gokani, 2024; Fang and Lee, 2023; Peng and
Li, 2023). Thus, we use a strong reasoning model
to clarify the derived preferences and valuations of
personalized preference and item information.

Consistent. We conduct a validation process us-
ing LLM-based verification to ensure that the gen-
erated rationales accurately reflect the alignment
between user preferences and item value. If an in-
stance fails this verification, we initiate an iterative
refinement process to regenerate the reasoning until
we achieve consistent and satisfactory results.

Notably, our approach differs fundamentally
from knowledge distillation. GPT-4 is used exclu-
sively for rationale generation to enhance training
data quality, not for distilling valuation labels. This
process synthesizes explanatory rationales from

item descriptions and user needs, following estab-
lished augmentation strategies for prediction tasks.
We have created a refined dataset that includes 923
unique item types and contains a total of 23,065
individual instances. These instances have been
randomly divided into training, validation, and test-
ing sets in a ratio of 6:1:3. An example of the
Valuation Dataset can be found in Appendix C.

3.2 Supervised Fine-Tuning with
Diversity-Instruction Generation

As depicted in Figure 2(b), our methodology con-
structs the SFT dataset through structured instruc-
tion templates that encapsulate the valuation in-
formation. Each training sample consists of three
components: “Instruction” specifying the task ob-
jective, “Input” containing item attributes (item in-
formation, reviews), and “Output” presenting aug-
mented reasons, user preference, and valuation.
The instruction design philosophy is based on in-
sights from (Guo and Kong, 2025b), which demon-
strate that diversity in instruction significantly en-
hances model robustness by improving worst-case
performance. We use LLM to generate 30 dis-
tinct instruction templates that convey the same
semantic content but use different phrasing to im-
plement this. Human annotators then validate these
templates to ensure their accuracy. Subsequently,
these instructions were randomly assigned to each
instance. Moreover, to consistently guide LLMs
outputting valid preferences and valuations, we
precede these preferences and values with specific
markers: guide signs “#” for preferences and “$”
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for valuations (Dinh and Zeng, 2022).

Through this approach, we create a diverse-
instruction training that encourages the model to
develop a generalized understanding of underlying
task requirements rather than overfitting to spe-
cific phrasings. With the constructed SFT dataset,
we perform supervised fine-tuning on the pre-
trained LLM, ultimately deriving the optimized
LLM FINAL through this diverse-instruction learn-
ing paradigm.

3.3 [Evaluation: Personalized Preference
Evaluation on Real Data

This section presents the evaluation pipeline archi-
tecture, then discusses conventional metrics’ limi-
tations (e.g., utility/value) and introduces a person-
alized methodology addressing these issues.
Pipeline. As illustrated in Figure 2(c), LaMP-Val’s
evaluation framework employs the supervised fine-
tuned model LLM FINAL to generate personalized
valuations 9,,, and preference indicators fm This
output subsequently drives a two-stage evaluation
process combining strategic bidding and auction
mechanism simulation on real data from Epinions.

As illustrate in Algorithm 1, the Individual Pac-
ing (IP) algorithm (Balseiro and Gur, 2019) opti-
mizes bidding under budget constraints by target-
ing a spending rate p = B/M. With maximum
valuation v, the multiplier upper bound is set as
A > 9/p. Initializing A\; € [0, \] and residual
budget B; = B, the algorithm computes the bid
by, = min(75—, By,) for each item m. The Vick-
rey mechanism (Liu and Wu, 2021) resolves com-
petition via sealed bids: allocation z, = 1y, ~p0 }
and payment p,,, = 2, - bf,. The multiplier updates
via clipped stochastic gradient descent:

Am+1 = Clip[(],;\] ()‘m - 6(p - pm)) €= 1/\/M7
&)
while the budget decrements as B,,,+1 = By, — Dm.-
Personalized Evaluation Metrics. Auction per-
formance analysis traditionally employs utility and
value metrics (Lv and Zhang, 2022), defined in
Equation 3. These conventional measures effec-
tively quantify corporate profits in auction scenar-
ios by focusing on monetary transactions. Howeyver,
the assumption of uniform item desirability across
all bidders limits their applicability to individual
users, who inherently possess heterogeneous pref-
erence structures and subjective valuations.
To address this limitation, we develop
Personalized Utility (PU) and Personalized Value

Algorithm 1 Individual Pacing Algorithm in Vick-
rey mechanism

1: Input: Number of items M, budget B, max-
imum possible valuation v, target spending
rate p = B/M, upper bound of the multiplier
A > ©/p, item value {v,,}, highest bidding of
other bidders {09,}, e = 1/vV/M. >X=10/p
Initialize A1 < 0, By < B
for m = 1to M do
Bid by, < min(75—, B)
Observe (2m; Pm) = (L{p,,>b2.}> Zmbi,)
Update A\, 11 < clip[(),;\] (Am—€(p—pm))
Deduct B, 41 ¢ Bm — pm
end for

(PV) constructs that integrate preference-awareness
into auction evaluation. The personalized utility
metric specifically quantifies the net economic
gain for preferred items, expressed through the
double-filtered summation:

M
PU = Z L tn=1nzm=1} * (Um —DPm),  (6)

m=1

where M represents the total item count,
1¢f,,=1nz,=1) Serves as a joint indicator requiring
both preference declaration ( f,,, = 1) and success-
ful acquisition (z,, = 1), v,, indicates personal
valuation, and p,,, denotes transaction price. This
two-stage filtration ensures that the PU exclusively
considers desired and obtained items.

Conversely, the personalized value metric cap-
tures the maximum potential satisfaction derived
from preferred acquisitions, independent of pay-
ment considerations:

M
PV=2 Lyjcinzu=t} Om ()

m=1

The PV formulation maintains the valuation per-
spective, allowing for a focus on pure benefit per-
ception. These two metrics work together to char-
acterize personal preferences: PU reflects tangible
economic outcomes, while PV represents ideal ful-
fillment scenarios. This establishes a comprehen-
sive framework for the individualized assessment
of the auction.

4 Experiments

This section begins with the preliminary experi-
ment. Then we present an overview of the experi-
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| Personalized Profit |

Traditional Metrics

Model | PU% PVt | weighted F1 1 MAE | RMSLE |,
LLaMA -1072 92787 0.6493 2251 2.6781
Mistral 1199 84231 0.6692 2463 2.5653
GPT-3.5 2231 100680 0.8652 2431 2.1146
GPT-4 896 79488 0.8784 2203 1.7756
LaMP-Val 5872 102004 0.9084 536 0.4818

Table 1: Diverse evaluations are conducted on our datasets: Personalized Utility (PU) and Personalized Value
(PV) for personalized profits, weighted F1 for preference, Mean Absolute Error (MAE) and Root Mean Squared
Logarithmic Error (RMSLE) for value. These metrics are applied to a test set comprising 7,515 samples, with the
auction conducted on 900 items and a budget of 100,000. Arrows indicate the desired direction for each metric: 1
signifies that higher values are better, while | indicates that lower values are preferable.

mental setup, including baseline methods, evalua-
tion metrics, and implementation details. In addi-
tion, we demonstrate the experimental results and
conduct an ablation study. The results of these ex-
periments aim to address the following questions:

(Q1) Does LaMP-Val capture personalized
preferences and valuations more accurately?

(Q2) Does LaMP-Val yield greater profit for
the user in real auction scenarios?

(Q3) How do the base model and instruction
template affect the performance of LaMP-
Val?

This section addresses the above three questions in
order.

4.1 Preliminary Experiment

We simulate an auction system involving 20 bidders
(N = 20) competing for 500 items (M = 500),
with each bidder operating under a budget con-
straint of 50 (B = 50). The true values (v) that bid-
ders assign to the items are uniformly distributed
between 0 and 1 and are assumed to be independent.
We incorporate three different levels of Gaussian
noise (¢) with standard deviations of ¢ = 0,0.01,
and 0.1 into the true valuations, resulting in noisy
values (v). To calculate the utility (u for o = 0 and
@ for o # 0) for each condition, we implement an
individual pacing algorithm in the Vickrey mech-
anism. Utility is defined as the total value gained
from the difference between the true item values
and the prices paid for winning bids. The results
presented in Table 2 indicate that as the standard de-
viation of the noise increases, the utility decreases.
Particularly, at the highest noise level (o = 0.1),
the utility becomes negative, suggesting that the
individual pacing strategy is less effective under
conditions of high noise.

Noise std (c)  Utility  Utility Decrease (%),
0.00 0.4385 0.0%
0.01 0.3964 9.6%
0.10 -0.6659 251.9%

Table 2: Utility results for different standard deviations
of noise. The utility decrease is relative to the base case.
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Figure 3: A violin plot showing the ratio vpreq /Vlabel
from various models. The density of the violin, primar-
ily around the red line, indicates a better valuation.

We present a theorem asserting that the long-
run average utility in the absence of noise strictly
exceeds that in the presence of noise. A detailed
proof and further discussion of this theorem are
provided in Appendix A.1.

4.2 Experimental Setup

Baselines. By using prompt-based methods, we
can effectively achieve personalized preferences
and valuations based on user text descriptions. This
experiment will employ these methods as baselines,
focusing on the LLaMA-3-8B-Instruct (Grattafiori
and Dubey, 2024), Mistral-7B-Instruct-v0.2 (Jiang
and Sablayrolles, 2023), GPT-3.5 (gpt-3.5-turbo-
0613) (Kocon and Cichecki, 2023), and GPT-
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Figure 4: The number of “YES” and “NO” predicted by
each model. The lower Relative Error Ratio indicates
stronger label ratio alignment and improved preference
distribution accuracy.

4 (OpenAl, 2023), with prompt sample in Ap-
pendix C. After gathering the preferences and valu-
ations, we will implement a bidding algorithm and
conduct an auction, as illustrated in Figure 2(c).

Evaluation Metric. Our evaluation metrics fall
into two categories. The first category, personal-
ized profit, focuses on assessing the model’s ability
to generate profits during the auction bidding phase.
This is represented by metrics such as PU and PV,
with higher values indicating better performance.
The second category, traditional metrics, aims to
evaluate the model’s accuracy in capturing bidder
preferences and item values during the instruction
tuning phase. This includes metrics such as the
weighted F1 score (Tao and Yi, 2013) of prefer-
ence, Mean Absolute Error (MAE) (Willmott and
Matsuura, 2005), and Root Mean Squared Loga-
rithmic Error (RMSLE) (Jadon et al., 2022) for
valuation. A higher weighted F1 score is better in
this category, while smaller values for MAE and
RMSLE are preferred.

Implementation Details. In the data phase, GPT-
4 generates preference and valuation reasons and
does consistency checks. In the learning phase, we
employ the one-shot in-context learning (Dong and
Li, 2024) approach for the prompt-based baselines.
This method allows LLMs to assess the adaptability
and predictive capacity of the models when con-
fronted with new, unseen data. Specifically, we
randomly select one sample from the validation
set and use it to construct prompts. For our pro-
posed LaMP-Val methods, we utilize Mistral-7B-
Instruct as base model, zero-shot prompting (Li,
2023) to predict valuations and preferences. More
details can be found in Appendix F. In the evalua-

Budget Model #item=600 #item=900
PU 1 PV1T PU?T PV 1
LLaMA -1046 89694 -1072 92787
Mistral 1204 83765 1199 84231
100K  GPT-3.5 2233 100820 2231 100680
GPT-4 1040 72660 896 79488
LaMP-Val 5870 99161 5872 102004
LLaMA -1046 121694 -1066 132772
Mistral 1668 362709 1548 379556
1M GPT-3.5 1258 125845 1149 134481
GPT-4 1015 73084 871 80512
LaMP-Val 15223 489633 15115 501537

Table 3: Comparison of model performance on PU and
PV metrics across different budgets and item quantities,
bolding the best and underlining the second-best.

tion phase, we incorporate budget constraints (Bal-
seiro and Kroer, 2023; Chen and Wang, 2023) to
mirror realistic market scenarios, with the budget
set at B = 100, 000.

4.3 Main Results

Key Metric Improvements. Table 1 presents the
key results of various methods. The weighted F1
score reflects the accuracy of personalized prefer-
ence, where LaMP-Val achieves a score of 0.9084,
surpassing all other methods. In addition, MAE
indicates valuation accuracy; here, LaMP-Val also
outperforms the competition with a score of 536.
Moreover, RMSLE demonstrates benefits in han-
dling prediction tasks across a broad range of val-
ues, and our method yields a significantly lower
result. These results suggesting that LaMP-Val
more accurately captures user preferences and item
valuations. To further illustrate that LaMP-Val gen-
erates greater personalized profit, we assess the PU
and PV of the various methods. The results indi-
cate that LaMP-Val’s PU and PV are higher than
those of the other methods, showcasing its superior
capability in generating personalized profit.

Valuation Distribution. The comparative evalua-
tion of predicted values across multiple models is
illustrated in Figure 3, which only includes values
less than 3 for better display. The violin plots in-
dicate that models such as LLaMA-3-8B-Instruct,
Mistral-7B-Instruct, GPT-3.5, and GPT-4 tend to
underestimate actual item values. This suggests a
systemic bias that could lead to missed opportuni-
ties for bidders. In contrast, the LaMP-Val model
shows a more balanced distribution of predictions,
hovering around the true values without consis-
tently overestimating or underestimating. Addi-
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Personalized Profit |

Traditional Metrics

Base Model ‘ Method ‘ PU600 T PV600 T PUgoo T PVng T ‘ weighted F1 T MAE \L RMSLE J,
LaMP-Val (w/o G) 5233 105233 5233 105233 0.7965 1198 0.6326

LLaMA LaMP-Val (w/o R) 1686 99864 1686 99864 0.8984 1260 0.5799
LaMP-Val 5233 105233 5233 105233 0.8985 635 0.5045

LaMP-Val (w/o G) 5367 97669 5368 100181 0.8810 555 0.5002

Mistral LaMP-Val (w/o R) 5577 97962 5678 99535 0.8843 551 0.5054
LaMP-Val 5870 99161 5872 102004 0.9084 536 0.4818

Table 4: Ablation study with varying templates and base models. The subscripts of the PU and PV denote the

number of items.

tionally, LLaMA, Mistral, GPT-3.5, and GPT-4
often assign a significant number of items a zero
valuation, indicating a bias towards assigning zero
value when these models perceive a lack of interest
in specific items. However, the LaMP-Val model
does not display this bias, highlighting its superior
reliability in value estimation.

Preference Ratio. The counts of “YES” and “NO”
preferences are illustrated in Figure 4. Addition-
ally, we calculate the Relative Error Ratio (RER)
to show how closely the “YES” to “NO” ratio
aligns with the label. The RER is defined as
RER = (|ratiopreq —ratiojapei | ) /ratiojaper, where the
ratio is calculated as #YES / #NO. A lower RER
indicates a better alignment of the preference ratio.
From Figure 4, we can see that LaMP-Val has the
smallest RER, demonstrating its superior ability to
capture personalized preferences. In contrast, the
RER is higher for the LLaMA and Mistral models,
indicating that these pre-trained models are less
capable of predicting personalized preferences.

4.4 Stability Analysis of Profit

To investigate the stability of the profit conferred
by our learned valuations across varying scenarios,
we conducte experiments under different budget
constraints (100K and 1M) to examine the changes
in both PU and PV. The results presented in Table
3 reveal that our proposed method, LaMP-Val, con-
sistently approaches optimal performance levels
under differing budget limitations, with the sole
exception being when the budget is set at 100K,
and the number of items (#items) is 600, where
it marginally trails behind GPT-3.5. Intriguingly,
we observe that GPT-4’s performance does not sur-
pass that of GPT-3.5, a discrepancy potentially at-
tributable to GPT-3.5 having encountered similar
training data during its development. Furthermore,
it is noteworthy that under a more generous budget
of 1M, Mistral exhibits commendable performance.

This phenomenon may be elucidated by the fact
that, as depicted in Figure 3, Mistral’s percentile
lines align more closely with the line of 1, indica-
tive of its valuation capability in this context.

4.5 Ablation Study

We investigate the effects of various modifications
and different base models on the performance of
our method. Initially, we augment the dataset with
a reasoning component and use guide signs to di-
rect LLMs in producing the specific information we
need. To assess the effectiveness of these two mod-
ifications, we create two distinct datasets: Dy, R,
which lacks the reasoning component, and Dy, G,
which does not utilize guide signs. Samples from
Dyor and Dy, g can be found in Appendix B.
Additionally, we adapt our model to a different
foundational architecture, LLaMA3-8B-Instruct, to
evaluate whether base model changes significantly
influence our approach’s performance. This in-
vestigation helps us understand how varying the
underlying model architecture can affect overall
performance metrics.

Based on the results presented in Table 4, we can
draw the following observations: 1) The LaMP-Val
(Mistral) model demonstrates superior performance
across most metrics, particularly in the weighted
F1 score (0.9084) and PU scores of 5870 and 5872
for PUggp and PUgqg, respectively. 2) Including
reasoning and guide signs in the LaMP-Val model
(using either the LLaMA or Mistral as the base
model) generally improves metrics. However, these
enhancements are not consistently observed across
all metrics. 3) The impact of different components
varies depending on the base model used; for the
LLaMA base model, adding these components sig-
nificantly reduces the MAE, while the impact is
less pronounced with the Mistral-based LaMP-Val
model.
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| Item | Value |Preference| Won | _Pay |

"I am interested

in bidding for iteri 1l [249000) IX 2321 “Utility=6.89
el ! ® item2  49.99 b 3999 | Value=578.99
but not item, item3  280.00 X 30000 | PU=0
item2, and WV itemd  164.95 X 0 PV=0
. item5  124.99 X 0
o [_em | Value | Preference | Won | Fay |
Budget = 600 iteml  249.00 X X 0 Utility=-0.06
item2 4999 x X 0 Value=569.94
item3  280.00 x 30000 | PU=19.94

item4  164.95 150.00
item5  124.99 120

PV=289.94

Figure 5: The discrepancy between a bidder’s prefer-
ences and the auction outcomes, with the budget con-
straints, utility, value, PU, and PV.

5 Case Study

To further validate the efficacy of our proposed
evaluation metrics, PU and PV, in comparison to
the conventional utility metric, we conducted a case
study using five randomly selected samples from
our experimental data, as illustrated in Figure 5.
This study examines a specific bidder’s preferences
for auction items under a fixed budget constraint of
$600, necessitating prioritization due to the infeasi-
bility of bidding on all items of interest.

In the first scenario, despite achieving higher
overall utility and value, the bidder fails to acquire
the desired items, resulting in zero PU and PV
scores. In contrast, the second scenario demon-
strates that even with lower utility and total value,
the bidder successfully secures items of interest,
leading to higher PU and PV scores. These results
suggest that in real-world auction settings, where
bidders prioritize obtaining specific items, PU and
PV metrics more accurately indicate success than
traditional measures of utility and value.

This case study highlights the relevance of PU
and PV as more effective metrics for evaluating
auction outcomes, particularly in scenarios where
bidders’ preferences and budget constraints criti-
cally shape their bidding strategies. By focusing on
the acquisition of desired items, these metrics align
more closely with bidder satisfaction, reflecting the
true nature of auction where personal preferences
significantly influence bidding decisions.

6 Related work

LLMs meet Auction. While recent works on
integrating LLMs with auction have flourished,
they mainly focus on general bidding strategies
rather than personalized valuation modeling for
individual participants. Chen and Yuan (2023)
model strategic interactions via LLMs in budget-
constrained bidding scenarios. Diitting and Mir-

rokni (2024) jointly generate text through word-
by-word bidding with multi-agent LLMs. Zhu and
Horton (2024) simulate auctions via LLM bidding
agents, revealing human-aligned behavioral pat-
terns. Dubey and Feng (2024) analyze ad integra-
tion in LLM summaries via layered auction-module
architecture. Hajiaghayi and Lahaie (2024a) em-
bed ads in LLLM outputs via retrieval-augmented
auctions for efficiency-fairness balance. Yin (2025)
study signaling effects on strategic behavior using
LLM-simulated disclosure in multi-agent auctions.
Shah et al. (2025) examines LLMs’ behavior in
simulated auctions, demonstrating their potential
as cost-effective proxies for human participants
in experimental economics research. Huang et al.
(2024) proposes a transformer-based method called
Auctionformer to efficiently solve the equilibrium
of various auction games in a unified framework.
Bidding Algorithm. Most auction re-
search (Schlosser and Boissier, 2018; Balseiro
and Deng, 2021; Bachrach and Talgam-Cohen,
2022; Golrezaei and Sahoo, 2024; Hajiaghayi
and Lahaie, 2024b) advance theoretical auction
mechanisms spanning dynamic pricing, reserve
price optimization, and worst-case robust designs,
yet omit personalized valuation considerations
in their strategic frameworks. Other existing
studies (Zhang and Niu, 2023; Leme and Pal, 2016;
Peri and Curry, 2021) leverage expert-designed
features (dynamic campaign profiles, reserve price
strategies, and human-guided allocation patterns)
to learn personalized valuations, enhancing
fairness, welfare, and performance in automated
bidding systems.

7 Conclusion

This study focuses on the valuation challenge con-
sidering user semantic preference, including accu-
rately capturing user preference and valuation, and
gaining more profit. We propose the LaMP-Val, a
learning-based framework containing three essen-
tial parts: data, learning, and evaluation. LaMP-Val
builds a valuation dataset for preference learning,
fine-tuning LL.Ms, and proposes personalized eval-
uation metrics. Through comprehensive evalua-
tions across diverse auction scenarios, our method-
ology has proven effective in delivering accurate
valuations and reflecting user preferences, achiev-
ing significant profit gains compared to baseline
models in real-world auctions.
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Limitations

A worthwhile direction for future work is to ex-
tend the LaMP-Val framework to integrate broader
open-sourced auction mechanisms and bidding
algorithms, alongside developing more qualified
semantic-rich datasets to evaluate personalized val-
uation methods. We envision that the LaMP-Val
framework signifies a pioneering step towards in-
tegrating semantic analysis into bid valuation pro-
cesses.
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A Theorem

In this part, we present a theorem asserting that
the long-run average utility in the absence of noise
strictly exceeds that in the presence of noise, fol-
lowed by its proof.

A.1 Valuation Error Theorem

Now we denote the following variables. In an auc-
tion involving M items, a bidder’s precise valuation
for the m-th item is denoted as v,,,, and their esti-
mated value is U, = vy, + €, Where € represents
an independent zero-mean random noise. Then the
algorithm integrated into the auction environment
computes the biddings b, and Bm based on the
valuations and remaining budget, with the latter
considering the noisy scenario. The auction envi-
ronment then determines if the bidder wins the m-th
item through the binary variable z;, (Z,,), based on
the bidder’s bid b,, (Bm) and the highest bid from
other bidders b2, with p,,, (p,,) being the price to
be paid. The utility obtained by the bidder is de-
noted by 4y, (u4,). The tilde denotes the scenario
with noise.

Mathematically, consider the auction of m items
as a measurable space €2, with v, &, b, z, u, p being
random variables defined on 2. The o—algebra
of noise o (¢) is independent of o' (v, b, z, u, p), and
Ele] = 0. Thus, v, Em, bm, 2m, Um, Pm are ob-
servations of v, £, b, z, u, p during the m-th random
trial. Each trial is independent and identically dis-
tributed (i.i.d.) by definition.

Before proving the main theorem, we will first
establish a lemma that provides a fundamental prop-
erty of the product of two sequences.

Lemma 1. For real

{O‘n}zozla {6n ;.Lo:l’

if BN 00 & S0 > 0
and limpy_ o % ZnN:1 Bn > 0,
BN 00 2 Son_ ) @ Bn > 0.

two sequences

Proof. We prove this lemma under more general
conditions that {a,}5° 1, {fn}o2, are two i.i.d
random sequences and are independent with each
other. Moreover, we assume E[a2] < oo, E[3?] <
oo. It’s obvious that real numbers satisfy these
assumptions.

Thus by Strong Law of Large Numbers (Wasser-
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man, 2004), almost surely we have

Eloy] = lim —Zan>o (8)

N—>oo

E[8] = lim —Zﬁn>0 ©)

N—oo N

According to assumptions above, {a;, (3,150
is a i.i.d. random sequence and E[|aqf]]

E[2]E[F7] < oc.

Thus by Strong Law of Large Numbers (Wasser-
man, 2004), almost surely we have

lim —Zanﬁn—E[alm Ela1]E[81] > 0

where the last equality holds because of indepen-
dence between o1 and f3;.

For the special case where {a, }22 1, {6n}02,
are two real sequences without randomness, the

proposition to be proved holds. O

We have now proved the lemma 1. This lemma
will be the key to proving the main theorem A.1,
because it provides a conclusion about the posi-
tivity of the average of the product of two series,
which will help us analyze the difference between
the long-term average utilities. The statement of
the main theorem is as follows.

Theorem A.l1. With notations above, denote

P = Plp<B<iE| ad B =
P[#5 < B < 1] Assume (P — P)E[B -

1+>\] > 0, then the long-run average utility with-
out noise is strictly better than that with noise, i.e.,

1 M
1 — m — Um .5.
Jim mz::l(u Um) >0 a.s
Proof.
=2m(Vm — Pm) — Zm(Um — Pm) (11)
:Um(zm - Zm) — ZmPm + ZmPm (12)
=Um(2m — Zm) — Zm(Zmbe,) + Zm (Zmby,)

(13)
=V (2m — Zm) — 2mbo, + Zmby, (14)
=(vm — b2) (Z2m — Zm) (15)
=(vm — b2) (2m — Zm) (16)
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Next, we will use the strong law of large numbers
to analyze the long-term behavior of the above
differences and combine it with the lemma 1 to
get the final result. By the Strong Law of Large
Numbers (Wasserman, 2004), almost surely,

JV}I_IPOO % mzz:l(zm — Zm) (17)
=E[lpsp0 — Lo po] (18)
=P[b > 1°] — P[b > V] (19)

(20)

b—b 21)

:min{fii,B}—min{li/\,B} (22)
0, if B < min{ %y, &5},
_JB- 1 i <B< i 23)

fx — B i EX <B<x
e ifB 2 max(py )

Fog the first case, b—b = 0. For the last case,
Eb—10b] = IE[IJ%\] = E[s]E[lJ%A] =0.
And we can derive that

E[b — 0] (24)
rin L rEE e
=(P1 — P2)E[B]+ (26)

(P — 132)1E1 5 T PE A] 27)
(P — B)E[B — - :i N (28)

By assumption, E[b — b] > 0,

we have P[b > b°] > P[b > b°].

Then P[b > b°] — P[b > b°] < 0,

indicating limp; o0 ﬁZ%zl(zm — Zm) <
0 a.s.

And by the Strong Law of Large Numbers
(Wasserman, 2004), almost surely,

lim — va_bo _ 'U maX(,Ucompetitor)]’

it is obvious that E[v] < E[max(vemPetitor)]] be-
cause the expected value of the maximum in a set
of identically distributed variables is greater than
the expected value of any individual variable from
the same distribution.

Followed by Lemma 1, let —a,, = v, —
b2 and — B, = 2, — Zp, then o, and 3, satisty



the assumptions of Lemma 1, so almost surely,

(29)

Thus,

Remark. The key assumption of the theorem A.1

(Pr — P2)E[B — 7] > 0is reasonable and mod-

erate because of the following insights:

v
E[B — 30
(B - 1] (30)
v v v+ €
_EB- -2 |B<min{—"_ YT°¢
B = oy [ B=min{i 3
(31)
+EB- | Y «B< YT 32
T2 T+ (DY
v v+¢€ v
E[B — B< 2
FEB - < BTl O
v v v +¢€
E[B— — |B> v vre
HEB = 7 [ B 2 max(y— 770l
(34)

Now the full parts of R.H.S. are negative, positive,
negative, and positive, respectively. If the P, > P,
then the scale of the second positive term is more
likely to be greater than that of the third negative
term. So R.H.S. is more likely to be positive. So
(Pr — P)E[B — 175] is more likely to be posi-
tive. The discussion is similar to the other situation.
Thus this assumption is reasonable and moderate.

B Ablation Study Detail

In this section, we present the two datasets Dy r
(Table 7, Task Instruction w/o R) and Dy, g (Table
7, Task Instruction w/o G)) that we used for the
ablation experiments.

C Valuation Datasets

This section demonstrates the composition of our
valuation dataset through an illustrative example
in Table 8. The presented instruction-tuning in-
stance showcases the input-output structure with

anonymized item descriptions, preference ratio-
nales generated by LLMs, and corresponding valu-
ation labels, reflecting our methodology for resolv-
ing the challenge as discussed in Section 3.1.

D Potential Risks

Recent studies have revealed vulnerabilities in
LLMs’ attention mechanisms under adversarial
prompting conditions. As demonstrated in Re-
search (Hung and Ko, 2025), targeted prompt in-
jection attacks can induce specific attention heads
to disproportionately prioritize malicious instruc-
tions over legitimate user queries—a phenomenon
termed attention hijacking. In auction contexts
where LaMP-Val operates, such attacks could sys-
tematically distort user preference extraction pro-
cesses, leading to non-trivial deviations in item
valuation (e.g., overestimating prices for items con-
taining injected keywords like “limited edition”).
This risk originates from the inherent architectural
limitations of transformer-based LLMs, particu-
larly their susceptibility to gradient-based manipu-
lation of attention distributions during inference.

To address this challenge, our future work will
implement three mitigation strategies: (1) integrat-
ing adversarial training with gradient masking tech-
niques to harden attention heads against manipula-
tion, (2) deploying real-time attention monitoring
modules to detect abnormal focus shifts exceed-
ing pre-defined thresholds (e.g., >85% attention
weight on non-instructional tokens), and (3) incor-
porating user preference verification loops through
contrastive prompting.

E Scientific Artifacts
E.1 Artifact Use Consistent with Intended Use

We made sure that our use of existing artifacts
aligned with their intended purpose as specified.
For the artifacts we created, we clearly defined
their intended use and ensured that they were com-
patible with the original access conditions. We
adhered to restrictions, such as limiting the cre-
ation of derivatives from research data to research
contexts only.

E.2 Documentation of Artifacts

Epinions.com is a comprehensive consumer review
platform that allows users to evaluate various prod-
ucts and services. The Epinions dataset encom-
passes multiple domains, including automobiles,
banking, movies, and travel destinations, reflecting
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LaMP-Val (Fine-tuning) | 93.14
LaMP-Val (Infference) \ 34.86

Table 5: Time consumption (in minutes) of LaMP-Val.

seed (2025) with 0.05 LoRA dropout.

Parameter Value
Seed 2025
LoRA rank (r) 16
LoRA alpha («) 8
LoRA dropout 0.05

LoRA target modules q_proj, v_proj, k_proj, o_pr
Batch size 64

Micro batch size 8
Number of epochs 2
Learning rate 1x107*
Cutoff length 730

oj

Table 6: Hyperparameter of LaMP-Val.

its extensive coverage of various offerings. The
reviews in the Epinions dataset are predominantly
in English. However, the existing public literature
lacks detailed information regarding the specific
demographics of users in the dataset, such as age,
gender, and geographic location.

F Computational Experiments

F.1 Model Size and Budget

The pre-trained models (LLaMA-3-8B-Instruct,
and Mistral-7B-Instruct) were trained on a sin-
gle A100 GPU (80GB). As the average time were
shown in Table 5, the training phase was completed
in 93 minutes averagely, while inference required
only 35 minutes averagely on the same hardware.
This performance represents a significant improve-
ment in efficiency compared to the baseline models,
which require approximately 8.6 hours for the same
tasks when using the GPT-4 API.

F.2 Hyperparameters

The fine-tuning process adopts a hybrid optimiza-
tion strategy combining Low-Rank Adaptation
(LoRA) with dynamic batching. As detailed
in Table 6, critical parameter selections follow
three design principles: (1) parameter efficiency
through LoRA’s low-rank decomposition (r = 16,
a = 8) targeting cross-attention projections in
{q,v,k,0}_proj layers, reducing trainable param-
eters by 98.7% compared to full fine-tuning; (2)
memory optimization via hierarchical batching
with macro/micro batch sizes of 64/8, enabling
gradient accumulation on NVIDIA A100 GPUs;
and (3) stability preservation using a fixed random
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Instruction Input

Task Instruc-
tion:

You will act as an assistant for bidding decisions and valuation in an auction scenario. Below is the item
information and the corresponding bidder’s review. You will make a bidding decision (whether to bid on
the item) for the bidder based on this information and suggest the possible valuation by the bidder with the
reasons. You must use ‘# and ‘$’ before your bidding decision and value, respectively. And make sure the
sentence is semantically complete and clear after removing ‘#’, and ‘$’. Example: The bidder (reason), value
it at $XXX, decides #YES or #NO to bid.

Task Instruc-
tion (w/o R):

You will act as an assistant for bidding decisions and valuation in an auction scenario. Below is the item
information and the corresponding bidder’s review. You will make a bidding decision (whether to bid on the
item) for the bidder based on this information and suggest the possible valuation by the bidder. You must use

“# and ‘$’ before your bidding decision and value, respectively. And make sure the sentence is semantically

complete and clear after removing ‘#’, and ‘$’. Example: The bidder value it at $XXX, decides #YES or
#NO to bid.

Task Instruc-
tion (w/o G):

You will act as an assistant for bidding decisions and valuation in an auction scenario. Below is the item
information and the corresponding bidder’s review. You will make a bidding decision (whether to bid on
the item) for the bidder based on this information and suggest the possible valuation by the bidder with the
reasons. Example: The bidder (reason), value it at $XXX, decides #YES or #NO to bid.

Task Input: The item is pr-Maytag_ FAVOS800AW_Washing_Machine. The Maytag FAVISO0AW is a top-of-the-line
washing machine designed for efficiency and convenience. It features a large capacity, perfect for handling
bulky items or large loads. With its advanced Neptune wash system, it ensures your clothes are thoroughly
cleaned while maintaining fabric care. The machine also boasts of a quiet operation and energy-saving
features, making it a smart choice for any household. And the corresponding bidder’s review is “We bought
our Neptune TL in 2004 because we were told it would do large loads our clothes were not coming out
clean so i stopped it in the wash cycle and unlocked the lid looked inside to find hardly any water when the
repairman came out he said that was normal also it keeps leaving soap stains on my white shirts because they
were not rinsing after three years we gave up and bought a front loader 1g I will not sell the old Neptune to
anyone else because I have standards and do not want to rip someone off as Maytag did to me it is going
to the landfill shame on you Maytag I will never buy one of your products again you should refund us our
money”’.

Instruction Output

LLaMA The bidder, dissatisfied with the performance and functionality of the Maytag FAVO800AW washing ma-

Output: chine, decides #NO to bid, valuing it at $800.

Mistral Out- Based on the item’s description and the bidder’s negative review, I would advise against bidding on the

put: Maytag FAV9800AW washing machine, as it has a history of inadequate water levels and soap residue issues.
#NO Bid $0.

GPT-3.5 The bidder, dissatisfied with the Maytag FAVO800AW Washing Machine’s performance and expressing a

Output: lack of trust in the brand, concludes #NO to bid, valuing it at $0.

GPT-4 Out- The bidder, frustrated by the machine’s performance and ethical standards, has resolved #NO to bid, valuing

put: the Maytag Neptune TL at $0 due to its unsatisfactory operation and decision to dispose of it rather than sell
it.

LaMP- The bidder value it at $1000, #NO to bid.

Val(w/o

R) Output:

LaMP- The bidder, dissatisfied with the washer’s performance and unmet expectations, decides NO to bid, valuing it

Val(w/o G) at 1000.

Output:

LaMP-Val The bidder, dissatisfied with the Maytag washing machine’s reliability and customer service, decides #NO to

Output: bid, valuing it at $1000.

Table 7: Test output example.
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Instruction Input

Task Instruc-
tion:

You will act as an assistant for bidding decisions and valuation in an auction scenario. Below is the item
information and the corresponding bidder’s review. You will make a bidding decision (whether to bid on
the item) for the bidder based on this information and suggest the possible valuation by the bidder. You
must use ‘#” and ‘$’ before your bidding decision and value, respectively. And make sure the sentence is
semantically complete and clear after removing ‘#’, and ‘$’.

Task Input:

The item is Nokia_7160_Cellular_Phone. The Nokia 7160 Cellular Phone is a dynamic communication
device, offering features such as SMS, call waiting, speed dialing, and conferencing. Esteemed for its
long battery life, this classic mobile phone also provides a high-quality voice call experience. Its easy-
to-navigate interface, clock functions, and reliable network coverage make the Nokia 7160 an excellent
choice for robust, straightforward mobile communication. And the corresponding bidder’s review is I
have been a long-time user of Southwestern Bell Wireless now cingular for the past 6 years I have been
on the analog service for a long time the whole 6 years and my bill was getting larger and larger”.

Instruction Output

Task Output:

The bidder, influenced by their long history with a costly analogous service, decides #YES to bid, valuing
the Nokia_7160_Cellular_Phone at $99.

Table 8: A tuning instance for LaMP-Val.
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