@inproceedings{weinzierl-harabagiu-2025-investigating,
title = "Investigating Controversy Framing across Topics on Social Media",
author = "Weinzierl, Maxwell and
Harabagiu, Sanda M.",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.359/",
pages = "6795--6814",
ISBN = "979-8-89176-335-7",
abstract = "Controversial discourse is abundant on social media. Understanding how controversial problems are framed in online discourse is crucial for gaining insights into public opinion formation and for addressing misinformation and polarization. This paper presents a novel method for discovering and articulating framing of controversial problems, enabling the investigation of how controversy is framed across several diverse topics. The promising results, made possible by recent advances in Large Language Models, indicate that discovering framings across topics is feasible. The discovered frames offer valuable insights into how and why controversial problems are discussed on social media."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="weinzierl-harabagiu-2025-investigating">
<titleInfo>
<title>Investigating Controversy Framing across Topics on Social Media</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maxwell</namePart>
<namePart type="family">Weinzierl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanda</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Harabagiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Controversial discourse is abundant on social media. Understanding how controversial problems are framed in online discourse is crucial for gaining insights into public opinion formation and for addressing misinformation and polarization. This paper presents a novel method for discovering and articulating framing of controversial problems, enabling the investigation of how controversy is framed across several diverse topics. The promising results, made possible by recent advances in Large Language Models, indicate that discovering framings across topics is feasible. The discovered frames offer valuable insights into how and why controversial problems are discussed on social media.</abstract>
<identifier type="citekey">weinzierl-harabagiu-2025-investigating</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.359/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>6795</start>
<end>6814</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating Controversy Framing across Topics on Social Media
%A Weinzierl, Maxwell
%A Harabagiu, Sanda M.
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F weinzierl-harabagiu-2025-investigating
%X Controversial discourse is abundant on social media. Understanding how controversial problems are framed in online discourse is crucial for gaining insights into public opinion formation and for addressing misinformation and polarization. This paper presents a novel method for discovering and articulating framing of controversial problems, enabling the investigation of how controversy is framed across several diverse topics. The promising results, made possible by recent advances in Large Language Models, indicate that discovering framings across topics is feasible. The discovered frames offer valuable insights into how and why controversial problems are discussed on social media.
%U https://aclanthology.org/2025.findings-emnlp.359/
%P 6795-6814
Markdown (Informal)
[Investigating Controversy Framing across Topics on Social Media](https://aclanthology.org/2025.findings-emnlp.359/) (Weinzierl & Harabagiu, Findings 2025)
ACL