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Abstract
Outline generation aims to uncover the internal
content structure of a document by identifying
potential chapter connections and generating
corresponding summaries. A robust outline
generation model strives for coherence between
and within plots. However, existing meth-
ods perform well on short- and medium-length
texts and struggle with generating readable out-
lines for very long texts (e.g., fictional literary
works). The primary challenge lies in their in-
ability to accurately segment plots within long
texts. To address this issue, we propose a novel
unsupervised guidance framework, LeStrTP,
to guide large language model (LLM) outline
generation. This framework ensures that each
structured plot encapsulates complete causal-
ity by accurately identifying plot boundaries.
Specifically, the LeStrTP constructs chapter-
level graph from long texts and learns their em-
beddings. Subsequently, through Markov chain
modeling chapter dependence, a unique search
operator is designed to achieve plot segmen-
tation. To facilitate research on this task, we
introduce a new annotated benchmark dataset,
NovOutlineSet. Experimental results demon-
strate that structured plots not only enhance the
coherence and integrity of generated outlines
but also significantly improve their quality.

1 Introduction

Well-crafted stories typically consist of multiple
semantically coherent chapters, each of which re-
volves around a particular theme. An good out-
line concisely captures the structural content of a
story, offering clear guidance for navigation and
significantly easing the cognitive load required to
comprehend the entire text. Furthermore, it reveals
the underlying thematic structure of the text (Shi
et al., 2024; Jha et al., 2024; Song et al., 2024).

Prior research on outline generation (Zhang et al.,
2019; Zhou et al., 2015a) has predominantly fo-
cused on short-to-medium texts (50-1,000 tokens)
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such as news articles and public notices, employ-
ing paragraph-level segmentation strategies to as-
sist rapid content structure comprehension. While
effective in domains like socio-economic analy-
sis (Ma et al., 2023), these methods face critical
challenges when processing fictional narratives ex-
ceeding 10,000 tokens (e.g., Greek mythology cy-
cles, or novels like Fights Break Sphere and The
Count of Monte Cristo). The extended narrative
scope introduces multi-layered semantic dependen-
cies and nonlinear thematic progression (Hertling
and Paulheim, 2020), complicating traditional out-
line extraction. Although fictional works primar-
ily serve entertainment purposes, their complex
narrative architectures often encode subcultural
paradigms and historical zeitgeist—exemplified by
Camel Xiangzi’s critique of social stratification and
Fights Break Sphere’s exploration of agency ver-
sus determinism. Automated outline generation
(OG) for such texts provides dual benefits: en-
abling efficient plot navigation for general read-
ers through hierarchical event graphs, and creating
structured corpora for computational humanities
research across history, media psychology, and cul-
tural studies (Chu et al., 2021).

When dealing with long texts in the realm of
fiction, the focus shifts from basic relationships
like birthplace or spouse to the occurrence of spe-
cific plot events. Including alliances, enemies,
clan members, betrayals, and vendetta (Hua et al.,
2016a). Upon further analysis of the OG chal-
lenge, we observe that it involves two structured
prediction tasks: 1) identifying chapter features
and plot boundaries, and 2) generating chapter sum-
maries. These two tasks correspond to predicting
the hierarchical relationships between chapters and
summarizing individual chapters. While the sec-
ond task can be well-handled by existing LLM,
particularly for shorter and medium-length texts.
However, LLMs often exhibit inaccuracies and in-
creased hallucinations when applied to longer texts
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Figure 1: A demonstration of the process of generating
long text outlines.

(Shen et al., 2020). For example, when the LLM is
asked to summarize a work of more than one mil-
lion words, it often ignores some important plots
or produces a wrong division of plots, resulting
in readers unable to understand the full text. As
shown in Fig. 1. Another popular solution approach
- fine-tuning - does not solve this problem very well
either (Zhang et al., 2024; Goyal et al., 2024). The
main reason lies in the catastrophic forgetting that
may occur when fine-tuning the model, and also
leads to excessive computational costs. Therefore,
we explore whether an ideal OG framework could
lightweight extend the strengths of LLM to long
texts. And the key challenge of this framework is
to address the tasks 1).

In this paper, we propose a novel end-to-end ar-
chitecture, Leveraging Structured Text Plots for
outlines (LeStrTP), to address this challenge. The
core idea is to enhance LLM outputs by enrich-
ing them with plot boundary information, which
is first determined by a neural network and then
used to guide the LLM in generating a detailed
outline. We find that graph more effectively cap-
tures relationships between entities within chap-
ters, thereby better reflecting chapter characteris-
tics. Therefore, we begin by constructing the in-
dividual chapters into graphs. Our method first
generates entity nodes using a chapter-level graph
generation module and constructs an adjacency ma-
trix between nodes based on syntactic dependency
relationships. For every node feature vectors, we

select entity word vectors and expand the feature
set to include the TF-IDF matrix of entities while
incorporating chapter numbers to represent contex-
tual coherence. We then apply an enhanced graph
neural network utilizing GAT (Velickovic et al.,
2017) to learn from the chapter graph. Addition-
ally, we design a search operator that uses proper-
ties of Markov chains to determine plot boundaries
based on the potential distance between chapter
embeddings. Finally, the theme and summary of
each plot are generated by the LLM, which are then
combined to form the overall outline.

To facilitate research, we have constructed a new
Chinese benchmark dataset, named NovOutline-
Set. The entire dataset contains ultra-long texts of
28 different topics. The average number of chap-
ters is 580.8, and the maximum number of chap-
ters in a single text is 2271. Experimental results
demonstrate that our proposed method significantly
outperforms all baselines in plot segmentation ac-
curacy, with an average improvement of 45.2%.
We also performed a detailed diversity and fluency
analysis of the generated outlines, which showed
a minimum performance improvement of 12.5%
and 37.7% respectively. This demonstrates that our
model can better understand the structure of the
learned content. The contributions of our work are
summarized as follows:

• We propose LeStrTP, a novel framework for
long text outline generation, the first unsuper-
vised framework to implement long text out-
line generation based on chapter-level graph.

• To support our study, we constructed a new an-
notated public dataset, NovOutlineSet, based
on long Chinese fictional texts for the OG task.
This is the first Chinese-language dataset con-
taining multiple types of long texts, which can
further promote broader research in the field
of generation.

• Comprehensive evaluation of the outline gen-
eration results was conducted. The results of
various indicators verify the effectiveness of
our method.

2 Related Works

2.1 Topic Segmentation and Outline
Generation

Early studies predominantly employed unsuper-
vised methods (Choi, 2000; Glavas et al., 2016)
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for topic segmentation. However, with the devel-
opment of large-scale thematic structure corpora,
supervised methods have become the dominant ap-
proach, including sequential labeling models (Bad-
jatiya et al., 2018; Lukasik et al., 2020). In contrast,
limited research has addressed topic segmentation,
utilizing sequential labeling models inspired by En-
glish methodologies (Wang et al., 2016; Xing et al.,
2020) or local classification models (Jiang et al.,
2021) to predict topic boundaries.

Most existing OG methods (Zhang et al., 2019;
Sun et al., 2022) are designed for short- and
medium-length texts and predominantly focus on
English content. Whether solving problems from
a traditional model (Kitaev et al., 2020; Dai et al.,
2019) perspective or from developing a "new gen-
eration" approach (Shen et al., 2020; Fu et al.,
2019; Wiseman et al., 2018) to solving problems.
Whereas our OG task generates a sequence of plot-
level titles with fine-grained semantics and contex-
tual coherence.

2.2 Storyline Generation

Storyline generation focuses on modeling event
progression and temporal dynamics within narra-
tives. This can provide ideological guidance for the
OG task. Huang and Huang (2013a) established
a foundational taxonomy by distinguishing local
event granularity from global thematic evolution.
Early approaches leveraged Bayesian networks for
probabilistic storyline inference (Hua et al., 2016b;
Zhou et al., 2015b), while Lin et al. (2012) intro-
duced graph-based optimization for social media
narrative extraction. Huang and Huang (2013b) ad-
vanced this through hierarchical Dirichlet processes
(HDP) for theme evolution modeling. Recent work
has expanded into multi-modal narrative analysis,
with Yang et al. (2024a), Sui et al. (2023), and
Yang et al. (2024b) pioneering structured frame-
works for video storyline generation, achieving
state-of-the-art performance on ActivityNet Cap-
tions. To summarise, the storyline generation task
refers to marking the occurrence of each plot node
in a story or text based on the timeline, and ulti-
mately forming the occurrence axis of a storyline
sequence. The OG task, on the other hand, requires
generating a readable composite text to describe
the overall narrative direction. Consequently, most
existing methods for these related tasks are not
directly applicable to the OG task.

3 Method

The long text OG task is defined as follows: Given
a long text B = {c1, c2, ..., cn}, n ∈ N, where ci
denotes a chapter, we formulate the task as identi-
fying plot boundaries Iij ∈ {0, 1} between chapter
pairs (ci, cj). The segmentation results are entered
into the LLM to obtain an accurate text outline.

In the transformation of the plot, there must be
changes in scenes or the evolution of the relation-
ship between characters and things accompanying
it (Zhang et al., 2019). This variation corresponds
to the frequency, or affiliation, of characters or
objects appearing in each chapter. Therefore, by
constructing chapter graph to explore relationship
and achieve the separation of chapter features in
the inner product space, the plot boundaries can
be well distinguished. The detailed framework is
illustrated in Fig. 2.

3.1 Data Preprocessing

For narrative texts of millions of words, we first
need to segment the chapter content by matching
the chapter names. Then, entity recognition and
syntactic relation dependency analysis of chapter
texts will be conducted through LTP (Che et al.,
2021) to provide support for the subsequent con-
struction of chapter diagrams. Step 1 in Fig. 2
presents this process very well.

3.2 Chapter-Level Graph Construction

For each chapter, it is essential to construct graph
to encapsulate its content. This involves select-
ing chapter nodes and generating both feature vec-
tors and adjacency matrices for nodes. We extract
noun entities X = {x1, x2, ..., xn}, xi ∈ Rn×d

as chapter’s nodes, encompassing crucial plot ele-
ments such as main characters, locations, and items
within the chapter. d represents the node dimen-
sion. Syntactic dependency information provides
the relationships E = {eij} between entity nodes
i and j, enabling the chapter’s graph topology to
be represented by an adjacency matrix A, where
Aij = 1 if eij ∈ E; otherwise, Aij = 0.

We introduce a novel approach for constructing
chapter node features, which incorporates three
critical attributes: node entity name, chapter num-
ber, and entity node TF-IDF (T values). 1) For
obtaining node entity name vectors En, we employ
the bert-wmm (Cui et al., 2021), a state-of-the-art
model for Chinese word vector representation. 2)
To compute the T values for entity nodes, we first
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Figure 2: Our proposed LeStrTP flowchart. The proposed framework implements a four-stage pipeline: 1) Data
preprocessing, 2) construction of chapter-level graphs, 3) graph embedding by GAT-based autoencoder, and 4) plot
boundary identification. The LLM of the output layer freezes the parameters. In addition, the principle of the search
operator is drawn in detail on the right side. Prompt is also detailed.

identify the top-10 T values within the chapter and
then assign these values to the corresponding chap-
ter nodes. Each entity node is matched with its
respective T value. If an entity node corresponds to
one of the top-10 T values, the value is added; oth-
erwise, the matrix dimension value is set to 0. This
process generates a 10-dimensional T value matrix
Tn, where each row represents an entity node. 3)
Considering that most fictional long texts follow
sequential progression, we emphasize the inclusion
of chapter counts. The chapter number is concate-
nated as a set of features, donate as Cn. Finally, the
vectors of each node are combined from the corre-
sponding representations in these three parts to give
the node feature xi = {Eni, Tni, Cni}, i ∈ [1, n]
of the graph.

3.3 Chapter Embedding
To learn chapter features, we propose an unsuper-
vised learning framework based on a graph autoen-
coder with GAT (Velickovic et al., 2017; Ma et al.,
2025) layers. This model extracts chapter features
by jointly learning node attributes and the adja-
cency matrix. The hidden representation of the
current node vi is computed as follows:

Z l
i = σ(

∑

j∈Ni

αijWZ l−1
i ) (1)

αij denotes the attention coefficient, represent-
ing the relative importance of the neighboring node

vj to the target node vi, while σ is a nonlinear ac-
tivation function. W is a learnable parameter. Z l

i

denotes the output representation of node vi, and
Ni represents the set of neighboring nodes of vi.
The attention coefficient αij is computed through
a single-layer feedforward neural network, which
takes the concatenated attribute vectors

→
xi and

→
xj

as input, with a trainable weight vector
→
a ∈ Rn×d.

αij =
exp(a(W

→
xi,W

→
xj))∑

k∈Ni
exp(a(W

→
xi,W

→
xj))

(2)

To reconstruct the graph structure as part of
the decoder, we employ the sigmoid function to
map values from (−∞,+∞) to a probability space.
The reconstruction error is minimized by quantify-
ing the difference between the adjacency matrix Ai

and its reconstructed counterpart A′
i.

Lr =

n∑

i=1

loss(Ai, A
′
i), A

′
i = sigmoid(ZTZ)

(3)
The learned deep embeddings are subsequently

reduced to low-dimensional data in the feature
space using a pooling layer, resulting in the chapter
embeddings Ẑ.

3.4 Plot Boundary Division
The plot boundary prediction is formulated as fol-
lows: Given a long Chinese text B, it is divided into
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successive chapters {c1, c2, . . . , cn}. For each pair
of chapters (ci, cj) where j = i + 1, a boundary
label Iij ∈ {0, 1} is defined to indicate whether
a plot boundary exists between the chapters. If
Iij = 0, chapters ci and cj are within the same plot
boundary, and plot boundary prediction continues.
If Iij = 1, chapter ci marks the plot boundary.

The properties of Markov chains can address the
challenges of ensuring contextual consistency and
identifying paragraph boundaries. Traditionally,
Markov chain dependence assumes that the current
chapter ci is influenced solely by the preceding
chapter ci−1. However, in the context of very long
fictional texts, a complete plot often spans multiple
chapters (Chu et al., 2021). To account for this,
we consider both the adjacency dependencies and
the long-distance influences of preceding chapters.
Accordingly, we propose a search operator that
leverages chapter features to accurately identify
plot boundaries.

The Search Operator consists of two compo-
nents: 1) the pre-operator and 2) the postopera-
tor, each with different stride, designed to capture
short-range and long-range contextual information,
respectively, as illustrated in the right side of Fig. 2.

Pre-operator: Set the stride to t. The embed-
ding Ẑi of the current chapter ci and {Ẑi−t : Ẑi−1}
of the preceding t chapters ci−t are fed into the
pre-operator, which computes the mean Euclidean
distance EU1 between each chapter. Compared
with the Manhattan distance or Chebyshev distance,
the Euclidean distance is directly defined by the
inner product, without the need for additional trans-
formation and with low computational complexity
(O(n)). It is more suitable for measuring the dif-
ferences between scalars such as chapter features.

EU1 =
1

t

t∑

n=1

||Ẑi − Ẑi−t||2 (4)

Considering the fluctuations between plots, the pre-
operator also tracks the Euclidean distance EUmax

corresponding to the maximum variance, which is
recorded as the maximum fluctuation value.

EUmax = MAX(||Ẑi − Ẑi−t||2) (5)

A threshold st = β · EU1 is defined, where
β > 0 represents the equilibrium parameter, al-
lowing adaptation to varying text styles and plot
fluctuations.

Postoperator: The stride is set to 1, meaning
that only the Euclidean distance EU2 = ||zi−zj ||2

between the current chapter ci and the subsequent
chapter cj is computed.

If st < EU2 < EUmax, Iij = 1, chapter ci
is identified as a plot boundary. If EU2 < st,
Iij = 0, the chapter is regarded as part of the same
episode. The operator module continues searching
for plot boundaries by iterating through subsequent
chapters. Otherwise, ci is regarded as an important
plot boundary, a major plot twist.

An important consideration is the inherent vari-
ability in text length across different literary styles.
Our framework addresses this through hyperparam-
eter β, which dynamically adjusts the scale param-
eter st to ensure optimal model adaptation. The
empirical validation of this adaptive mechanism is
presented in Fig 5, demonstrating consistent perfor-
mance across diverse stylistic domains.

To optimize computational efficiency and ac-
count for the continuity of long-text episodes, a
safe distance d is introduced. Upon detecting a plot
boundary at chapter ci, the operator skips the next
d chapters and resumes the plot boundary search
from chapter ci+d. This approach is based on the
intuitive structure of long stories: following a plot
twist, several successive chapters typically belong
to the same plot, eliminating the need for evaluating
every subsequent chapter.

The pipeline concludes by feeding chapter seg-
mentation data and structural directives into our
default LLM implementation (freeze DeepSeek-
V3) for automated outline generation.

4 Experiments

4.1 Experiments Setup

Dataset. Among all the public dataset, we have
not found a suitable dataset of tens of millions of
Chinese characters. So we constructed a Chinese
dataset NovOutlineSet comprising 28 long texts
to facilitate outline generation. Among them are
one biography, three world classics, two martial
arts novels, nine fairy tales, and thirteen fantasy
novels. Three domain experts with experience in
relevant works were invited to contribute. Using
insights from forum discussions and encyclopedia,
precise boundaries were determined. The aver-
age text size is 2234.63KB, comprising an average
of 580.8 chapters. And the maximum number of
chapters in a single text is 2271. And the size of
it is 23.1MB. Table 1 provides an overview of the
statistical information of the dataset. Examples
of relevant content are provided in Appendix A.
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Type β value Quantity Average of plot

Classics β = 0.3 3 3.67
Biography β = 0.3 1 4.00
Wuxia β = 0.4 2 4.00
Fantastic β = 0.6 13 5.31
Immortal Heroes β = 0.7 9 5.67

Table 1: NovOutlineSet Information Overview

Links to more detailed datasets can be found at
https://anonymous.4open.science/r/y-8E7D/. All
experiments are perform on four RTX 3090s. The
LLM layer adopts the method of calling api and
freezing parameters for experiments.It is worth not-
ing that the texts selected in our dataset all have
clear plot boundaries to prevent confusion in the
narrative structure of extremely long texts. How-
ever, in reality, there are some novels that do not
have clear boundaries. We will discuss this in the
context of potential limitations.

Baseline. We not only use the LLMs method
as the baseline, but also select appropriate neu-
ral network-based deep learning methods. LLMs
baselines are as follows: 1) GPT-3.5 (Brown et al.,
2020) and 2) GPT-4.0 (OpenAI, 2023): two kinds
of GPT models, 4.0 exceeding 3.5 in both size
and performance. 3) Llama-3.0 (Touvron et al.,
2023): Excellent open source LLM. 4) Deepseek-
V3 (Dai et al., 2024) and 5) Qwen2 (Bai et al.,
2023): Two of the best-performing LLMs in Chi-
nese. 6) BooookScore (Chang et al., 2024) and
7) Readagent (Lee et al., 2024): Two of the latest
long text summarization techniques based on LLM
obtain the text outline by iteratively reading the
text and concatenating it.

Among the few DL methods, we have selected
two representative ones: 8) CPTs (Jiang et al.,
2024): The outline is generated through the con-
structed Chinese paragraph-level subject structure
corpus. 9) HiStGen (Zhang et al., 2019): The OG
task is formulated as a hierarchical and structured
prediction problem, which is predicted and gener-
ated according to semantic perception and Markov
chain paragraph dependence mechanism.

Evaluation Metric. Follow Sun et al. (2022)
and Zhang et al. (2019), our main experimen-
tal design fully reflects the accuracy and flu-
ency of the generated outline from four aspects:
prediction boundary accuracy, diversity, human-
machine recognition and syntactic fluency. 1) Ac-
curacy(ACC): If all the plot boundaries of the text
are predicted accurately, it is marked as a posi-

tive sample, otherwise it is negative. 2) Perplex-
ity (PPL) (Li et al., 2016): Perplexity measures
the fluency of generated text. 3) Average phrasal
word count, Text diversity: Two indicators are used
to measure plot richness. The first represents the
complexity of the narrative text, while the second
indicates the completeness of the plot content. Fol-
lowing the Ehara (2023), the calculation formula is:
Text diversity = (proportion of adverbs and conjunc-
tions in a clause + average phrasal word count) ×
0.5. 4) Sentence Coherence (Cui et al., 2021): Cur-
rent metrics do not assess sentence-level fluency.
We use the next sentence prediction (NSP) from the
pre-trained BERT model as a measure of consis-
tency between each sentence and its next sentence.
We report the average NSP score for all consecutive
sentence pairs in the generated text. 5) Adversar-
ial Success (Sun et al., 2022): It is defined as the
model’s ability to successfully deceive trained eval-
uators into believing that machine-generated text is
human-authored. A higher adversarial success rate
indicates better text quality.

4.2 Main Result

We evaluated boundary accuracy using our con-
structed dataset, as shown in Table 2. Our method
demonstrates superior accuracy, with improve-
ments of 35.6% and 28.6% compared to state-of-
the-art LLM methods, Llama 3.0 and Deepseek-V3,
respectively. We assessed the fluency, comprehensi-
bility, and adversarial success of the generated out-
lines. In long text approximation generation, LLM-
based models generally outperform deep learning
strategies in fluency and adversarial success but
exhibit lower comprehensibility. This indicates the
advantages of LLMs in long text generation, though
hallucination issues detract from text comprehen-
sibility. The precise division of plot boundaries
effectively improves fluency and readability. They
are up at least 10.8% and 0.1% percent, respec-
tively.

We conducted text diversity and readability ex-
periments, text diversity is up at least 2.5%, as
shown in Fig. 3(b). Our method produces more
words per clause, resulting in richer paragraphs
and a more diverse outline. This aligns with our
goal: to include key details in the outline, enabling
readers to better grasp the full text’s development.

To summarise, our approach achieved superior
performance across all metrics, producing more
fluid, coherent, and varied text. The consistent
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Type of method Baseline ACC(%) ↑ PPL ↓ Adversarial Success ↑ Sentence Coherence (NSP) ↑

LLM method
GPT 3.5 17.8 34.3 0.029 0.852
GPT 4.0 28.5 31.3 0.101 0.871
Llama 3.0 35.7 30.2 0.097 0.872
Deepseek-V3 42.8 28.6 0.102 0.878
Qwen2 30.2 27.3 0.038 0.856
BooookScore 22.1 31.0 0.030 0.860
Readagent 10.8 27.0 0.025 0.859

DL method
CPTs 14.2 39.9 0.029 0.832
HiStGen 17.8 34.3 0.016 0.819

Ours LeStrTP (Default) 71.4 17.8 0.104 0.879
GAT’s effectiveness 64.2 24.3 0.096 0.876
Dimensionality reduction 60.7 30.0 0.078 0.875
LLM performance 71.4 20.8 0.101 0.872

Table 2: Comparison of results with other baseline experiments and the results of the ablation experiment

(a) Average phrasal word count (b) Text diversity

Figure 3: All long text generates outline readability data
graph.

gains highlight the importance of integrating the
text generation capabilities of LLMs with the pre-
dictive strengths of deep learning frameworks. It is
worth mentioning that the calculation of the stan-
dard deviation is meaningless in our experimental
design because this model is essentially for accu-
rately predicting the plot boundaries.

Ablation Experiments. Followed Ma et al.
(2026), we conducted ablation experiments on sev-
eral key modules of the model to evaluate its sta-
bility and the contributions of individual compo-
nents. The modifications include: 1) Effectiveness
of GAT: Replacing the GAT layer to assess its im-
pact. We use the normal GNN layer instead of
GAT. 2) Dimensionality reduction: Evaluating the
dimensionality reduction strategy to determine its
effect on algorithm prediction outcomes. 3) LLM
performance: Replacing the default Deepseek-V3
used for outline generation with GPT 4.0 to analyze
its impact on the model. As shown in lower part of
Table 2, modifications in 1) and 2) resulted in the
poorest performance, highlighting the critical role
of the model in learning chapter data features.

In order to find the best form of chapter vector
representation, we break down the three parts of
chapter vector, which are 1) NodesOnly embedded
with node name only, 2) PlusT with T value added
on this basis, and 3) add the Default setting of chap-
ter sequence number default. In addition, we also
delve into the optimal vector dimension required
by T value. As can be seen from Fig. 4, T value and
chapter number are crucial for long linear narrative
texts, which contain more plot information. This
information has often been overlooked in previous
studies. Effective learning of these can significantly
improve the accuracy of plot boundary prediction.

Parameter Sensitivity Analysis. We conducted
a parameter sensitivity analysis, focusing first on
an in-depth examination of the retrieval operator,
which is a critical component for predicting plot
boundaries. The goal of this experiment is to deter-
mine the optimal parameters, including the stride
for the preceding and following operators and the
β in the threshold st calculation. The results of
our experiment in the category of fantasy fiction
are shown in Fig. 5, which clearly demonstrate that
the stride and β have a significant impact on model
performance. The best stride is ⌊n× 0.025⌋. This
highlights that, under classical Markov properties,
only adjacent chapter dependencies are considered.
To address cross-chapter correlations in long plots,
our method incorporates embedded information
from the first t chapters, significantly enhancing the
sensitivity to remote information. Moreover, a crit-
ical observation is the significant length variation
across literary styles, necessitating style-specific β
parameterization. The complete mapping between
stylistic categories and their corresponding β val-
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(a) The influence of chapter vec-
tor composition on ACC

(b) T-value analysis

Figure 4: Chapter vector composition analysis

Figure 5: Parameter sensitivity analysis of search oper-
ators. The experimental results show the influence of
β and strides on the prediction accuracy ACC. Steps
represents the proportion of the number of strides to the
total number of chapters.

ues is systematically documented in Table 4 (Ap-
pendix A), providing a comprehensive reference
for model adaptation.

Dynamic hyperparameters are common prob-
lems in natural language processing. Take the
Transformer as an example: position encoding
needs to adapt to different sequence lengths. There-
fore, we analyzed the impact of the safety distance
d on computation time, as shown in Fig. 6(a). The
results indicate that the safety distance strategy ef-
fectively reduces redundant calculations without
significantly affecting detection accuracy, making it
suitable for large-scale long text processing. Then
we experiment to find the most suitable d. As
shown in Fig. 6(b), the optimal safe distance d
should be ⌊n× 0.01⌋.

4.3 Case Study
To visually demonstrate the difference between
LeStrTP and other Baselines, Fights Break Sphere
was chosen to demonstrate the effect of plot seg-
mentation and summarization. This book is one

(a) The effect of safe distance (b) The effect on ACC

Figure 6: Parameter sensitivity analysis of safety dis-
tance. The number in safe distance represents the pro-
portion of the number of steps to the total number of
chapters.

Method Plot segmentation Content summary

LeStrTP

plot 1:[1,343] The fall and rise of genius
plot 2:[344,704] The Battle of Cashing in the Black Corner
plot 3 : [705,1200] The Fire Collection and the Spirit Conspiracy
plot 4 : [1201,1631] The Final battle and the battle to break the sky

GPT 4.0

plot 1: [1,40] The loser strikes back, reignites the fight
plot 2: [41,240] College practice, showing the edge
plot 3: [240,600] Ancient ruins, looking for opportunities
plot 4: [600,1050] the family rises again
plot 5: [1051,1631] Strife within the clan, a battle of destiny

Table 3: Generate outline and plot division results

of the most influential works of Chinese online
literature. There is almost no ambiguity in the di-
vision of the plot boundaries of this book, and no
more expert filtering is needed. According to the
correct division, the correct plot boundary for the
Fights Break Sphere is [343,705,1200]. The results
are shown in Table 3. LeStrTP correctly captures
plot boundaries and generates an accurate outline,
but GPT 4.0 has a serious hallucination problem.
In-depth analysis reveals that imprecise narrative
segmentation significantly compromises GPT’s out-
line generation capability. While a subset of plot
summaries demonstrates acceptable accuracy, the
majority exhibit substantial deviations from ground
truth narrative structures. In addition, we provide
not only several detailed outline examples, but also
a text of visualizations that demonstrate the effec-
tiveness of our chapter-level approach. The corre-
sponding experimental data are shown in Fig.9 to
Fig.12 in appendix A.

5 Conclusion

In this paper, we propose a method based on plot
segmentation to guide LLM in generating better
outlines for long texts. First, the chapter-level
graph effectively captures chapter feature informa-
tion. Based on the chapter embeddings learned
by the GAT, we divide plot boundaries use im-
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proved Markov chain properties. Finally, LLM
generates a complete outline based on precise plot
boundaries. Comparative experiments demonstrate
that our method not only enhances the accuracy of
outline generation but also improves fluency and
diversity. This approach addresses a gap in Chi-
nese language research, and aids readers in quickly
understanding the content of ultra-long texts, facil-
itates scholars across various fields in conducting
relevant humanistic research. The future research
direction is to further explore how to solve the ef-
fects of hyperparameters, so as to reduce expert
intervention.

6 Limitations

To the best of our knowledge, the primary lim-
itation of this model resides in the selection of
hyperparameter search step size and β. Subopti-
mal parameter choices may lead to degraded pre-
diction accuracy. We are exploring an automatic
parameter selection method based on data field
moisture principles, moving beyond expert experi-
ence dependence. Furthermore, the text partition-
ing process exhibits instability due to its reliance
on specific keyword detection for chapter segmen-
tation—an approach that proves ineffective for spe-
cially named long documents. Consequently, chap-
ter division at the word embedding level emerges
as a promising research direction. Moreover, some
novel novels may even complete the entire story in
the same setting. Therefore, the plot boundaries of
such novels are not easy to determine or are am-
biguous. Future research may need to determine
the plot boundaries from more dimensions.

Another potential limitation that needs to be ex-
plained is that perhaps adding a better manually
generated outline would be beneficial for enhanc-
ing the diversity of the dataset. However, for this
task, the cost of marking high-quality long text
transitions is extremely high (requiring domain ex-
perts over 10 hours per text). In the future, we will
consider this issue when we have a higher budget
and more time.
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A Appendix A

Data Collection. We select high-quality long-form
works that are widely read on the Internet and col-
lect the original text of these works. As shown
in Table 4. First, we divide different works into
five categories according to their content and style.
Then we first use the powerful LLM Deepseek-V3
to pre-generate the plot boundaries of the article.
Then use expert knowledge and relevant forum con-
tent to correct the incorrect plot boundaries of the
article. Satisfactory results have been obtained by
using the above automatic pretreatment process.
We then recruited a web-contracted writer with
more than five thousand hours of writing experi-
ence and two experts with tens of thousands of
hours of reading experience to review the narrative,
check plot boundaries, and correct any remaining
errors. In this way, we built our proposed dataset,
named NovOutlineSet.

Interestingly, our analysis reveals significant
genre-dependent variation in narrative structure,
with swordsman and fantasy novels exhibiting ex-
tended chapter sequences compared to the more
concise formats of biographical works. This struc-
tural diversity necessitates genre-specific adapta-
tion of our retrieval threshold st through parameter
β. Through systematic evaluation, we have estab-
lished optimal β values for major literary genres,
as detailed in Table 4, enabling robust performance
across diverse narrative formats.

Dataset Statistics. The statistical graph related
to the dataset is shown in Fig. 7 and 8. Among
them, we include my category of texts, a total of
28. More than 1,000 chapters account for 50% of
the total.

Dataset Contribution. To the best of our knowl-
edge, NovOutlineSet is the first Chinese-based
long-text generation outline dataset. We are the
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Figure 7: Text category ratio graph

Figure 8: Distribution of the number of chapters in each
text

first dataset to annotate a structured storyline that
can be used to support more generation tasks. Our
dataset also contains much longer individual texts.
The longest text is 23.1MB and reaches 2271 chap-
ters.

Long Text Visualization. In order to visually
show the state of our long text during the calcula-
tion process, we visualized the Fights Break Sphere.
As shown in Fig. 9. Each point represents the vi-
sual coordinates of a chapter-level graph. Then,
according to the detection operator algorithm men-
tioned in section 3.4, we check the plot boundaries
of the whole book and get the three plot boundaries
shown in the figure.

Comparison of Detailed Outlines. Using the
example of a famous fantasy novel, Fights Break
Sphere, we selected the three best-performing mod-
els and presented the Outlines they generated. They
are GPT 4.0, Deepseek-V3. and our method,
LeStrTP. We begin by providing an outline of the
standard. It not only embodies the importance of
plot boundary division in the task of outline extrac-
tion and generation, but also shows the superiority
of our method. In order to control the length of the
appendix, we try to reduce the outline to less than
500 words. The actual generation outline does not

Figure 9: Visualization of Fights Break Sphere

limit the number of words.
We show the standard outline generated by

LeStrTP in Fig. 10 and 11, and provide a simplified
version of the outline and two baseline generation
results in the Fig. 12 to visually show the effects of
each model.

Due to the high accuracy of Deepseek, we
checked its official training data and ruled out the
possibility of data leakage. Such as the time cap-
sule mechanism: building a data pipeline based on
the publication dates of novel chapters, the training
set is limited to chapters published between 2013
and 2019 (1-800 chapters). The content of these
editions is based on the original text, and there are
no artificial additions such as plot division. Accord-
ing to the knowledge distillation audit provided by
Deepseek-R1, by comparing the original word vec-
tor with the vector after leakage protection treat-
ment, it is further proved that the training process
does not remember the original text details, and
there is no plot division boundary.
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Type (Chinese/English) β value Book’s title (Chinese/English) Plot boundary (Number of Chapters)

名著/Classics β = 0.3
悲惨世界/Les Misérables [9,17,25,52]
基督山伯爵/The Count of Monte Cristo [20,45,92,105]
堂吉柯德/Don Quixote [15,52,99]

人物传记/Biography β = 0.3 慈禧全传/The Complete Biography of Cixi [23,49,81,100]

武侠/Wuxia β = 0.4
天龙八部/Demi-Gods and Semi-Devils [15,28,31,40]
鹿鼎记/The Deer and the Cauldron [9,19,29,39]

玄幻/Fantastic β = 0.6

最强弃少/The Abandoned Youngster
[97,190,348,575,693,956,1078,
1184,1339,1420,1520,1616,1715,

Is Now the Mightiest Master 1803,1892,1990,2086,2200]
庆余年/Joy of Life [38,103,152,251,405,583,830]
回到明朝当王爷/Royal Highness [15,35,53,152,290,450]]
斗破苍穹/Fights Break Sphere [354,704,1261]
佣兵天下/Sphira [20,130,265,362,444]
小兵传奇/The Legend of Soldier [8,19,72,275]
魔兽剑圣异界纵横/Swords of Warcraft [22,52,117,301,814]
狩魔手记/The Devil’s Hand [17,36,59,293,608]
星峰传说/Star peak legend [44,111,398]
朱雀记/Suzaku [10,138,320]
天问/Celestial Question [67,126,275,373]
天逆/Celestial Inversion [13,89,150]
鬼吹灯3/Candle in the Tomb 3 [6,21,32,46]

仙侠/Immortal Heroes β = 0.7

九界仙尊/Nine world fairy Buddha [45,88,142,191,369,1695]
莽荒纪/The Legend of JADE SWORD [98,283,484,763,1031,1273,1390]
斗战狂潮/Battle Frenzy [33,74,212,509,615,1222]
我欲封天/I Shall Seal the Heavens [41,94,313,628,1068]
一念永恒/The thought of eternity [34,72,121,155,505,759,1074,1315]
圣堂/Church [28,60,86,159,998]
星辰变/Legend of Immortal [21,41,359,690]
聊斋大圣人/Great Sage of Liaozhai [22,81,223,609,846]
佛本是道/Buddha is the Tao [12,24,45,294,444]

Table 4: Details of NovOutlineSet dataset

61



Figure 10: Standard syllabus for Fights Break Sphere

Figure 11: The English version of the Fights Break Sphere standard outline
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Figure 12: Comparison of outline generated by three methods.
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