@inproceedings{zhang-etal-2025-turning,
title = "Turning the Tide: Repository-based Code Reflection",
author = "Zhang, Wei and
Yang, Jian and
Yang, Jiaxi and
Wang, Ya and
Li, Zhoujun and
Cui, Zeyu and
Hui, Binyuan and
Lin, Junyang",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.377/",
pages = "7148--7164",
ISBN = "979-8-89176-335-7",
abstract = "Code large language models (LLMs) enhance programming by understanding and generating code across languages, offering intelligent feedback, bug detection, and code updates through reflection, improving development efficiency and accessibility. While benchmarks (e.g. HumanEval/LiveCodeBench) evaluate code generation and real-world relevance, previous works ignores the scenario of modifying code in repositories. Considering challenges remaining in improving reflection capabilities and avoiding data contamination in dynamic benchmarks, we introduce , a challenging benchmark for evaluating code understanding and generation in multi-file repository contexts, featuring 1,888 rigorously filtered test cases across 6 programming languages to ensure diversity, correctness, and high difficulty. Further, we create , a large-scale, quality-filtered instruction-tuning dataset derived from diverse sources, used to train through a two-turn dialogue process involving code generation and error-driven repair. The leaderboard evaluates over 40 LLMs to reflect the model performance of repository-based code reflection."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2025-turning">
<titleInfo>
<title>Turning the Tide: Repository-based Code Reflection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiaxi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ya</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhoujun</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeyu</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Binyuan</namePart>
<namePart type="family">Hui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyang</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Code large language models (LLMs) enhance programming by understanding and generating code across languages, offering intelligent feedback, bug detection, and code updates through reflection, improving development efficiency and accessibility. While benchmarks (e.g. HumanEval/LiveCodeBench) evaluate code generation and real-world relevance, previous works ignores the scenario of modifying code in repositories. Considering challenges remaining in improving reflection capabilities and avoiding data contamination in dynamic benchmarks, we introduce , a challenging benchmark for evaluating code understanding and generation in multi-file repository contexts, featuring 1,888 rigorously filtered test cases across 6 programming languages to ensure diversity, correctness, and high difficulty. Further, we create , a large-scale, quality-filtered instruction-tuning dataset derived from diverse sources, used to train through a two-turn dialogue process involving code generation and error-driven repair. The leaderboard evaluates over 40 LLMs to reflect the model performance of repository-based code reflection.</abstract>
<identifier type="citekey">zhang-etal-2025-turning</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.377/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>7148</start>
<end>7164</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Turning the Tide: Repository-based Code Reflection
%A Zhang, Wei
%A Yang, Jian
%A Yang, Jiaxi
%A Wang, Ya
%A Li, Zhoujun
%A Cui, Zeyu
%A Hui, Binyuan
%A Lin, Junyang
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F zhang-etal-2025-turning
%X Code large language models (LLMs) enhance programming by understanding and generating code across languages, offering intelligent feedback, bug detection, and code updates through reflection, improving development efficiency and accessibility. While benchmarks (e.g. HumanEval/LiveCodeBench) evaluate code generation and real-world relevance, previous works ignores the scenario of modifying code in repositories. Considering challenges remaining in improving reflection capabilities and avoiding data contamination in dynamic benchmarks, we introduce , a challenging benchmark for evaluating code understanding and generation in multi-file repository contexts, featuring 1,888 rigorously filtered test cases across 6 programming languages to ensure diversity, correctness, and high difficulty. Further, we create , a large-scale, quality-filtered instruction-tuning dataset derived from diverse sources, used to train through a two-turn dialogue process involving code generation and error-driven repair. The leaderboard evaluates over 40 LLMs to reflect the model performance of repository-based code reflection.
%U https://aclanthology.org/2025.findings-emnlp.377/
%P 7148-7164
Markdown (Informal)
[Turning the Tide: Repository-based Code Reflection](https://aclanthology.org/2025.findings-emnlp.377/) (Zhang et al., Findings 2025)
ACL
- Wei Zhang, Jian Yang, Jiaxi Yang, Ya Wang, Zhoujun Li, Zeyu Cui, Binyuan Hui, and Junyang Lin. 2025. Turning the Tide: Repository-based Code Reflection. In Findings of the Association for Computational Linguistics: EMNLP 2025, pages 7148–7164, Suzhou, China. Association for Computational Linguistics.