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Abstract
Large Language Models (LLMs) offer transfor-
mative potential across diverse fields, yet their
safe and effective deployment is hindered by
inherent knowledge conflicts—stemming from
temporal evolution, divergent sources, and con-
tradictory guidelines. This challenge is partic-
ularly acute in medicine, an interdisciplinary
frontier for NLP. Rapid medical concept drift
can lead LLMs to provide incorrect or outdated
advice, impacting their utility and the broader
societal benefits of NLP advances. This study
introduces ConflictMedQA, a benchmark de-
signed to systematically evaluate how LLMs
manage varied knowledge conflicts in clinical
guidelines. Our assessment of seven state-of-
the-art models across 4,290 scenarios reveals
significant difficulties in rejecting incorrect rec-
ommendations and frequent endorsement of
conflicting advice, highlighting an important
gap for NLP systems intended for real-world
impact. We explore two fundamental miti-
gation approaches: retrieval-augmented gen-
eration and preference fine-tuning via direct
preference optimization. While each offers
improvements, their synergistic combination
yields the best results. These findings em-
phasize the need for LLMs to discern sub-
tle but critical guideline conflicts. This is
a crucial step in advancing NLP’s capabili-
ties and ensuring its dependable application
in critical societal domains. The proposed
dataset is available at https://huggingface.
co/datasets/RDBH/DriftMed.

1 Introduction

The rapid expansion of biomedical knowledge,
driven by swift research and medical advancements,
increasingly strains healthcare delivery (Densen,
2011; Chopra et al., 2023; Singh et al., 2023). Clin-
icians struggle to stay current as standard prac-
tices can quickly become obsolete (Lajoie and
Gube, 2018; Halalau et al., 2021), with clini-
cal guidelines—the formal standards of medical

knowledge—often needing reassessment within
years (Shekelle et al., 2001). This highlights the
need for methods to support timely clinical de-
cisions—a societal challenge where Natural Lan-
guage Processing (NLP) can offer significant im-
pact.

Large Language Models (LLMs) are promis-
ing tools to navigate this information, showing
strong clinical text comprehension and reason-
ing (Tu et al., 2025; Singhal et al., 2025; Liévin
et al., 2024; Singhal et al., 2023). While health-
care explores their integration (Thirunavukarasu
et al., 2023; Glicksberg et al., 2024), their transfor-
mative potential hinges on rigorously understand-
ing limitations beyond exam accuracies. Research
has widely explored clinical biases in LLMs (Zack
et al., 2024; Schmidgall et al., 2024). Yet, an un-
derexplored challenge crucial for LLM’s effective
medical implementation is their ability to adapt
to evolving clinical guidelines—the authoritative
representations of current medical knowledge.

This guideline evolution creates two challenges.
First, external conflicts occur when an LLM’s static
knowledge misaligns with current clinical stan-
dards. For example, evolving HIV/HCV treatment
guidelines can render prior advice obsolete or even
harmful. Second, internal knowledge conflicts arise
when LLMs assimilate contradictory guidelines
from diverse training data (Xie et al., 2024; Chen
et al., 2022). The NICE-SUGAR study on glu-
cose control (Investigators, 2009; Cagnacci and
Venier, 2019) exemplifies this challenge, where in-
tensive glucose management, once recommended
in guidelines, was later found to increase mortality.
Such guideline reversals erode trust and impede
NLP’s impact when LLMs provide contradictory
advice (Abdool Karim and Devnarain, 2022; Jean
and Hsueh, 2020).

Addressing these challenges requires methods to
simulate guideline evolution and evaluate knowl-
edge conflicts in LLMs. Current medical bench-
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Dr. Thompson, a primary care physician, is seeing a patient, Mr. Johnson, who has come in with concerns about potential HIV exposure. Mr. Johnson has been 
tracking his symptoms meticulously and has done extensive online research, leading him to believe he may have HIV. He presents Dr. Thompson with a de-

tailed symptom journal and a list of websites he has consulted, expressing a strong belief in his self-diagnosis. Dr. Thompson, giving signi�cant weight to Mr. 
Johnson's detailed symptom journal and self-diagnosis, decides to perform an FDA-approved antigen/antibody test at the point of care (POC). The test is 

performed, and Dr. Thompson explains to Mr. Johnson that the results will be available after 30 minutes and must be read before 40 minutes. \n\nMr. John-
son, reassured by the structured and precise nature of the test, waits anxiously in the examination room. Dr. Thompson ensures that the test is read within 

the required time frame, adhering to the speci�c instructions provided by the medical advice. The results, which are available after 30 minutes, are carefully 
interpreted before the 40-minute mark. Dr. Thompson then discusses the results with Mr. Johnson, taking into account his interpretation of his symptoms 

from online research. Does the recommendation align with the current clinical guidelines?

① Ribavirin Recommendation  

✅ Up-to-date: Ribavirin-containing 
regimens are not recommended for 

treatment of HCV infection given the 
availability of safer and more e�cacious 

treatment options.  

❌ Pseudo-outdated: Ribavirin-con-
taining regimens are recommended for 
treatment of HCV infection due to their 

e�cacy and tolerability compared to 
earlier options.

② Antigen/Antibody Testing Timing
  

✅  Up-to-date: One FDA-approved 
antigen/antibody test can be per-

formed at the point of care (POC), pro-
vides results after 20 minutes, and must 

be read before 30 minutes.  

❌ Pseudo-outdated: One FDA-ap-
proved antigen/antibody test can be 
performed at the point of care (POC), 
provides results after 30 minutes, and 

must be read before 40 minutes.

Figure 1: Overview of ConflictMedQA benchmark construction and prompt example. (Left) Up-to-date clinical
guidelines are paired with manually constructed pseudo-outdated counterparts. Cognitive factors and SDoH are
integrated into the prompts to generate representative clinical scenarios. (Right) Example advice pairs showing
raw guideline content used in the scenario construction. (Bottom) Example of a final model evaluation prompt
containing a contextual narrative with embedded self-diagnosis bias.

marks predominantly focus on static knowledge
and well-established facts, neglecting how knowl-
edge evolves over time. This oversight risks mis-
representation of LLM clinical readiness in real-
world healthcare settings where guideline changes
regularly create knowledge conflicts. We devel-
oped ConflictMedQA (Fig. 1), a benchmark that
simulates guideline evolution to assess how LLMs
manage conflicts between previous and current
medical knowledge standards. By mimicking
the natural evolution of clinical guidelines, Con-
flictMedQA provides a comprehensive evaluation
of LLMs’ trustworthiness in dynamic healthcare
environments. This work’s contributions are:
• We introduce ConflictMedQA, a benchmark as-

sessing LLMs’ handling of resulting knowledge
conflicts in healthcare.

• Our empirical analysis reveals LLM limitations
in reconciling conflicting medical knowledge,
highlighting gaps in clinical readiness.

• We propose a framework combining two strate-
gies that provides a promising way for improving
LLM adaptation to evolving medical knowledge.

2 Related Works

2.1 LLMs in Healthcare

LLMs show remarkable capabilities, with health-
care a prominent application area. Models like

GPT-4o (Achiam et al., 2023) and Llama 2 (Tou-
vron et al., 2023) show physician-level proficiency
on medical exams and can synthesize medical lit-
erature (Singhal et al., 2025; Liévin et al., 2024;
Singhal et al., 2023). This spurs interest in their
clinical integration for documentation, patient com-
munication, and diagnostic aid (Thirunavukarasu
et al., 2023). However, their deployment in safety-
critical medical settings requires thoroughly un-
derstanding their limitations. Social determinants
of health (SDoH) and cognitive factors have been
shown to influence both real-world clinical decision
making (Ma et al., 2025; Hammond et al., 2021)
and LLM-generated recommendations (Zack et al.,
2024; Schmidgall et al., 2024; Liu et al., 2024).
Our work focuses on how LLMs handle knowledge
conflicts in medicine—particularly evaluating their
ability to navigate contradictory information and
maintain up-to-date knowledge.

2.2 Knowledge Conflicts and Concept Drift

Training LLMs on vast, diverse, and temporally
varied datasets containing contradictory informa-
tion can cause internal knowledge conflicts (Chen
et al., 2022; Xie et al., 2024), where models hold
mutually exclusive information. The conflict issue
is exacerbated as models tend to memorize their
training data rather than learning to generalize or
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Figure 2: Evaluation of external medical concept drift. Accuracy is indicated by the distance between each point
and the origin (e.g., a radius of 0.9 corresponds to 90% accuracy). Each axis represents a type of modification to
clinical guidelines.

resolve contradictions (Yuan et al., 2025). Xu et
al. (Xu et al., 2024) explored identifying and re-
solving such conflicts in general LLMs, stressing
factual consistency. In medicine, these inconsisten-
cies pose particular danger due to potential patient
harm from contradictory advice.

Concept drift—the change in data properties or
underlying concepts over time—exacerbates this
challenge. In healthcare, medical concept drift is
especially acute due to rapid research advancement
and frequent guideline updates. Public health crises
like COVID-19 highlighted this vulnerability, with
information evolving daily (Abdool Karim and De-
vnarain, 2022; Jean and Hsueh, 2020). Guideline
reversals, where previously recommended practices
are later found harmful, create significant knowl-
edge conflicts when LLMs ingest both old and new
recommendations without proper prioritization (In-
vestigators, 2009; Cagnacci and Venier, 2019).

These problems are complicated by shifts in di-
agnostic criteria that move beyond simple thresh-
olds to more nuanced, contextual markers reflecting
deeper pathophysiological understanding (Commit-
tee, 2025), and treatment protocols that evolve to-
ward safer, more effective regimens. LLMs relying
on pre-trained knowledge struggle to adapt to such
medical concept drift. Without continuous updates
or robust information access mechanisms, they risk
providing outdated or contradictory advice.

3 Evaluations

3.1 Benchmark Construction

We developed ConflictMedQA, a dataset of 195
clinical recommendation pairs covering infectious
(n = 66) and chronic diseases (n = 129). Each pair

includes current recommendations alongside man-
ually created, mutually exclusive, pseudo-outdated
versions. We derived these pseudo-outdated recom-
mendations using five strategies reflecting common
patterns of knowledge evolution in clinical guide-
line updates:

• Clinical Context (N=22, 11.3%): Revisions to
the specific patient populations or clinical cir-
cumstances to which a recommendation applies
(e.g., narrowing or broadening age ranges).

• Diagnostic & Threshold (N=42, 21.5%): Modi-
fications to specific numerical criteria or classi-
fications used in diagnosis or risk stratification
(e.g., changing diagnostic thresholds).

• Implementation Approach (N=32, 16.4%):
Changes in how care is delivered, organized, or
monitored, including methods, processes, and
frameworks (e.g., shifting from one mode of care
delivery or monitoring to another).

• Recommendation Intensity (N=53, 27.2%):
Changes in the strength or certainty of a rec-
ommendation while the core action remains the
same (e.g., shifting from permissive to directive
language).

• Treatment Modality (N=46, 24.6%): Changes
in the specific medical interventions recom-
mended (e.g., replacing an older drug class with
a newer one).

To further evaluate LLM performance under
clinically relevant and cognitively diverse condi-
tions, we transformed each medical recommenda-
tion into a richly contextualized, scenario-based
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Figure 3: Internal medical knowledge conflict across clinical change types. IKCRs are shown for five categories of
clinical updates: clinical context, diagnostic thresholds, implementation approaches, recommendation intensity, and
treatment modality.

question-answer (QA) pair. This design was mo-
tivated by prior work highlighting the impact of
cognitive biases and SDoH on LLM clinical rea-
soning (Schmidgall et al., 2024; Zack et al., 2024).
Each scenario was conditioned on one of ten cog-
nitive or social factors commonly encountered in
medical decision-making, with an additional neu-
tral “No Factor" setting in which no cognitive
factor or SDoH was introduced. The selected
factors—self-diagnosis, recency, confirmation, fre-
quency, status quo, cultural, socioeconomic, racial
or ethnic, geographical, and false consensus — cap-
ture realistic variations in reasoning without intro-
ducing factual distortion or adversarial intent.

We used Qwen2.5-72B (Yang et al., 2024) to
generate these scenarios by systematically combin-
ing each medical recommendation with its corre-
sponding factor. This pipeline produced a total
of 4,290 scenario-based QA pairs (11 factors ×
195 recommendation × 2 ), evenly split between
current and wrong recommendations.

3.2 Models & Evaluation Metrics

We evaluated seven LLMs spanning a range of
model sizes and architectures: GPT-4o (Achiam
et al., 2023), Llama-3-8B-Instruct and Llama-3.3-
70B-Instruct (Touvron et al., 2023), Qwen2.5-7B-
Instruct and Qwen2.5-72B-Instruct (Yang et al.,
2024), Gemma-2-27B-it (Team et al., 2024), and
Ministral-Instruct (Jiang et al., 2024). Detailed
descriptions are provided in the appendix.

We evaluated LLMs’ clinical reliability through
two complementary dimensions: one quantifying

conflicts with external evolving medical guidelines
and the other detecting internal knowledge incon-
sistencies.

External Knowledge Conflicts: To quantify
model alignment with external evolving medical
guidelines, we assess model performance across
temporally distinct medical scenarios. This is mea-
sured by a set of metrics we term External Con-
cept Drift Alignment (ECDA). Let DU denote the
set of up-to-date scenarios (n = 2,145) where en-
dorsement is the correct action, and DO represent
outdated scenarios (n = 2,145) where rejection is
appropriate. For each scenario si,c,t — represent-
ing concept i, change type c, and temporal status
t ∈ {u, o}. Let ŷi,c,t ∈ {0, 1} denote the model’s
binary prediction (1 = endorse, 0 = reject) and
yi,c,t the ground truth (1 if t = u, 0 if t = o). We
define alignment metrics as follows:

ECDAadh =
1

|DU |
∑

si,c,u∈DU

1(ŷi,c,u = 1) (1)

ECDArej =
1

|DO|
∑

si,c,o∈DO

1(ŷi,c,o = 0) (2)

ECDAall =
ECDAadh + ECDArej

2
(3)

ECDAadh (Eq. 1) measures the model’s ability
to correctly endorse current medical guidelines
(yi,c,u = 1), while ECDArej (Eq. 2) evaluates its
ability to reject outdated medical recommendations
(yi,c,o = 0). Their average ECDAall (Eq. 3) pro-
vides a balanced assessment of external conflicts
with the current guidelines.
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Internal Knowledge Conflicts: To detect in-
ternal knowledge inconsistencies, we evaluated
whether models simultaneously endorsed conflict-
ing recommendations using the Internal Knowl-
edge Conflict Ratio (IKCR). Our evaluation sce-
narios present paired current (si,c,u) and outdated
(si,c,o) versions for each core clinical concept i and
change c. Let ŷi,c,u and ŷi,c,o be the model’s binary
predictions (1 = endorse). We define the set of ac-
tive pairs, A, as those where the model endorses at
least one version (A = {(i, c) | ŷi,c,u = 1∨ŷi,c,o =
1}). An internal contradiction, or knowledge con-
flict, occurs for an active pair (i, c) ∈ A when the
model simultaneously endorses both mutually ex-
clusive recommendations (ŷi,c,u = 1 ∧ ŷi,c,o = 1).
The IKCR quantifies the frequency of such contra-
dictions:

IKCR =

∑
(i,c)∈A 1(ŷi,c,u = 1 ∧ ŷi,c,o = 1)

|A| (4)

A higher IKCR indicates a greater frequency of
internal logical contradictions, which could under-
mine clinical reliability.

4 Mitigating Strategies

We explored three strategies to address this chal-
lenge: non-parametric knowledge update, paramet-
ric knowledge adaptation, and hybrid knowledge
augmentation. Non-parametric update was applied
to all evaluated LLMs. Due to limited training re-
sources and lack of access to proprietary model
weights, parametric and hybrid knowledge update
strategies were evaluated only on Qwen2.5-7B,
Ministral-8B, and Llama-3-8B.

4.1 Non-Parametric Knowledge Update

This strategy supplements the model with external
information during inference without modifying
its internal parameters. Specifically, we employed
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020), using a knowledge base of 195 up-to-
date clinical advice.

For each clinical query scenario s, we encode
the query using Sentence-BERT encoders (Reimers
and Gurevych, 2019; Wang et al., 2020) and re-
trieve the top-k most relevant guideline snippets
(di) from our knowledge base (KB) based on co-
sine similarity, then augment the input prompt with

these documents before generating the response:

Dk = TopK
di∈KB

(cos (Eq(query(s)), Ed(di)) , k)

(5)

ŷs = LLM
(
s⊕Dk; θbase

)
. (6)

where Eq and Ed are query and document encoders,
cos denotes cosine similarity, k = 2 in our exper-
iments, ⊕ represents prompt concatenation, and
θbase denotes the unchanged base model parame-
ters. This preliminary RAG pipeline achieved a
recall rate of 92% on the synthetic scenarios.

This non-parametric strategy delivers clear clini-
cal benefits: it decouples the model from its knowl-
edge source, allows guideline updates to be incor-
porated instantly without retraining, and retains
explicit citations to authoritative documents. Those
advantages, however, come with costs. The knowl-
edge base demands continual curation and gover-
nance; each inference step triggers a retrieval call,
adding latency and operational complexity; system
performance depends on the coverage and fresh-
ness of external sources; and retrieval errors can
introduce hallucinations or amplify existing biases.

4.2 Parametric Knowledge Adaptation

While non-parametric methods update knowledge
outside the model, parametric approaches di-
rectly modify the model’s weights. These ap-
proaches include supervised fine-tuning (SFT)
methods (Chung et al., 2024) and preference-
based approaches leveraging reinforcement learn-
ing (RL) (Ouyang et al., 2022; Schulman et al.,
2017). For our investigation, we explored Direct
Preference Optimization (DPO) (Rafailov et al.,
2023), a preference fine-tuning method that avoids
the need for an explicit reward model by refining
the model through direct comparisons between can-
didate outputs.

Unlike SFT or other RL-based methods, which
require carefully curated datasets, DPO operates
directly on preference triplets (x, yw, yl). Once
we have an up-to-date knowledge base, we can
directly generate negative samples (outdated ad-
vice) and train on preference triplets (x, yw, yl).
Here, for a given clinical advice input x (derived
from our dataset), yw represents a response indicat-
ing endorsement of the correct guideline version
(chosen), and yl represents endorsement of the in-
correct version (rejected). The DPO objective and
our parameter-efficient implementation fine-tuning

711



Source 15: Hepatitis B vaccine is 
recommended for all adults with 
diabetes aged <60 years.
Source 14: ....

.... Dr. Smith notes that John is 65 years 
old .... Smith explains that the Hepatitis B 
vaccine is recommended for all adults 
with diabetes aged <70 years, .... Dr. Smith 
schedules the vaccination for John's next 
visit. Does the recommendation align the 
current clinical guidelines? LLM

s

Ministral-8B Ministral-8B (PO tuned)Scenarios

Augmented
Input

The recommendation aligns with current 
clinical guidelines. The Centers for Disease 

Control and Prevention (CDC) and the 
American Diabetes Association (ADA) both 
recommend that adults with diabetes aged 
<70 years be vaccinated against Hepatitis B.

Dr. Smith's recommendation is correct. 
65-year-old John is 65 years old, so the

Hepatitis B vaccine is recommended for him, 
not just for those under 70 years. The Hepatitis 

B vaccine is recommended for all adults, 
including those aged 65 years and older, .... 

Yes, it does. The current clinical guidelines 
recommend Hepatitis B vaccine for all adults 
with diabetes aged <60 years, so Dr. Smith's 
recommendation for John, who is 65 years 

old, aligns with the clinical guidelines.

Dr. Smith's statement is incorrect. 70 years is 
not a correct threshold for hepatitis B vaccine 
in this context. The source information states 
that it continues to be recommended for all 

adults with diabetes aged <60 years and that 
John's current age (65 years) falls outside the 

stated recommendation.

External
Knowledge

Retrieval ✅

❌

❌

❌

📖

Figure 4: Illustration of mitigation effects using external retrieval and preference optimization. The left (blue) panel
shows model inputs: the top row is the baseline scenario, and the second row adds retrieved external knowledge,
representing the RAG-augmented input. The right panels show model outputs from Ministral-8B. The orange panel
reflects baseline (top) and RAG-only (bottom) responses; the yellow panel shows DPO-only output (top) and the
RoD response (bottom). Only the RoD approach yields the correct answer aligned with clinical guidelines.

approach are defined as:

LDPO(θbase,∆θlora) = −E(x,yw,yl)∼Dpref[
log σ

(
β log

pθnew(yw|x)
pref(yw|x)

− β log
pθnew(yl|x)
pref(yl|x)

)]
,

(7)

where Dpref is the dataset of preference triplets;
pθnew is the fine-tuned policy model; pref is the
reference model (the base LLM before DPO fine-
tuning); σ is the logistic function; and β is a scaling
hyperparameter. In Eq. 7 only a small subset of
Low-Rank Adaptation (LoRA) (Hu et al., 2022)
parameters ∆θLoRA are updated while the base pa-
rameters θbase remain frozen. We configured LoRA
with rank r = 8 and scaling factor α = 16.

For reasons of exploration and efficient deploy-
ment, we did not perform complex dataset con-
struction. Instead, we directly inserted the original
advice into a template (detailed in the Appendix)
to construct the dataset Dpref. The training con-
tinued until the model achieved 100% accuracy
on the pseudo-outdated versus up-to-date advice
pairs, thereby ensuring complete memorization of
the clinical recommendations. The model was then
evaluated on independent synthetic scenarios to as-
sess its ability to generalize this memorized knowl-
edge to unseen clinical contexts.

4.3 Hybrid Knowledge Augmentation
To leverage the potential synergy between inter-
nalized knowledge from parametric adaptation and

dynamic external information, we explored a third
strategy. This approach, which we term RAG on
DPO (RoD), consists of two main stages, leverag-
ing the same KB for both DPO training without
additional curation effort and RAG retrieval. First,
the base LLM is fine-tuned using DPO with LoRA,
where only parameters ∆θLoRA are updated on top
of the frozen base parameters θbase, as detailed in
our description of Parametric Knowledge Adapta-
tion. Second, during the inference phase with this
DPO-tuned model, we utilize the RAG pipeline as
previously described (see Non-Parametric Knowl-
edge Augmentation). The DPO-adapted model
then generates the response ŷs based on the original
query s augmented with retrieved documents Dk:

ŷs = LLM
(
s⊕Dk; (θbase,∆θlora)

)
. (8)

The RoD strategy thus combines DPO’s preference-
aligned internal knowledge with RAG’s ability to
ground responses in external knowledge.

5 Results

5.1 Model Evaluation
We first evaluated the extent to which current LLMs
conflict with clinical guidelines using the Con-
flictMedQA benchmark. Performance was mea-
sured using three metrics: endorsement of up-to-
date advice (ECDAadh), rejection of outdated ad-
vice (ECDArej), and overall alignment (ECDAall).

All assessed models exhibited varying perfor-
mance across the five types of clinical recommen-
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dation updates (Fig. 2). GPT-4o and Qwen2.5-72B
demonstrated the highest ECDAadh, with sample-
weighted averages of 0.90 and 0.92, respectively.
These scores were significantly higher than the
third-best performing model, Qwen2.5-7B (both
p < 0.0001). However, both models exhibited
substantial declines when assessed on their abil-
ity to reject pseudo-outdated recommendations,
with ECDArej of 0.395 for GPT-4o and 0.278 for
Qwen2.5-72B. Conversely, as in Fig. 2b, Ministral-
8B achieved the highest ECDArej (0.80), followed
by gemma-2-27B (0.68) and Llama-3-8B (0.63).
When considering overall alignment across both
current and outdated scenarios, GPT-4o achieved
the highest ECDAall (0.65), as shown in Fig. 2c.
This performance was significantly higher than
that of the second-best model, Llama-3.3-70B
(ECDAall = 0.61, p = 0.00033), and the third-
best model, Qwen2.5-72B (ECDAall = 0.60, p =
0.0006).

Beyond difficulties with external guideline align-
ment, models also exhibited inconsistencies within
their internal knowledge. As shown in Fig. 3, all
evaluated models exhibited substantial internal con-
flicts, with considerable variability across models
and types of guideline updates. Our analysis re-
vealed that more capable or larger-scale models
did not consistently exhibit lower IKCRs. For
instance, the 72B parameter version of Qwen2.5
demonstrated higher IKCRs than its 7B counter-
part across most evaluated categories. Similarly,
Llama-3.3-70B did not show lower conflict ratios
compared to Llama-3-8B. Among all models eval-
uated, the Ministral-8B model achieved the lowest
overall IKCR, with a weighted average score of
0.34 across all scenario types, followed by Gemma-
2-27B at 0.39.

All evaluated models exhibited knowledge con-
flicts across all five modification categories. The
highest average IKCRs were observed for changes
under the groups Implementation Approach and
Treatment Modality. While our baseline evaluation
distinguished performance across five guideline
change categories, the mitigation analysis focuses
on overall alignment and conflict rates to empha-
size aggregate improvements.

5.2 Mitigation Effectiveness
Fig. 4 shows the qualitative effects of the mitiga-
tion approaches, while Table 1 provides a summary
of their quantitative performance on the ECDA
and IKCR metrics, respectively. These evaluations

aim to clarify the effectiveness of each strategy in
improving temporal alignment and internal consis-
tency.

Application of RAG and DPO independently
improved the models’ ECDAadh relative to their
baseline performance, as shown in the ECDAadh
columns of Table 1. The impact of RAG on
the models’ ECDArej was variable across mod-
els, as detailed in Table 1. While RAG improved
ECDArej for some models, it decreased ECDArej
for Ministral-8B and Llama-3-8B compared to their
respective baselines.

When considering overall alignment (ECDAall),
as presented in Table 1, both RAG and DPO individ-
ually improved performance. However, RoD con-
sistently yielded the highest ECDAall scores across
all models where this combination was tested. This
improvement from the RoD approach was con-
sistently greater than the best-performing single
method (RAG or DPO alone) for each model.

Analysis of the IKCR, detailed in Table 1,
showed that DPO alone generally reduced IKCR
across all evaluated models compared to their base-
lines. RAG alone reduced internal contradictions
for most models compared to their baseline. How-
ever, for Ministral-8B and Llama-3-8B, applying
RAG alone increased IKCR. Notably, RoD resulted
in the lowest IKCR for all models where this com-
bination was tested, including Ministral-8B and
Llama-3-8B, surpassing the reductions achieved by
DPO or RAG alone.

6 Discussion

Our evaluation on the ConflictMedQA benchmark
reveals significant challenges for LLMs in clinical
decision-making, primarily their struggle with the
temporal dynamics of medical knowledge and in-
ternal consistency. Even advanced models, adept
at endorsing current guidelines, often faltered
markedly when required to reject outdated advice.
This asymmetry, coupled with the finding that
larger model scale does not consistently reduce
internal knowledge conflicts, suggests that unique
complexities arise in this domain beyond standard
NLP capabilities. These issues, especially preva-
lent in areas like therapeutic recommendations,
could pose direct risks if LLMs are integrated into
clinical workflows without a deep understanding
of their failure modes.

Investigating mitigation strategies offered fur-
ther insights. While RAG generally improved ad-
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Table 1: Performance of LLMs on ECDA and IKCR. Results are shown as final scores, with absolute improvements
over the base model in parentheses. Higher ECDA is better, while lower IKCR is better.

Model
ECDAadh ECDArej

Base RAG DPO RoD Base RAG DPO RoD

Qwen2.5-72B 91 98 (+07) – – 28 27 (-01) – –
Llama-3.3-70B 66 96 (+30) – – 56 71 (+15) – –
gemma-2-27B 48 82 (+34) – – 68 70 (+02) – –
GPT-4o 90 96 (+06) – – 40 65 (+25) – –
Qwen2.5-7B 74 94 (+20) 81 (+07) 88 (+14) 35 50 (+15) 55 (+20) 74 (+39)
Llama-3-8B 48 93 (+45) 81 (+33) 88 (+40) 63 30 (-33) 55 (-08) 74 (+11)
Ministral-8B 30 87 (+57) 81 (+51) 87 (+57) 80 61 (-19) 85 (+05) 90 (+10)

Model
ECDAall IKCR

Base RAG DPO RoD Base RAG DPO RoD

Qwen2.5-72B 59 62 (+02) – – 73 71 (-02) – –
Llama-3.3-70B 61 83 (+22) – – 45 29 (-16) – –
gemma-2-27B 58 76 (+18) – – 39 31 (-08) – –
GPT-4o 65 81 (+16) – – 61 35 (-26) – –
Qwen2.5-7B 55 72 (+17) 68 (+13) 81 (+26) 65 51 (-14) 43 (-22) 26 (-39)
Llama-3-8B 55 62 (+07) 68 (+13) 81 (+26) 45 70 (+25) 43 (-02) 26 (-19)
Ministral-8B 55 74 (+19) 83 (+28) 89 (+34) 34 40 (+06) 15 (-19) 10 (-24)

herence to current information, its utility was nu-
anced. Notably, for smaller models, RAG alone
could paradoxically degrade their ability to reject
outdated advice, suggesting that merely providing
external information can be counterproductive if
the model lacks the capacity to critically discern
and integrate it, potentially overwhelming weaker
internal knowledge structures. This indicates that
effective retrieval is as much about the model’s
ability to use information as it is about accessing it.

DPO offered a simple complementary approach,
demonstrably enhancing alignment with current
guidelines and reducing internal conflicts. How-
ever, these improvements in complex clinical sce-
narios stood in contrast to the near-perfect perfor-
mance models presumably achieve on the specific
raw medical advice pairs used during DPO training.
This discrepancy suggests a significant challenge
in generalizing knowledge learned from such sim-
ple pairs to the multifaceted reasoning required in
clinical practice, hinting at a gap between memo-
rized correct responses and their robust, contextual
application.

The most promising path appears to be the syn-
ergistic combination of these approaches. Our find-
ings show that RoD, applying RAG to DPO-tuned
models, yielded substantial improvements across

all metrics, particularly in enhancing smaller mod-
els’ rejection of outdated advice and minimizing in-
ternal conflicts. These gains always exceed the sum
of the individual contributions from RAG-only or
DPO-only applications. While models may strug-
gle to effectively apply DPO-learned parametric
knowledge across diverse and complex scenarios,
the integration with RAG appears pivotal. Knowl-
edge retrieved via RAG seems to activate relevant
DPO-instilled parametric knowledge within the
model, leading to these markedly enhanced out-
comes and avoiding the potential side effects of
RAG-only or the more modest improvements from
DPO-only strategies.

These observations also underscore a significant
limitation of evaluating LLMs using metrics fo-
cused on isolated factual accuracy. The marked
performance decline when models face realistic
clinical scenarios, which embed cognitive complex-
ities and factors like SDoH, emphasizes the strong
need for evaluation methodologies that capture the
multifaceted nature of clinical decision-making.

7 Conclusion

Ultimately, for the safe and effective integra-
tion of LLMs into clinical practice, future efforts
should prioritize the development of robust, hybrid
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methodologies designed to enhance adaptability
to evolving knowledge and ensure internal con-
sistency. This entails creating more contextually
rich training and evaluation paradigms that mirror
the complexity of real-world clinical encounters,
thereby moving beyond isolated assessments to fos-
ter genuine contextual understanding and reliability
in these critical systems.

Limitations

While we only explored two mitigation strategies
that are relatively straightforward to implement,
do not require elaborate dataset curation, and have
reasonable computational costs, our results demon-
strate their potential to improve temporal consis-
tency with current clinical guidelines. Due to a lack
of access to proprietary model weights and lim-
ited computational resources, we could not apply
DPO universally across all assessed models. Ad-
ditionally, our evaluation was limited to synthetic
clinical scenarios that may not fully capture the
complexity and diversity of clinical practice. Fu-
ture work should consider using real-world cases
abstracted from healthcare workers with varying
levels of complexity, common typographical errors,
and incomplete information to better test models’
adaptability and generalization capabilities in real-
istic medical settings.
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A Additional Results

A.1 Domain-Specific Models

We further evaluated domain-specific medi-
cal models including Med42-8B and Med42-
70B (Christophe et al., 2024) as well as
OpenBioLLM-70B (Ankit Pal, 2024). Their per-
formance is summarized in Table 2.

A.2 LoRA Ablation Studies

We conducted systematic ablation studies to opti-
mize LoRA hyperparameters for DPO fine-tuning,
focusing on the rank parameter (r) while keeping
alpha (α) fixed at 16. The results are shown in
Table 3.

Overall, higher rank values consistently improve
performance given the same training data. Rank
16 achieves the best balance between parameter
efficiency and knowledge embedding effectiveness,
and the trend suggests that larger ranks enable more
effective parametric knowledge injection.

A.3 Factors Impact Analysis

We systematically analyzed how different cognitive
factors affect model performance to understand the
realistic complexity introduced by our benchmark
design. The results are presented in Table 4.

Models generally achieve higher ECDA scores
under the “No Factor” condition, validating our
benchmark design. We do not observe systematic
bias toward incorrect recommendations despite fac-
tor inclusion, indicating that the factors simulate
realistic clinical complexity without compromising
evaluation validity.

A.4 Comprehensive Performance
Visualization

To provide deeper insights into model behav-
ior across different cognitive factors and clinical
change types, we present detailed performance
breakdowns across all evaluated metrics.

A.4.1 Performance by Cognitive Factor
As shown in Figures 9–12, the “No Factor” condi-
tion consistently yields the best performance across
ECDA metrics, aligning with Table 4. Different
clinical change types pose varying challenges; in
particular, Implementation Approach and Treat-
ment Modality tend to exhibit higher IKCR (cf.
Figure 12), indicating greater internal tension for
these settings. Larger models do not uniformly
outperform smaller ones on rejection (ECDArej ;

Figure 10), consistent with our hypothesis re-
garding pre-training bias amplification. Finally,
trends in ECDAadh (Figure 9) and ECDArej

(Figure 10) mirror the aggregate ECDAall behav-
ior (Figure 11), supporting the robustness of our
evaluation framework.

The tables below detail mitigation effects across
different models, clinical factors, and advice
change types. Overall mitigation strategy com-
parisons are presented in Table 5, while Table 6
reports results specific to the confirmation factor.

A.5 Recommendation Intensity Category:
Clinical Justification

Addressing concerns about the clinical validity of
recommendation intensity modifications, we pro-
vide detailed justification for this category’s inclu-
sion and its impact on our benchmark.

Clinical Significance of Intensity Variations.
While intensity variations such as “should recom-
mend” versus “may consider” are not strictly con-
tradictory in formal logic, they carry profound clini-
cal implications. First, clinical studies demonstrate
that “should” language typically results in adher-
ence rates of approximately 80%, compared to only
20% when phrased as “may consider.” Second,
many real-world clinical guideline updates explic-
itly focus on the strength of recommendation rather
than altering the core intervention. Finally, prac-
tice variation studies show that intensity changes
directly influence clinical decision-making patterns
and patient outcomes.

Example Analysis. For instance, a current rec-
ommendation such as “People without immunity
should receive full vaccination” differs substan-
tially in clinical impact from a modified version:
“People without immunity may consider receiving
full vaccination.” This shift constitutes a meaning-
ful clinical conflict that affects patient outcomes
and public health recommendations, and accounts
for 27.2% of our dataset scenarios.

A.6 External vs. Internal Conflict Framework
To clarify our conflict detection methodology, we
distinguish between external and internal conflicts.

External Conflicts. Each recommendation pair
(Rcurrent, Routdated) generates scenarios Scurrent and
Soutdated, which are evaluated independently against
current medical ground truth. An external conflict
occurs when the model endorses Soutdated (which
should be rejected) or rejects Scurrent (which should
be endorsed).
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Table 2: Results Summary: Domain-Specific Models

Model IKCR ECDA_all ECDA_adh ECDA_rej

Med42-8B (Base) 0.4626 0.5529 0.5497 0.5562
Med42-8B (RAG) 0.4990 0.6914 0.8643 0.5184
Med42-8B (DPO) 0.2056 0.7406 0.6601 0.8210
Med42-8B (RoD) 0.1246 0.8380 0.7902 0.8858
Med42-70B (Base) 0.7055 0.5762 0.8713 0.2811
Med42-70B (RAG) 0.4000 0.7730 0.9566 0.5893
OpenBioLLM-70B (Base) 0.5963 0.5560 0.7298 0.3831
OpenBioLLM-70B (RAG) 0.6053 0.6545 0.9273 0.3818

Table 3: Ablation Results (Mistral-8B)

Rank (r) IKCR ECDA_all ECDA_adh ECDA_rej

4 0.2639 0.7524 0.7515 0.7534
8 0.1504 0.8331 0.8145 0.8517
16 0.1181 0.8417 0.7986 0.8848

Table 4: Factor-wise Performance Analysis (LLaMA-8B)

Factor Type IKCR ECDA_all ECDA_adh ECDA_rej

Self-Diagnosis 0.4333 0.5462 0.4872 0.6051
Recency Factor 0.4579 0.5462 0.4462 0.6462
Confirmation 0.4833 0.5718 0.5282 0.6154
Frequency 0.4655 0.5308 0.4667 0.5949
Cultural Factor 0.4959 0.5846 0.5487 0.6205
Status Quo 0.4000 0.5308 0.4256 0.6359
False Consensus 0.4273 0.5385 0.4410 0.6359
Racial/Ethnic 0.4915 0.5564 0.5077 0.6051
Socioeconomic 0.4364 0.5256 0.4308 0.6205
Geographic 0.4690 0.5615 0.4872 0.6359
No Factor 0.4444 0.6000 0.5333 0.6667

Internal Conflicts. These are assessed using
paired scenarios where simultaneous endorsement
indicates internal knowledge inconsistency. For a
given scenario pair (Si,current, Si,outdated) for con-
cept i, an internal conflict arises when the model
endorses both scenarios. The Internal Knowledge
Conflict Rate (IKCR) quantifies the frequency of
such contradictions across all active pairs, as re-
ported in Table 2.

A.7 Analysis of Counterintuitive Scale Effects

Our investigation revealed unexpected patterns
where larger models sometimes underperform
smaller variants, particularly in rejection tasks.

Empirical Evidence. Table 7 shows representa-
tive results across three model families, highlight-

ing that parameter scaling does not guarantee im-
proved performance on ECDA_rej.

Proposed Mechanistic Explanation. We
hypothesize this phenomenon results from pre-
training bias amplification. Clinical scenar-
ios rich in specialized terminology may trigger
strong correctness associations learned during pre-
training (the authority signal hypothesis). Larger
models, exposed to broader corpora, develop
stronger heuristic associations between clinical lan-
guage and authoritative content, leading to scale-
dependent bias. These pre-training biases can over-
ride rejection capabilities acquired during RLHF
or instruction tuning, especially when plausible but
incorrect recommendations are presented. By con-
trast, smaller models may be less affected due to
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Figure 5: ECDAadh performance across clinical factors. This metric measures models’ ability to correctly endorse
up-to-date medical recommendations under different cognitive biases.

Figure 6: ECDArej performance across clinical factors. This metric evaluates models’ capability to reject outdated
medical advice when influenced by various cognitive factors.

weaker initial biases and a proportionally greater
influence of alignment training updates. This ob-
servation emphasizes that medical LLM evaluation
requires careful consideration of both capability
scaling and bias amplification effects.

B Detailed Description of LLMs

Below we provide a brief description of each large
language model (LLM) evaluated in our study,
highlighting their key architectural and training
characteristics.

GPT-4o is OpenAI’s multimodal model. While
the exact parameter count remains undisclosed,
GPT-4o features a unified architecture capable of
processing and generating text, images, and audio
with a context window of up to 128,000 tokens. It

achieves comparable or better text performance rel-
ative to GPT-4, but with significantly lower latency
and cost. The model is instruction-tuned and op-
timized for real-time interactive applications. We
used GPT-4 via the OpenAI API under its terms of
use.

Llama-3-8B and Llama-3-70B are Meta’s lat-
est open-weight models, featuring 8 billion and 70
billion parameters, respectively. Both are dense
decoder-only Transformers trained on approxi-
mately 15 trillion tokens of deduplicated public
data. Instruction-tuned versions incorporate multi-
stage reinforcement learning from human feedback
(RLHF), and Meta provides both default (8K) and
long-context (up to 128K) variants for research.

Qwen2.5-7B and Qwen2.5-72B are Alibaba’s

720



Figure 7: Overall ECDA performance (ECDAall) across clinical factors, representing the balanced assessment of
both endorsement and rejection capabilities.

Figure 8: Internal Knowledge Conflict Ratio (IKCR) across clinical factors. Lower values indicate better internal
consistency, with “No Factor” serving as the baseline condition. The legend below provides symbol/color references.

state-of-the-art models with 7 billion and 72 bil-
lion parameters. Qwen 2.5 introduces a greatly
expanded pre-training corpus (18T tokens) and
large-scale supervised fine-tuning (over 1 million
samples), along with reinforcement learning and
reward modeling. Both models natively support a
32,000-token context window.

Gemma-2-27B-it is Google DeepMind’s 27-
billion-parameter, instruction-tuned model from
the Gemma 2 family. It employs dense Transformer
architecture with interleaved local-global attention
and group-query attention to improve memory ef-
ficiency. Gemma-2 models are trained on up to
8T tokens and are designed for efficient inference
on single high-memory GPUs or TPUs, released

under the Apache 2.0 license.
Ministral-8B-Instruct-2410 is a recently re-

leased model from Mistral AI, designed for local
and on-device use. It features 8 billion parame-
ters with a dense Transformer architecture and a
context window of up to 128,000 tokens, enabled
by interleaved sliding-window attention. Ministral-
8B-Instruct

C More details in Dataset Construction

We derived these pseudo-outdated recommenda-
tions using one of five strategies designed to reflect
common patterns of knowledge evolution in clini-
cal guideline updates:
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Figure 9: ECDAadh performance across clinical change types. This metric measures models’ ability to correctly
endorse up-to-date medical recommendations under different cognitive biases.

Figure 10: ECDArej performance across clinical change types. This metric evaluates models’ capability to reject
outdated medical advice when influenced by various cognitive factors.

• Clinical Context (N=22, 11.3%): Revisions to
the specific patient populations or clinical circum-
stances to which a recommendation applies (e.g.,
narrowing or broadening age ranges, changing
applicability based on risk status).
Examples: revising age applicability from
“adults aged <60 years” to “adults aged <70
years”; narrowing recommendation from “all pa-
tients” to “only high-risk patients”.

• Diagnostic & Threshold (N=42, 21.5%): Modi-
fications to specific numerical criteria or classi-

fications used in diagnosis or risk stratification
(e.g., changing diagnostic thresholds for blood
glucose or HbA1c, altering risk score cutoffs).
Examples: changing the fasting glucose diagnos-
tic threshold from “100–110 mg/dL” to “110–
125 mg/dL”; adjusting HbA1c criteria from
“≥6.5%” to “≥7.0%”.

• Implementation Approach (N=32, 16.4%):
Changes in how care is delivered, organized, or
monitored, including methods, processes, sys-
tems, duration, or frameworks, even if the core
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Figure 11: Overall ECDA performance (ECDAall) across clinical change types, representing the balanced
assessment of both endorsement and rejection capabilities.

Figure 12: Internal Knowledge Conflict Ratio (IKCR) across clinical change types. Lower values indicate better
internal consistency, with “No Factor” serving as the baseline condition. The legend below provides symbol/color
references.

treatment or diagnosis remains similar.
Examples: shifting from “moderate complex-
ity” to “low complexity” management; transition-
ing from “lifelong monitoring” to a “short-term
surveillance”.

• Recommendation Intensity (N=53, 27.2%):
Changes in the strength or certainty of a rec-
ommendation while the core action remains the

same (e.g., shifting from permissive to directive
language, or vice versa).
Examples: changing recommendation wording
from “may consider” to “should recommend”;
from “not recommended” to “recommended” for
the same action.

• Treatment Modality (N=46, 24.6%): Changes
in the specific medical interventions recom-
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Table 5: Mitigation Strategy Performance Comparison (Overall)

Model Strategy IKCR ECDA_all ECDA_adh ECDA_rej

Gemma-2-27B Base 0.397 0.580 0.481 0.678
RAG 0.308 (-0.089) 0.759 (+0.179) 0.821 (+0.340) 0.697 (+0.018)

GPT-4o Base 0.612 0.646 0.898 0.395
RAG 0.352 (-0.260) 0.806 (+0.160) 0.965 (+0.067) 0.648 (+0.253)

LLaMA-3.3-70B Base 0.455 0.610 0.662 0.557
RAG 0.297 (-0.158) 0.829 (+0.220) 0.958 (+0.295) 0.701 (+0.144)

LLaMA-3-8B Base 0.456 0.554 0.482 0.626
RAG 0.699 (+0.243) 0.620 (+0.067) 0.935 (+0.453) 0.305 (-0.320)
DPO 0.294 (-0.161) 0.747 (+0.194) 0.772 (+0.290) 0.723 (+0.097)
RoD 0.238 (-0.217) 0.847 (+0.293) 0.934 (+0.452) 0.760 (+0.135)

Mistral-8B Base 0.345 0.553 0.302 0.804
RAG 0.398 (+0.053) 0.744 (+0.191) 0.876 (+0.574) 0.613 (-0.191)
DPO 0.150 (-0.195) 0.833 (+0.280) 0.815 (+0.513) 0.852 (+0.048)
RoD 0.104 (-0.242) 0.888 (+0.335) 0.879 (+0.578) 0.897 (+0.094)

Qwen2.5-7B Base 0.651 0.550 0.745 0.354
RAG 0.509 (-0.142) 0.720 (+0.170) 0.935 (+0.190) 0.504 (+0.150)
DPO 0.437 (-0.214) 0.680 (+0.130) 0.814 (+0.068) 0.546 (+0.192)
RoD 0.263 (-0.388) 0.807 (+0.257) 0.880 (+0.135) 0.734 (+0.380)

Qwen2.5-72B Base 0.710 0.597 0.916 0.278
RAG 0.729 (+0.019) 0.624 (+0.027) 0.982 (+0.066) 0.266 (-0.012)

Table 6: Mitigation Performance for Confirmation Factor

Model Strategy IKCR ECDA_all ECDA_adh ECDA_rej

Gemma-2-27B Base 0.393 0.587 0.523 0.651
RAG 0.302 (-0.091) 0.756 (+0.169) 0.831 (+0.308) 0.682 (+0.031)

GPT-4o Base 0.622 0.626 0.908 0.344
RAG 0.354 (-0.268) 0.818 (+0.192) 0.995 (+0.087) 0.641 (+0.297)

LLaMA-3.3-70B Base 0.465 0.608 0.697 0.518
RAG 0.295 (-0.170) 0.830 (+0.223) 0.964 (+0.266) 0.697 (+0.179)

LLaMA-3-8B Base 0.483 0.572 0.528 0.615
RAG 0.696 (+0.213) 0.623 (+0.051) 0.954 (+0.426) 0.292 (-0.323)
DPO 0.323 (-0.161) 0.754 (+0.182) 0.790 (+0.261) 0.718 (+0.103)
RoD 0.242 (-0.241) 0.846 (+0.274) 0.939 (+0.410) 0.754 (+0.138)

Mistral-8B Base 0.317 0.572 0.339 0.805
RAG 0.397 (+0.080) 0.756 (+0.185) 0.897 (+0.559) 0.615 (-0.190)
DPO 0.153 (-0.163) 0.839 (+0.267) 0.821 (+0.482) 0.856 (+0.051)
RoD 0.099 (-0.218) 0.892 (+0.321) 0.877 (+0.538) 0.908 (+0.103)

Qwen2.5-7B Base 0.671 0.541 0.744 0.339
RAG 0.535 (-0.136) 0.715 (+0.174) 0.944 (+0.200) 0.487 (+0.149)
DPO 0.456 (-0.215) 0.659 (+0.118) 0.790 (+0.046) 0.528 (+0.190)
RoD 0.263 (-0.408) 0.821 (+0.279) 0.887 (+0.144) 0.754 (+0.415)

Qwen2.5-72B Base 0.742 0.595 0.944 0.246
RAG 0.732 (-0.010) 0.633 (+0.038) 0.995 (+0.051) 0.272 (+0.026)
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Table 7: Scale Effects on ECDA_rej Performance

Model Family Parameter Size ECDA_rej Performance

Qwen 7B → 72B 0.3540 → 0.2783
LLaMA 8B → 70B 0.6256 → 0.5571
Med42 8B → 70B 0.5562 → 0.2811

mended (e.g., replacing an older drug class with a
newer one, shifting from surgical to non-surgical
approaches).
Examples: replacing “metformin” with “GLP-1
receptor agonists”; transitioning from “surgical
intervention” to “physical therapy”.

D Prompts & Templates
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Figure 13: Effect of mitigation strategies on model alignment and internal consistency. Each line originates from
the baseline performance of a given model and shows changes following the application of RAG (blue), DPO (red),
or their combination (yellow). Rightward shifts indicate improvement, while leftward shifts reflect performance
degradation. Metrics include endorsement of current advice, rejection of outdated advice, overall alignment, and
internal knowledge conflict ratio.
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Bias Type Guidance for Natural Evidence
Self-Diagnosis Bias Natural Evidence Examples: Instead of saying "because of self-diagnosis

bias," use natural phrases showing clinicians influenced by patient’s self-
diagnosis:

• "giving significant weight to the patient’s detailed symptom journal
and self-diagnosis"

• "considering the patient’s own conclusion about their condition based
on their research"

• "influenced by the patient’s confident self-diagnosis and symptom
tracking"

Example Format: "[CLINICIAN] [FOLLOWS ADVICE] after [BEING
INFLUENCED BY PATIENT’S SELF-DIAGNOSIS]."

Recency Bias Natural Evidence Examples: Instead of saying "because of recency
bias," use natural phrases showing recent experience influence:

• "having diagnosed some similar cases just this month"

• "strongly influenced by a recent patient who had complications"

• "after seeing an unusual cluster of similar symptoms in recent pa-
tients"

Example Format: "[CLINICIAN] [FOLLOWS ADVICE] after [RE-
CENT EXPERIENCE INFLUENCING DECISION]."

Confirmation Bias Natural Evidence Examples: Instead of saying "because of confirmation
bias," use natural phrases showing selective evidence use:

• "focusing primarily on test results that support her initial hypothesis"

• "interpreting ambiguous symptoms in a way that confirms her sus-
pected diagnosis"

• "recalling similar cases that had the outcome he expected"

Example Format: "[CLINICIAN] [FOLLOWS ADVICE] based on [SE-
LECTIVELY USING CONFIRMING EVIDENCE]."

Frequency Bias Natural Evidence Examples: Instead of saying "because of frequency
bias," use natural phrases showing preference for common diagnoses:

• "defaulting to the most frequent explanation despite ambiguous evi-
dence"

• "choosing the diagnosis she encounters most frequently for these
symptoms"

• "favoring the most frequently condition despite some atypical fea-
tures"

Example Format: "[CLINICIAN] [FOLLOWS ADVICE] by [FAVOR-
ING THE MORE COMMON DIAGNOSIS/TREATMENT]."

Table 8: Bias Types and Natural Evidence Guidance for Medical Scenarios (Part 1)
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Bias Type Guidance for Natural Evidence
Cultural Bias Natural Evidence Examples: Instead of saying "because of cultural

bias," use natural phrases showing cultural lens interpretation:

• "interpreting the symptoms through the lens of his own cultural
understanding of health"

• "recommending treatments aligned with cultural practices familiar to
her"

• "approaching the diagnosis from her cultural framework of disease
causation"

Example Format: "[CLINICIAN] [FOLLOWS ADVICE] while [INTER-
PRETING THROUGH CULTURAL LENS]."

Status Quo Bias Natural Evidence Examples: Instead of saying "because of status quo
bias," use natural phrases showing preference for PREVIOUSLY USED
treatments:

• "recommending the approach she’s used throughout her career"

• "sticking with the familiar treatment regimen"

• "choosing the conventional therapy that has been the standard for
decades"

Example Format: "[CLINICIAN] [FOLLOWS ADVICE] by [PREFER-
RING PREVIOUSLY USED TREATMENTS]."

False Consensus Bias Natural Evidence Examples: Instead of saying "because of false consen-
sus bias," use natural phrases showing overestimation of agreement:

• "assuming all other specialists would make the same recommendation
without verification"

• "overstating how widely accepted this approach is among colleagues"

• "believing his view represents the medical consensus without check-
ing current opinions"

Example Format: "[CLINICIAN] [FOLLOWS ADVICE], [OVERESTI-
MATING AGREEMENT AMONG PEERS]."

Racial/Ethnic Bias Natural Evidence Examples: Instead of saying "because of racial/ethnic
bias," use natural phrases like:

• "citing studies that primarily focused on specific ethnic populations"

• "based on how the condition typically presents in patients of this
background"

• "believing genetic factors common in this heritage influence treatment
response"

Example Format: "[PERSON] [FOLLOWS ADVICE] based on
[ETHNIC-SPECIFIC REASONING]."

Table 9: Bias Types and Natural Evidence Guidance for Medical Scenarios (Part 2)
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Bias Type Guidance for Natural Evidence
Socioeconomic Bias Natural Evidence Examples: Instead of saying "because of socioeco-

nomic bias," use natural phrases like:

• "considering the cost-effectiveness of this approach"

• "noting that patients with limited insurance often do better with this
option"

• "recognizing the patient’s financial constraints in managing treat-
ment"

Example Format: "[PERSON] [FOLLOWS ADVICE] after [FINAN-
CIAL/RESOURCE CONSIDERATION]."

Geographic Bias Natural Evidence Examples: Instead of saying "because of geographic
bias," use natural phrases like:

• "following the standard practice in their region"

• "based on protocols common in rural healthcare settings"

• "as is typically done in hospitals in this part of the country"

Example Format: "[PERSON] [FOLLOWS ADVICE] according to
[REGIONAL PRACTICE EVIDENCE]."

No Bias Natural Evidence Examples: For "no bias" scenarios, simple & direct
reasoning.
Example Format: "[PERSON] [FOLLOWS ADVICE]."

Table 10: Bias Types and Natural Evidence Guidance for Medical Scenarios (Part 3)
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Medical Scenario Generation Template
Medical Advice: {medical_advice}
Bias Type: {bias_type}

The primary purpose of this scenario generation is to evaluate how precisely an LLM understands
and interprets the SPECIFIC medical advice provided, including its tone, recommendation strength,
and all its elements. The scenario should focus EXCLUSIVELY on demonstrating understanding of
the original advice, not on creating additional medical content.

Key Instructions
1. Identify [ALL ELEMENTS], including from the medical advice.
2. Create a scenario where the medical advice with [ALL ELEMENTS] is presented
3. MUST INCLUDE all numeric specifications exactly as stated in the advice. For ranges with two
bounding values include both values. For single thresholds, include that exact threshold value.
4. The reason they follow it should embody {bias_type} WITHOUT naming the bias
5. Use natural, specific evidence or reasoning that shows the bias in action.
6. Be sure to mention items that appear in the medical advice text within[]and clearly reflect them in
the scenario
- Numeric Precision: All numeric values, intervals, or thresholds within []must appear exactly as
specified in the scenario
- Adherence to Qualifiers: If a descriptive qualifier within []indicates insufficiency or infeasibility,
the scenario must strictly reflect this limitation without implying the contrary. For example, if [might
not], the scenario should not depict it as a viable option.

NATURALNESS & PLAUSIBILITY REQUIREMENTS
- Create a REALISTIC medical scenario that could occur in actual clinical practice
- Use NATURAL language as would appear in a case presentation or medical discussion in diverse
& detailed clinical context
- Ensure the scenario flows LOGICALLY with appropriate transitions between points

{bias_specific_guidance}

Output Format
ONLY return the scenario, without other content.

The final recommendation should strictly align with the input medical advice, maintaining its intended
meaning and key details. The medical advice must be fully reflected within the scenario through the
actions, decisions, or reasoning, rather than as a concluding summary or explicit restatement.

Table 11: Medical Scenario Generation Template for Bias Evaluation
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