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Abstract

Mixture-of-Experts (MoE) models have be-
come a key approach for scaling large language
models efficiently by activating only a subset
of experts during training and inference. Typ-
ically, the number of activated experts presents
a trade-off: fewer experts reduce computational
costs, while more experts improve performance.
Recent studies reveal that not all activated
experts contribute equally to model perfor-
mance, with some providing minimal utility,
particularly when finetuning pretrained MoE
models for specialized downstream tasks. The
co-existence of significant and redundant pa-
rameters in experts provides us an opportunity
to reduce the number of activated experts while
maintaining model performance. In this work,
we propose the concept of compressed experts,
lightweight modules that serve as compact rep-
resentations of full experts. Our approach pre-
serves the most important experts while replac-
ing other auxiliary activated experts with com-
pressed experts. The reduction of active param-
eters significantly lowers inference costs while
achieving comparable performance. Extensive
experiments on models including Phi-MoE and
OLMOoE demonstrate that compressed experts
recover over 90% of full expert performance
across various tasks while reducing more than
30% active parameters and saving 20% in
inference costs. This approach enables efficient
deployment of MoE models in resource-
constrained settings and facilitates scaling to
larger models with manageable overhead. Our
code is available at https://github.com/
yifei-he/Compressed-Experts.

1 Introduction

Mixture-of-Experts (MoE) models have emerged
as an effective approach to scale up the sizes of
large language models (LLM) with minimal com-
putational overhead (Shazeer et al., 2016; Lepikhin
et al., 2021; Fedus et al., 2022; Cai et al., 2024). In
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Figure 1: The inference time of MoE models grows lin-
early with increasing number of activated experts. The
plot is generated using OLMOoE architecture. Details
on the inference speed measurement methodology are
provided in Section 3.1.

Transformer-based MoE models, the feed-forward
networks (FFNs) are replaced by MoE layers, each
containing multiple experts. For a given input, a
routing network routes it only to a selected subset
of relevant experts, ensuring that only a fraction of
the network is activated during each forward pass.
This sparse activation significantly reduces com-
putational costs compared to dense models while
maintaining high model capacity.

In practice, MoE models often require multiple
activated experts to achieve desirable performance.
For instance, Mixtral (Jiang et al., 2024) and
Phi-MoE (Abdin et al., 2024) activate two experts,
Qwen-MoE (Yang et al., 2024) activates four and
OLMOoE (Muennighoff et al., 2024) activates eight.
The efficiency of MoE models largely depends on
the number of activated experts. Specifically, the
inference cost of MoE models increases linearly
with this number (as shown in Figure 1). Fewer
activated experts reduce training and deployment
costs as a smaller portion of the network is used.
Conversely, activating more experts increases
utilization of model capacity, often leading to
superior performance. Thus, the selection of the
number of activated experts poses a fundamental
trade-off between efficiency and performance.
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Top-2 experts

Top-2 experts with a
compressed expert

Figure 2: Reducing a top-2 MoE layer to top-1 with
compressed experts. Our approach replaces the second
expert Eip.o with a compressed expert 6;op-2, and aug-
ment the hidden state /& via element-wise multiplication.
This enables a single forward pass through one expert in-
stead of two, significantly reducing inference cost while
maintaining comparable performance.

Recently, several studies highlight the potential
redundancy in activated experts. For instance, Lep-
ikhin et al. (2021) demonstrates that increasing the
number of activated experts yields diminishing re-
turns in performance gains. Additionally, Huang
et al. (2024) shows that not all tasks necessitate
full utilization of all the top-k experts. These find-
ings suggest that only a subset of the activated
experts, which we term main experts, contribute
significantly to model utility, while others act as
auxiliary experts with limited impact on perfor-
mance. Despite their lower contribution, passing
through auxiliary experts incurs the same compu-
tational cost as main experts. This redundancy
is particularly pronounced when finetuning a pre-
trained MoE model on specific downstream tasks,
where expert utility varies depending on task diffi-
culty (Huang et al., 2024). This inefficiency moti-
vates our approach: compressing auxiliary experts
to reduce computational overhead while maintain-
ing model performance. To achieve this, we outline
three design principles: i) Efficiency: The mod-
ule should be computationally efficient, ensuring
minimal overhead for training and inference. ii)
Expressiveness: It should retain the capabilities
of the auxiliary experts to minimize performance
loss. iii) Flexibility: The module should adapt to
various expert combinations, as the top-k experts
may differ across tokens within the same sequence.

Following these principles, we propose com-
pressed experts, which are embedding vectors serv-
ing as compact representations of auxiliary experts.
In MoE layers, we introduce one compressed ex-
pert per full expert, maintaining a one-to-one cor-
respondence. These compressed experts are ex-

tremely lightweight, with a dimensionality match-
ing the hidden states and consisting of less than
0.05%" of the parameters of a full expert. Dur-
ing forward passes, the compressed experts corre-
sponding to auxiliary experts are aggregated via a
weighted sum and incorporated into the hidden
states through element-wise multiplication. In-
stead of activating both main and auxiliary experts,
the augmented hidden states are processed only
through main experts, significantly reducing com-
putation while preserving contributions of auxiliary
experts. We illustrate this approach in Fig. 2, with
a top-2 MoE layer containing one main expert and
one auxiliary expert. In this example, the second
expert is replaced by a compressed expert, reducing
the number of forward passes from two to one.

Through extensive experiments on popular MoE
models including Phi-MoE (Abdin et al., 2024) and
OLMOoE (Muennighoff et al., 2024), we demon-
strate that compressed experts recover over 90% of
full-expert performance across diverse tasks while
reducing more than 30% of active parameters and
cutting inference cost by 20%. By bridging the gap
between performance and efficiency, compressed
experts enable scalable and cost-effective deploy-
ment of MoE models, making them more practical
for resource-constrained environments.

2 Method

2.1 MoE Layers

Transformer-based Mixture-of-Experts (MoE)
models extend standard Transformer architectures
by replacing feed-forward network (FFN) layers
with MoE layers, each comprising a set of n ex-
perts. For a given input sequence, the hidden state i
of each token is processed by a routing network R,
which computes a routing weight a; with respect
to each expert F;. Here, we focus on top-k rout-
ing (Shazeer et al., 2016), which selects k experts
for each token to be active in forwarding. The MoE
layer output is then computed as a weighted sum
of the outputs from the % experts selected based on
their routing weights:

y=_ o Eih), (0
=1

where o; = top-k(Softmax(R(h)));. In this for-
mulation, the top-k mechanism ensures sparse acti-
'This ratio may vary for different MoE models as it de-

pends on the specific configurations of FENs. Here, 0.05% is
computed based on the configurations of Phi-MoE.
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vation, where only the k experts with the highest
routing weights contribute to the output, while the
remaining n — k experts are effectively disabled
(a;; = 0). Typically, only a small fraction of experts
is utilized during each forward pass, i.e., k < n,
enabling substantial computational savings. For
instance, Phi-MoE (Abdin et al., 2024) activates 2
out of 16 experts, and OLMoE (Muennighoff et al.,
2024) activates 8 out of 64 experts, etc. This sparse
activation significantly reduces computational costs
compared to dense models, making MoE layers ef-
ficient and scalable.

Despite these efficiency gains, the predetermined
number of activated experts k£ might introduce in-
herent redundancy. Eq. 1 requires activating all k
selected experts, but some of which may contribute
minimally or partially to model predictions. This
has been especially observed on specialized tasks,
where only some main experts dominate the rout-
ing weights while auxiliary experts have very low
weights (Huang et al., 2024). An alternative is to
reduce the number of k for customized scenarios
after model pretraining. Compressed Experts, a
lightweight module that provides vectorized expert
features to main experts, can effectively edit a MoE
model with a reduced number of expert computa-
tions while preserving performance.

2.2 Compressed Experts

Each MoE layer consists of n total experts, each of
which is a feed-forward network (FFN), denoted as
{E;}?_,. To enhance computational efficiency, we
introduce the same number of compressed experts
{60;}1_,, each serving as a compact representation
of its corresponding full expert. The compressed
experts are embedding vectors with the same di-
mension as the hidden states, i.e., 6; € R,

Conventionally, for each input token, k& out of
the n experts are activated. We can categorize
these activated experts into k,, main experts and
ke = k — k., auxiliary experts, based on their
ordered routing weights. In many scenarios,
instead of fully activating all k experts, only
forwarding the main experts can lead to a better
performance-cost trade-off. However, we do not
want to completely discard the information in
auxiliary experts. Compressed experts provide a
solution to leverage their compressed counterparts
to reduce computational cost while retaining their
contributions. We introduce it with the following
three steps (illustrated in Figure 3).

Expert identification: For an MoE layer, given

Step 1: Identify main and auxiliary experts based on sorted routing weights.
Main experts Auxiliary experts

A A A
[ | [ | [ |

(i HEEEN NN
Activated experts: -

Deactivated experts

Step 2: Aggregate compressed experts corresponding to auxiliary experts.

- O ¢ .. ¢ COomm

Step 3: Feed the augmented hidden states only to main experts.

O<C] O%C] - @®

Figure 3: The compressed expert integration process.
Step 1: The router selects the top-k experts, categoriz-
ing them into k,,, main experts and k, auxiliary experts
based on routing weights. Step 2: The compressed rep-
resentations of auxiliary experts {Hi}f: k,, 1 are aggre-
gated through a weighted sum using normalized routing
weights {o;}%_, . Step 3: The hidden state h is aug-
mented with the aggregated compressed expert 6 and
passed only through main experts, reducing computa-
tion while maintaining performance.

an input hidden state h, the router outputs n routing
weights with respect to each expert: {c;}?" ;. The
top k,, experts with the highest routing weights
are designated as main experts, while the next k,
are identified as auxiliary experts. The remaining
experts are not activated for this input.

Compressed experts aggregation: Instead of
directly using auxiliary experts, we approximate
their contribution using their compressed embed-
ding vectors. For efficient computation, we aim to
combine the information contained in each of the
compressed expert, and make it compatible with
element-wise computation with the hidden states.
To achieve this, we aggregate the compressed ex-
perts through a weighted sum, where each auxiliary
expert’s compressed representation is scaled by its
normalized routing weight: 6 = Zf: K1 af - 0;.
Here, o represents the normalized routing weights
such that Ef: k41 @ = 1, ensuring that the
aggregated compressed expert retains the overall
weight distribution.

Hidden states augmentation: The aggregated
compressed expert 6 is incorporated into the hidden
state h through an element-wise product. This op-
eration has proven highly effective by PEFT meth-
ods such as (IA)? (Liu et al., 2022), which applies
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Configuration w/o CE w/CE

Top-1 12.4 15.2
Top-2 18.0 20.6
Top-4 26.8 29.7
Top-8 323 /

Table 1: GSMS8K 0-shot CoT exact match scores (%) for
OLMOoE with varying numbers of main experts. Com-
pressed experts (CE) improve performance across re-
duced configurations, but cannot fully recover the perfor-
mance lost when reducing more than half of the experts.

a similar transformation to attention activations.
Then, the augmented hidden state is passed only
through the main experts, eliminating the need for
forward computation through the k, auxiliary ex-
perts, thereby reducing inference cost. Note that
using an alternative approach that modifies model
parameters dynamically would introduce substan-
tial complexity, as it would require constructing
a new model configuration for each token in a se-
quence on the fly, given the combinatorial number
of possible expert selections (i.e., choosing k active
experts from n total experts). The element-wise
product avoids this issue by enabling seamless in-
tegration of compressed experts without disrupting
token-level independence.

For stability around initialization, all 8; values
are initialized as ones. Combined with the normal-
ized routing weights in step 2, this ensures that 6
remains identity-like at initialization, preventing
drastic changes to hidden state transformations dur-
ing early training.

2.3 Expert Reduction

While compressed experts are flexible and can be
applied to any number of main and auxiliary ex-
perts, we investigate the conditions under which
they are most effective. Specifically, we use OL-
MokE, which has 8 active experts (k = 8), as a case
study. We evaluate different configurations by vary-
ing the number of main experts (k,,, € {1,2,4, 8}),
and replace the remaining k, = k — k,, auxiliary
experts with compressed experts (abbreviated as
CE). To assess the impact of compressed experts in
downstream adaptation, we conduct experiments
using supervised finetuning (SFT) on pretrained
OLMOoE with mathematical data, followed by evalu-
ation on GSM8k with 0-shot CoT (details provided
in Section 3.1).

As shown in Table 1, compressed experts con-
sistently improve performance across reduced con-

figurations, demonstrating their ability to recover
performance lost due to expert reduction. However,
their effectiveness is limited when more than half
of the experts are treated as auxiliary.

For instance, in the top-2 setting, two experts
function as main experts, while the remaining six
are treated as auxiliary experts. Using compressed
experts improves performance in this case, but top-
2 with CE (20.6%) noticeably lags behind top-4
without CE (26.8%). This indicates that the top-4
experts likely all contribute significantly to model
performance, and compressing too many main ex-
perts leads to significant performance degradation.
This highlights the importance of main and auxil-
iary expert categorization to maximize efficiency
without sacrificing performance.

This result suggests that compressed experts are
most effective when halving the number of acti-
vated experts. Also empirically, in our experiments,
structuring the model such that main and auxil-
iary experts are evenly split (k,, = k, = k/2)
strikes a good balance between efficiency and per-
formance, retaining 92% of the full configuration’s
performance while reducing computational cost.
Further reductions lead to noticeable performance
degradation, as critical expert contributions become
increasingly difficult to compress effectively.

2.4 Reduction in Activate Parameters

Replacing half of the activated experts with com-
pressed experts significantly reduces the number
of active parameters. Taking Phi-MoE as an ex-
ample, each MoE layer consists of three weight
matrices of size 4096 x 6400. The total non-MoE
parameters are approximately 2.4B. In the original
configuration with 2 activated experts across 32
MOoE layers, the total number of MoE parameters
is 3 x 4096 x 6400 x 32 x 2 =~ 5.03B. With com-
pressed experts, only 1 expert is activated per layer,
and the compressed experts add minimal parame-
ters (underlined below): 3 x (4096 x 6400 x 1 4
2 x 4096 + 6400) x 32 ~ 2.52B. In total, in one
forward pass, the number of active parameters for
the original configuration is 7.45B, while the one
with compressed experts is only 4.93B, resulting
in a saving of 33.8%. We provide a similar calcula-
tion for OLMoE in Appendix A, which results in a
31.4% reduction in active parameters.

2.5 Performance-Latency Trade-off

To analyze the effectiveness of compressed experts,
we compare the performance and inference latency
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Figure 4: The performance of Phi-MoE versus the infer-
ence latency, each point representing a different expert
configuration. The Top-1 w/ CE configuration performs
closely to the Top-2 configuration while achieving low
inference latency close to Top-1. A similar plot for OL-
MoE is in Appendix B.

of three configurations: top-2, top-1 with com-
pressed experts (abbreviated as CE), and top-1, as
shown in Figure 4. The performance is evaluated
on the Phi-MoE finetuned on mathematical rea-
soning data, with detailed training and evaluation
procedures described in Section 3.1.

The results illustrate a clear trade-off between
performance and inference latency across the con-
figurations. The top-2 configuration achieves the
highest performance with a score of 62.3%, but this
comes at the cost of the highest inference latency of
5.59 seconds. In contrast, the top-1 configuration is
the most computationally efficient, with a latency
of 4.01 seconds, but its performance is significantly
lower at 48.8%. This gap between the two config-
urations highlights the trade-off between computa-
tional efficiency and model capacity utilization.

Introducing compressed experts in the top-1 w/
CE configuration effectively addresses this trade-
off. With a latency of 4.35 seconds, the compressed
expert configuration adds only a minimal compu-
tational overhead compared to top-1. However, it
achieves a substantial performance improvement
over top-1, closing much of the gap between top-
1 and top-2 by reaching a performance of 57.4%.
This demonstrates the ability of compressed ex-
perts to augment the utility of the top-1 expert with
minimal additional cost, making it a practical and
efficient model editing approach.

3 Experiments

To comprehensively evaluate the effectiveness of
compressed experts, we integrate them into MoE
models during the supervised finetuning (SFT)
stage. We focus on the common scenario where
a model is pretrained with a fixed number of ac-

Model Activated Total Activate Total
Experts Experts Parameters Parameters
Phi-MoE 2 16 7.4B 42B
OLMOoE 8 64 1.3B 6.9B

Table 2: Model configurations.

tivated experts and later adapted for downstream
tasks. This setting is particularly relevant for com-
pressed experts, as the redundancy of auxiliary ex-
perts becomes more pronounced during finetuning,
when only a subset of experts may be crucial for
the specific task.

In Section 3.1, we detail the experimental setup,
including model configurations, datasets and train-
ing specifics. In Section 3.2, we first present the
performance of compressed experts on evaluation
benchmarks, then show their the inference cost
savings, demonstrating that compressed experts
achieves an effective balance between performance
and efficiency. Finally, in Section 3.3, we provide a
detailed analysis on the task-specific performance
of compressed experts.

3.1 Setup

Models. We evaluate our approach on two latest
and representative MoE models: Phi-MoE (Ab-
din et al., 2024) and OLMoE (Muennighoff et al.,
2024). These models vary in size and the number
of activated experts, as summarized in Table 2.
Training datasets. To evaluate compressed
experts in various domains and applications, we
conduct experiments on three tasks with different
scopes. For specialized tasks including mathemat-
ics and coding, we finetune models on Mathln-
struct (Yue et al., 2024) and Magicoder (Wei et al.,
2023). For general capabilities, we finetune mod-
els on TULU 3 (Lambert et al., 2024), a general-
purpose instruction-following dataset targeting
skills including reasoning, math, coding and safety.
Evaluation datasets. For evaluation, we bench-
mark models on both specialized and general tasks.
For mathematical reasoning and coding, we eval-
uate on GSM8K (Cobbe et al., 2021) and Hu-
manEval (Chen et al., 2021) respectively. To as-
sess general-purpose capabilities, we further in-
clude IFEval (Zhou et al., 2023), Truthful QA (Lin
et al., 2021), BBH (Suzgun et al., 2023). Note that
for HumanEval, we use Pass@1 for Phi-MoE and
Pass@10 for OLMOoE respectively. Since OLMoE
is a smaller model with inherently lower capacity
for complex coding tasks, Pass@10 provides finer-
grained resolution to better capture performance
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Task (—) IFEval BBH TruthufulQA GSMSK HumanEval | Avg (1) Latency ()
Metric (—) 0-shot Loose Acc ~ 3-shot EM MC2 0-shot COTEM  0-shot Pass@1 S
Pretrained 25.3 63.1 45.8 31.8 48.0 42.8 -
Top-2 SFT 54.9 69.5 49.3 76.7 67.1 63.5 5.59
Top-1 SFT 514 67.1 49.2 57.6 56.9 56.4 4.01
Top-1 SFT w/ CE 53.6 67.3 48.8 65.5 64.2 60.0 4.35
Norm. Perf. (%) |~ 97.6 96.8 99.0 85.4 957 | 945 -

Table 3: Phi-MoE (pretrained with 2 activated experts) results on general tasks. The inference latency is measured
by the time required to process a fixed number of randomly generated tokens in forward passes. Normalized
performance measures the relative performance with respect to the full-expert configuration.

Task (—) IFEval BBH  TruthufulQA GSMSK HumanEval | Avg (1) Latency (])
Metric (—) 0-shot Loose Acc ~ 3-shot EM MC2 0-shot CoT EM  0-shot Pass@10 S
Pretrained 16.5 32.1 35.8 12.1 18.7 23.0 -
Top-8 SFT 39.6 325 41.1 36.9 39.9 37.9 7.14
Top-4 SFT 342 30.7 39.2 33.1 36.6 34.8 5.31
Top-4 SFT w/ CE 35.1 31.5 414 359 38.4 36.5 5.83
Norm. Perf. (%) | 88.6 96.9 100.7 97.3 962 | 963 -

Table 4: OLMOoE (pretrained with 8 activated experts) results on general tasks.

Task (—) GSMS8K  HumanEval
Metric (—) 0-shot COT EM  0-shot Pass@1
Pretrained 31.8 48.0
Top-2 SFT 62.3 67.0
Top-1 SFT 48.8 60.1
Top-1 SFT w/ CE 574 63.1
Norm. Perf. (%) 92.1 94.2

Table 5: Phi-MoE results on specialized tasks.

Task (—) GSMSK HumanEval
Metric (—) 0-shot CoT EM  0-shot Pass@10
Pretrained 12.1 14.6
Top-8 SFT 323 39.3
Top-4 SFT 26.8 34.7
Top-4 SFT w/ CE 29.7 38.4
Norm. Perf. (%) 92.0 97.7

Table 6: OLMOE results on specialized tasks.

differences across various configurations. The de-
tailed evaluation metric for each task are presented
in the tables shown below.

Baselines. Following the methodology outlined
in Section 2.5, we replace half of the activated ex-
perts with compressed experts and compare their
performance against two baselines: the pretrained
model and the configuration with half of the acti-
vated experts. Additionally, we report the perfor-
mance of the full-expert configuration as a perfor-
mance oracle for reference.

Inference latency evaluation. To evaluate
the reduction of inference time with compressed
experts, we follow the practice in the latency bench-

mark presented in Kwon et al. (2023). We create
dummy prompts of batch size 8 and sequence
length 32 with randomly generated tokens. Then,
we pass the dummy prompts to the model and let it
generate completions. The model first goes through
10 warmup iterations, and the reported latency is
averaged over 30 iterations of completions.

3.2 Main Results

We present the performance of compressed experts
on general tasks and specialized tasks respectively.
Table 3 and Table 4 present the performance on a
diverse set of general evaluation tasks, along with
the inference latency for each configuration. Ta-
ble 5 and Table 6 present the performance of Phi-
MoE and OLMOoE on specialized tasks, including
mathematic and coding. Beyond raw performance,
we additionally report normalized performance:
perfog/perfy,;. It quantifies how well compressed
experts approximate the performance of the full-
expert configuration, providing a direct measure of
performance retention after expert reduction.
Performance comparison. The results demon-
strate that compressed experts significantly narrow
the performance gap with fully activated expert
configurations. Across all models and tasks,
compressed experts consistently recover more than
90% of the full expert performance, showcasing
their ability to retain key information from
auxiliary experts. Additionally, the incorporation
of compressed experts consistently outperform
the halved baseline. This shows that information
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contained in auxiliary experts still has a mean-
ingful contribution to the model performance.
This allows MoE models to maintain strong task
performance with fewer active parameters. Similar
to the findings in Huang et al. (2024), we observe
that the optimal number of activated experts
varies based on task complexity and broadness,
and compressed experts exhibit task-dependent
efficacy, which we detail in Section 3.3.
Inference latency. Augmenting halved con-
figurations with compressed experts (CE) incurs
only marginal overhead. For Phi-MoE, top-1
with CE increases latency by 8.5% over top-1,
while OLMOoE’s top-4 with CE adds 9.7% la-
tency compared to vanilla top-4. This overhead
arises from lightweight operations such as element-
wise multiplications, which is orders of magnitude
cheaper than executing a full expert. Critically, CE-
augmented configurations remain far more efficient
than their original counterparts: Phi-MoE top-1
with CE is 22% faster than top-2, and OLMOoE top-
4 with CE is 18.4% faster than top-8. Combined
with their strong empirical performance, we com-
prehensively validate that the compressed experts
effectively balance efficiency and performance.

3.3 Empirical Analysis

We provide a more detailed analysis on per-task per-
formance in the general evaluation setting (Tables 3
and 4). Unlike specialized evaluation with a focus
on specific domains, this setting covers factual cor-
rectness, logical reasoning, and precise instruction-
following abilities. The diversity of tasks makes it
challenging for MoE models to optimize for every
task simultaneously, which in turn affects how well
compressed experts perform. We observe that not
all tasks benefit equally from compressed experts.
Here, we mainly base our analysis on the perfor-
mance improvement from the halved baseline.

Compressed experts excel in tasks requiring
specialized reasoning. On mathematical problem-
solving (GSMS8K) and coding (HumanEval), com-
pressed experts achieve substantial performance
gains over configurations with halved experts.
These tasks require structured reasoning and
pattern-based problem-solving, where compressed
experts can approximate the auxiliary experts’ role
effectively. Since these domains follow well-
defined rules (e.g., arithmetic operations, program
syntax), the lightweight compressed experts cap-
ture task-relevant transformations efficiently, reduc-
ing the need for additional full experts.

Gains are less pronounced in tasks emphasiz-
ing factual recall and instruction following. In
factuality (TruthfulQA) and instruction-following
tasks (IFEval), compressed experts offer smaller
improvements. This suggests that while com-
pressed experts effectively distill expert knowledge,
their lightweight parameterization may not fully
capture the extensive factual knowledge distributed
across different full experts. As a result, tasks re-
quiring retrieval of fine-grained information might
benefit less from expert compression compared to
those relying on structured reasoning.

Broad reasoning tasks show minimal im-
provement. On BBH, which demands diverse
knowledge integration and multi-step logical
reasoning, compressed experts exhibit similar
performance to the baselines with halved expert
count on both models. However, this limitation
is not specific to compression alone, as the fully
activated expert configurations also struggle with
these tasks, suggesting that expert count is the
primary limiting factor. As noted in Huang et al.
(2024), such tasks likely require activating a greater
number of full experts to synthesize heterogeneous
knowledge, which remains constrained in models
with fewer active experts.

Overall, compressed experts provide an effective
balance between efficiency and performance, con-
sistently recovering over 90% of the full expert per-
formance across both models. The performance re-
covery could vary across different task types, with
structured reasoning tasks benefiting more than
knowledge-intensive or multi-step reasoning tasks.

4 Related Works

Mixture-of-Experts (MoE). Mixture-of-Experts
(MoE) models have emerged as a powerful ap-
proach to scaling up model capacity while maintain-
ing computational efficiency. By activating only
a subset of experts during inference, MoE models
significantly reduce computational overhead com-
pared to dense models. This advantage has led
to a surge in open-source MoE implementations,
each varying in the number of activated experts per
layer. For instance, Mixtral (Jiang et al., 2024),
JetMoE (Shen et al., 2024), OpenMoE (Xue et al.,
2024) and Phi-MoE (Abdin et al., 2024) activate
two experts, Qwen-MoE (Yang et al., 2024) acti-
vates four, DeepSeekMOoE (Dai et al., 2024) acti-
vates six and OLMoE (Muennighoff et al., 2024)
activates eight. However, recent work by Huang
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et al. (2024) demonstrates that fully utilizing all ac-
tivated experts can introduce redundancy for certain
tasks, as not all tasks require the full capacity of the
top-k experts. Inspired by this insight, we propose
compressed experts, designed to compress auxil-
iary experts during model editing. Compressed ex-
perts are model-agnostic and can be seamlessly in-
tegrated into existing MoE architectures, including
those mentioned above. By reducing the number of
activated experts while maintaining performance,
our approach enhances computational efficiency
without compromising model quality.

Soft merging of experts in MoE. Inspired by
the surge of model merging techniques (Ilharco
et al., 2023; Wortsman et al., 2022; Yadav et al.,
2023; Yang et al., 2023; He et al., 2025), recent
works propose to merge activated experts for
more precise gradient computation and faster
inference. However, these approaches suffer from
a common limitation: the merging operations
introduce significant computational overhead,
making them impractical for token-based routing.
Specifically, those approaches require merging
experts on-the-fly based on the per-token routing
weights. For instance, SMEAR (Mugeeth et al.,
2024) and Lory (Zhong et al., 2024) merge experts
via averaging the expert parameters based on the
routing weights. While effective in sequence-based
or semantic-based routing scenarios, the com-
putational cost of these operations renders them
unsuitable for token-level routing, where efficiency
is critical. In addition, MC-SMOoE (Li et al., 2023)
provides a static merged expert configuration
shared across all inputs. While this reduces compu-
tational costs, it sacrifices the token-level routing
flexibility that makes MoE models powerful.
In contrast, our method introduces compressed
experts, which directly augment hidden state
activations. This eliminates the need for dynamic
parameter merging. Our approach retains compat-
ibility with existing MoE architectures while offer-
ing greater flexibility, as compressed experts avoid
the latency penalties of prior merging strategies.

Model pruning. We highlight two key advan-
tages of our approach over pruning (Lu et al., 2024;
He et al., 2024; Xie et al., 2024), which prunes the
MoE model at an expert level. i) Higher efficiency:
Pruning is a post-processing method after full train-
ing. In contrast, our method integrates compressed
experts during training, allowing them to learn from
both training data and auxiliary experts. Addition-
ally, besides saving inference, the lightweight struc-

ture enables our method to achieve an approximate
20% reduction in training time as well by elim-
inating redundant expert computations, whereas
post-processing methods like pruning require stan-
dard training plus an additional compression step.
ii) Better knowledge preservation: Pruning re-
moves experts deemed less important, which can
lead to the loss of potentially valuable knowledge,
even from experts that contribute less overall (Sec-
tion 2.3). In contrast, our goal is to preserve the
information, but with smaller capacity.
Parameter Efficient Finetuning (PEFT). With
the increasing sizes of LLMs, PEFT (He et al.,
2021) has gained attention due to its capabilities to
efficiently tune the model for specific downstream
tasks. Instead of tuning the full model, PEFT meth-
ods introduce lightweight modules to augment the
model, and only update those modules. Popu-
lar PEFT approaches include adapters (Houlsby
et al., 2019), prompt tuning (Lester et al., 2021),
LoRA (Hu et al., 2022) and (IA)3(Liu et al., 2022).
Despite the similarities, compressed expert is
not a PEFT method. While both approaches lever-
age lightweight modules, compressed experts focus
on reducing computational costs during inference.
The compressed experts serve as a compact repre-
sentation of the auxiliary experts, while the main
experts are used in their original form. Specifically,
during SFT, the main experts are jointly trained
with compressed experts. This design preserves
the expressiveness of the main experts while re-
ducing inference costs, addressing a fundamental
efficiency-performance trade-off in MoE models.

5 Conclusions

We introduce compressed expert, a lightweight and
efficient approach to reducing the number of ac-
tivated experts in MoE models while maintaining
strong performance. By replacing auxiliary experts
with compact expert representations, our method
significantly reduces computational overhead while
preserving model capacity. Extensive experiments
on Phi-MoE and OLMOoE across various tasks
demonstrate that compressed experts reduce active
parameters by over 30% and cut inference costs
by 20% while retaining over 90% of the perfor-
mance of full-expert configurations. Beyond reduc-
ing inference costs, our findings suggest broader
implications for scaling MoE models efficiently.
Compressed experts offer a promising direction for
optimizing sparse activation in MoE architectures.
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Limitations

Our approach uses a fixed compression ratio, which
treats half of the activated experts as main ex-
perts, while the other half are auxiliary experts. As
shown in Section 3.2, this configuration may not
be optimal for all tasks, especially for models with
more than 2 activated experts, which enables more
possibilities of main and auxiliary expert distribu-
tion. While halving provides a strong efficiency-
performance trade-off from our empirical valida-
tion in Section 2.3, some tasks may require a more
adaptive compression strategy. To tackle this chal-
lenge, future works can explore dynamically deter-
mining the degree of expert reduction based on task
complexity or input characteristics, and address
the additional computational overhead incurred by
those approaches.
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A Active Parameter Calculation

Here, we provide a similar calculation of active
parameter reduction for OLMOoE as in Section 2.4.
In OLMOoE, each MoE layer contains 3 weight ma-
trices of size 1024 x 2048. The total non-MoE
parameters are approximately 475M. In the orig-
inal configuration with 8 activated experts across
16 MoE layers, the number of parameters in MoE
layers is

# MOE params = 3 x 1024 x 2048 x 16 x 8
~ 805M.

With compressed experts, we only activate 4 full
experts per layer, and the resulting total MoE pa-
rameters is

# MoE w/ CE params =3 x (1024 x 2048 x 4+

2 x 2048 +1024) x 16
~403M.

In total, the number of active parameters for the
original configuration is 1.28B, while the one with
compressed experts is only 878M, resulting in a
saving of 31.4%.

B Performance-Latency Trade-off
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Figure 5: The performance of OLMOoE versus the infer-
ence latency, each point representing a different expert
configuration. The Top-4 w/ CE configuration performs
closely to the Top-8 configuration while achieving low
inference latency close to Top-4.

We produce a similar plot as Figure 4 for OL-
MoE. Similar to our observations with Phi-MoE,
incorporating compressed experts into the Top-4
configuration strikes a favorable balance between
efficiency and performance. Specifically, It only
adds a minimal overhead on the inference latency
compared with top-4, but noticeably closes the per-
formance gap to top-8. This consistent trend across
different models further validates the effectiveness
of our approach.

Top-1 Top-1 W/CE Top-1-W/LoRA Top-2
Inference latency (s) 4.01 4.35 542 5.59

Table 7: Inference latency for alternative CE construc-
tion.

C Alternative Compressed Experts
Construction

During the development of our compressed expert
design, we have explored alternatives such as au-
toencoder reductions or LoRA. However, we find
that those approaches do not noticeably decrease
the inference time. While these methods reduce the
parameter count, they still require the execution of
full forward passes through MLPs layers, similar
to the full experts, thereby retaining much of the
original computational overhead. For instance, we
compare the inference latency of a LoRA-based
implementation with rank 16 for Phi-MoE against
our compressed expert approach in Table 7. As
shown, LoRA still introduces a noticeable increase
in inference time.

In contrast, our element-wise multiplication ap-
proach requires only a simple, low-cost operation
to incorporate compressed experts into the model.
Empirically, we found that this approach retains
sufficient expressive power to capture the critical
information from auxiliary experts while substan-
tially lowering inference costs. We will include this
discussion in our final manuscript.

D Training details

All experiments are conducted on NVIDIA A100
GPUs. Both models are optimized using the
AdamW optimizer (Loshchilov et al., 2017) with
a cosine learning rate scheduler. To accommodate
differences in model scale, the initial learning rate
for Phi-MoE is set to 1e-5, while for OLMOE, it is
set to 2e-5. The sequence length is fixed at 4096,
and the global batch size is 128.

E Dataset Details

The TULU 3 dataset is under the ODC-BY-1.0
license. The Mathlnstruct dataset is under MIT
license. The Magicoder dataset is under Apache-
2.0 license.

The data does not contain information that can
be used to uniquely identify individual people or
offensive content.
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F Potential Risks

This paper presents work whose goal is to advance
the field of NLP. There are many potential societal
consequences of our work, none which we feel
must be specifically highlighted here.
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