@inproceedings{li-etal-2025-forget-get,
title = "Forget for Get: A Lightweight Two-phase Gradient Method for Knowledge Editing in Large Language Models",
author = "Li, Yanhong and
Yang, Min and
Hu, Xiping and
Li, Chengming",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.402/",
pages = "7604--7623",
ISBN = "979-8-89176-335-7",
abstract = "Recent studies have highlighted the remarkable knowledge retention capabilities of Large Language Models (LLMs) like GPT-4, while simultaneously revealing critical limitations in maintaining knowledge currency and accuracy. Existing knowledge editing methodologies, designed to update specific factual information without compromising general model performance, often encounter two fundamental challenges: parameter conflict during knowledge overwriting and excessive computational overhead. In this paper, we introduce ForGet (Forget for Get), a novel approach grounded in the principle of ``forgetting before learning''. By pinpointing the location within the LLM that corresponds to the target knowledge, we first erase the outdated knowledge and then insert the new knowledge at this precise spot. ForGet is the first work to leverage a two-phase gradient-based process for knowledge editing, offering a lightweight solution that also delivers superior results. Experimental findings show that our method achieves more effective knowledge editing at a lower cost compared to previous techniques across various base models."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-forget-get">
<titleInfo>
<title>Forget for Get: A Lightweight Two-phase Gradient Method for Knowledge Editing in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yanhong</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiping</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengming</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>Recent studies have highlighted the remarkable knowledge retention capabilities of Large Language Models (LLMs) like GPT-4, while simultaneously revealing critical limitations in maintaining knowledge currency and accuracy. Existing knowledge editing methodologies, designed to update specific factual information without compromising general model performance, often encounter two fundamental challenges: parameter conflict during knowledge overwriting and excessive computational overhead. In this paper, we introduce ForGet (Forget for Get), a novel approach grounded in the principle of “forgetting before learning”. By pinpointing the location within the LLM that corresponds to the target knowledge, we first erase the outdated knowledge and then insert the new knowledge at this precise spot. ForGet is the first work to leverage a two-phase gradient-based process for knowledge editing, offering a lightweight solution that also delivers superior results. Experimental findings show that our method achieves more effective knowledge editing at a lower cost compared to previous techniques across various base models.</abstract>
<identifier type="citekey">li-etal-2025-forget-get</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.402/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>7604</start>
<end>7623</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Forget for Get: A Lightweight Two-phase Gradient Method for Knowledge Editing in Large Language Models
%A Li, Yanhong
%A Yang, Min
%A Hu, Xiping
%A Li, Chengming
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F li-etal-2025-forget-get
%X Recent studies have highlighted the remarkable knowledge retention capabilities of Large Language Models (LLMs) like GPT-4, while simultaneously revealing critical limitations in maintaining knowledge currency and accuracy. Existing knowledge editing methodologies, designed to update specific factual information without compromising general model performance, often encounter two fundamental challenges: parameter conflict during knowledge overwriting and excessive computational overhead. In this paper, we introduce ForGet (Forget for Get), a novel approach grounded in the principle of “forgetting before learning”. By pinpointing the location within the LLM that corresponds to the target knowledge, we first erase the outdated knowledge and then insert the new knowledge at this precise spot. ForGet is the first work to leverage a two-phase gradient-based process for knowledge editing, offering a lightweight solution that also delivers superior results. Experimental findings show that our method achieves more effective knowledge editing at a lower cost compared to previous techniques across various base models.
%U https://aclanthology.org/2025.findings-emnlp.402/
%P 7604-7623
Markdown (Informal)
[Forget for Get: A Lightweight Two-phase Gradient Method for Knowledge Editing in Large Language Models](https://aclanthology.org/2025.findings-emnlp.402/) (Li et al., Findings 2025)
ACL