@inproceedings{aghazadeh-kovashka-2025-face,
title = "The Face of Persuasion: Analyzing Bias and Generating Culture-Aware Ads",
author = "Aghazadeh, Aysan and
Kovashka, Adriana",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.344/",
pages = "6472--6500",
ISBN = "979-8-89176-335-7",
abstract = "Text-to-image models are appealing for customizing visual advertisements and targeting specific populations. We investigate this potential by examining the demographic bias within ads for different ad topics, and the disparate level of persuasiveness (judged by models) of ads that are identical except for gender/race of the people portrayed. We also experiment with a technique to target ads for specific countries."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="aghazadeh-kovashka-2025-face">
<titleInfo>
<title>The Face of Persuasion: Analyzing Bias and Generating Culture-Aware Ads</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aysan</namePart>
<namePart type="family">Aghazadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adriana</namePart>
<namePart type="family">Kovashka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Text-to-image models are appealing for customizing visual advertisements and targeting specific populations. We investigate this potential by examining the demographic bias within ads for different ad topics, and the disparate level of persuasiveness (judged by models) of ads that are identical except for gender/race of the people portrayed. We also experiment with a technique to target ads for specific countries.</abstract>
<identifier type="citekey">aghazadeh-kovashka-2025-face</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.344/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>6472</start>
<end>6500</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Face of Persuasion: Analyzing Bias and Generating Culture-Aware Ads
%A Aghazadeh, Aysan
%A Kovashka, Adriana
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F aghazadeh-kovashka-2025-face
%X Text-to-image models are appealing for customizing visual advertisements and targeting specific populations. We investigate this potential by examining the demographic bias within ads for different ad topics, and the disparate level of persuasiveness (judged by models) of ads that are identical except for gender/race of the people portrayed. We also experiment with a technique to target ads for specific countries.
%U https://aclanthology.org/2025.findings-emnlp.344/
%P 6472-6500
Markdown (Informal)
[The Face of Persuasion: Analyzing Bias and Generating Culture-Aware Ads](https://aclanthology.org/2025.findings-emnlp.344/) (Aghazadeh & Kovashka, Findings 2025)
ACL