@inproceedings{luo-etal-2025-hdiff,
title = "{HD}iff: Confidence-Guided Denoising Diffusion for Robust Hyper-relational Link Prediction",
author = "Luo, Xiangfeng and
Zheng, Ruoxin and
Huang, Jianqiang and
Yu, Hang",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.391/",
pages = "7417--7434",
ISBN = "979-8-89176-335-7",
abstract = "Although Hyper-relational Knowledge Graphs (HKGs) can model complex facts better than traditional KGs, the Hyper-relational Knowledge Graph Completion (HKGC) is more sensitive to inherent noise, particularly struggling with two prevalent HKG-specific noise types: Intra-fact Inconsistency and Cross-fact Association Noise.To address these challenges, we propose **HDiff**, a novel conditional denoising diffusion framework for robust HKGC that learns to reverse structured noise corruption. HDiff integrates a **Consistency-Enhanced Global Encoder (CGE)** using contrastive learning to enforce intra-fact consistency and a **Context-Guided Denoiser (CGD)** performing iterative refinement. The CGD features dual conditioning leveraging CGE{'}s global context and local confidence estimates, effectively combatting both noise types. Extensive experiments demonstrate that HDiff substantially outperforms state-of-the-art HKGC methods, highlighting its effectiveness and significant robustness, particularly under noisy conditions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luo-etal-2025-hdiff">
<titleInfo>
<title>HDiff: Confidence-Guided Denoising Diffusion for Robust Hyper-relational Link Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiangfeng</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruoxin</namePart>
<namePart type="family">Zheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianqiang</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hang</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Although Hyper-relational Knowledge Graphs (HKGs) can model complex facts better than traditional KGs, the Hyper-relational Knowledge Graph Completion (HKGC) is more sensitive to inherent noise, particularly struggling with two prevalent HKG-specific noise types: Intra-fact Inconsistency and Cross-fact Association Noise.To address these challenges, we propose **HDiff**, a novel conditional denoising diffusion framework for robust HKGC that learns to reverse structured noise corruption. HDiff integrates a **Consistency-Enhanced Global Encoder (CGE)** using contrastive learning to enforce intra-fact consistency and a **Context-Guided Denoiser (CGD)** performing iterative refinement. The CGD features dual conditioning leveraging CGE’s global context and local confidence estimates, effectively combatting both noise types. Extensive experiments demonstrate that HDiff substantially outperforms state-of-the-art HKGC methods, highlighting its effectiveness and significant robustness, particularly under noisy conditions.</abstract>
<identifier type="citekey">luo-etal-2025-hdiff</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.391/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>7417</start>
<end>7434</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T HDiff: Confidence-Guided Denoising Diffusion for Robust Hyper-relational Link Prediction
%A Luo, Xiangfeng
%A Zheng, Ruoxin
%A Huang, Jianqiang
%A Yu, Hang
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F luo-etal-2025-hdiff
%X Although Hyper-relational Knowledge Graphs (HKGs) can model complex facts better than traditional KGs, the Hyper-relational Knowledge Graph Completion (HKGC) is more sensitive to inherent noise, particularly struggling with two prevalent HKG-specific noise types: Intra-fact Inconsistency and Cross-fact Association Noise.To address these challenges, we propose **HDiff**, a novel conditional denoising diffusion framework for robust HKGC that learns to reverse structured noise corruption. HDiff integrates a **Consistency-Enhanced Global Encoder (CGE)** using contrastive learning to enforce intra-fact consistency and a **Context-Guided Denoiser (CGD)** performing iterative refinement. The CGD features dual conditioning leveraging CGE’s global context and local confidence estimates, effectively combatting both noise types. Extensive experiments demonstrate that HDiff substantially outperforms state-of-the-art HKGC methods, highlighting its effectiveness and significant robustness, particularly under noisy conditions.
%U https://aclanthology.org/2025.findings-emnlp.391/
%P 7417-7434
Markdown (Informal)
[HDiff: Confidence-Guided Denoising Diffusion for Robust Hyper-relational Link Prediction](https://aclanthology.org/2025.findings-emnlp.391/) (Luo et al., Findings 2025)
ACL