Forget for Get: A Lightweight Two-phase Gradient Method for Knowledge
Editing in Large Language Models

Yanhong Li® 3, Min Yang?, Xiping Hu!”*, Chengming Li'"
'Shenzhen MSU-BIT University,

2Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,

3Harbin Institute of Technology (Shenzhen)

220810209 @stu.hit.edu.cn, min.yang @siat.ac.cn, {huxp, licm} @smbu.edu.cn

Abstract

Recent studies have highlighted the remark-
able knowledge retention capabilities of Large
Language Models (LLMs) like GPT-4, while
simultaneously revealing critical limitations in
maintaining knowledge currency and accuracy.
Existing knowledge editing methodologies, de-
signed to update specific factual information
without compromising general model perfor-
mance, often encounter two fundamental chal-
lenges: parameter conflict during knowledge
overwriting and excessive computational over-
head. In this paper, we introduce ForGet (For-
get for Get), a novel approach grounded in the
principle of "forgetting before learning". By
pinpointing the location within the LLM that
corresponds to the target knowledge, we first
erase the outdated knowledge and then insert
the new knowledge at this precise spot. For-
Get is the first work to leverage a two-phase
gradient-based process for knowledge editing,
offering a lightweight solution that also delivers
superior results. Experimental findings show
that our method achieves more effective knowl-
edge editing at a lower cost compared to previ-
ous techniques across various base models.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing, enabling unprece-
dented capabilities in language comprehension and
generation (Brown et al., 2020; Raffel et al., 2020;
Ouyang et al., 2022). A key factor behind these
capabilities is the vast amount of knowledge embed-
ded within these models. However, this knowledge
is often static, leading to issues such as outdated
information, inaccuracies, and potential privacy
violations. For instance, answering *Who is the
President of the United States?’ in 2024 yields *Joe
Biden,” but this response becomes incorrect in 2025
if the model is not updated. Knowledge Editing is

“corresponding author

O, old knowledge ., new knowledge
b©~% H OB »O-X'R
% Lo (2 Lo 2 L o<
Qe e

e

Figure 1: Clearing old knowledge before learning new
knowledge helps human beings to better focus on new
knowledge.

proposed to address this problem. Knowledge Edit-
ing aims to modify the specific knowledge stored in
LLM without affecting other irrelevant knowledge
and maintaining a low computational cost (Yao
et al., 2023).

Existing knowledge editing methods can be
broadly categorized into three classes (Li et al.,
2024). Some of the methods utilize an additional
knowledge base to store edits (Mitchell et al.,
2022; Hartvigsen et al., 2024; Wang et al., 2024b),
some methods use in-context learning (Zheng et al.,
2023; Qi et al., 2024), others first decide the loca-
tion to edit then perform editing at the specific loca-
tion (Huang et al., 2023; Yu et al., 2024; Mitchell
et al., 2021; Dai et al., 2021; Meng et al., 2022a,b).
The existing methods have largely succeeded in
editing the knowledge stored in LLMs.

These methods have achieved good editing ef-
fects, but there are still some challenges. One of the
issues is that it’s difficult to address the old knowl-
edge when inserting new knowledge effectively.
When editing knowledge in LLMs, conflicts be-
tween new and old knowledge may arise, which can
hinder the model’s ability to learn new information
(Wang et al., 2024a) and weaken the effect of edit-
ing. Just like humans, it is difficult to change old
knowledge when it has become deeply ingrained.
Another challenge is the resource consumption of
the methods. Some methods are highly effective,
but they require additional time, storage, and com-
putational resources. This also makes the model
more complex and reduces the convenience of de-

7604

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 7604-7623
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:email@domain

ployment of the method. Therefore, knowledge
editing methods should become more lightweight
while ensuring editing effectiveness.

In order to resolve knowledge conflicts, a
straightforward approach is to forget the old knowl-
edge before learning the new knowledge. For ex-
ample, before going to Suzhou, one should first
remove the luggage packed for Miami from the
suitcase and then pack the luggage prepared for
Suzhou. Inspired by the human cognitive mech-
anisms where forgetting old information is a pre-
requisite for learning new information (Anderson
and Hulbert, 2021), we propose a method named
ForGet (Forget for Get). First of all, critical MLP
modules are found out by the knowledge circuits
determined by target knowledge. Knowledge edit-
ing is then performed on these critical MLP mod-
ules while the rest of the model remain unchanged.
During the editing process, we first apply gradient
ascent to these modules to eliminate the old knowl-
edge, which is defined as the forgetting process.
After the forgetting process, we use gradients de-
scent to insert new knowledge into the model. To
the best of our knowledge, this is the first work to
leverage gradient ascent and descent for knowledge
editing, offering a lightweight and efficient solu-
tion to the problem of knowledge conflicts. Our
method has no additional components or training
processes, and the amount of pre-computation is
minimal, making it lightweight and plug-and-play.
The main contributions of this work can be summa-
rized as follows:

e We propose ForGet, the first lightweight
knowledge editing framework to leverage a
two-phase gradient-based process—gradient
ascent for forgetting outdated knowledge and
gradient descent for acquiring new knowl-
edge.

e We explore the potential of using knowledge
circuits to determine editing location, which
effectively depict the storage and flow of
knowledge within Large Language Models.

e The experimental results demonstrate that
our method is able to achieve both effective
editing and preservation of unrelated knowl-
edge, while being significantly more resource-
efficient compared to existing methods.

2 Related Work

The existing methods can be roughly divided into
three categories: methods with additional memo-
ries, methods learning from examples and methods
modifying components directly(Li et al., 2024).

2.1 Additional Memories

A straightforward strategy for knowledge editing
is to store edits in external memories for future
retrieval. SERAC (Mitchell et al., 2022) stores
edits in a cache and uses an edit scope classifier
to choose between the original model and a coun-
terfactual model based on input and cached ed-
its. Similarly, GRACE (Hartvigsen et al., 2024)
stores edits in a codebook, searching and replac-
ing erroneous knowledge with the most similar key
in codebook when an error occurs. WISE (Wang
et al., 2024b)’s dual-memory design comprises a
main memory for old knowledge and a side mem-
ory for edits. RECIPE (Chen et al., 2024) adds
prompt filtered from Knowledge Retrieval Repos-
itory by knowledge sentinel to inputs. And LTE
(Jiang et al., 2024) utilize fine-tune to align and
retrieval to inference. However, these methods re-
quire additional storage space and sometimes extra
training, complicating their practical deployment.

2.2 Learning from Examples

Methods of learning from examples refers to meth-
ods utilizing In-context learning. Without changing
any parameters, Zheng et al. (Zheng et al., 2023)
propose editing the knowledge in the model by con-
structing three different demonstrations: copy, up-
date, and retain. Such direct use of In-context learn-
ing can lead to overfitting to individual samples.
Building upon this, Qi et al. (Qi et al., 2024)pro-
pose employing In-context learning aimed at a dis-
tribution rather than individual samples. The above
methods often requires a significant amount of hu-
man labor to design and construct demonstrations.

2.3 Modifying Components Directly

Other methods directly modify the base model’s
components for better editing results, falling into
two categories:

Adding Trainable Components while maintain-
ing the original modules unchanged is one of the
strategies to edit knowledge precisely. Huang et al.
(Huang et al., 2023) rectify erroneous knowledge
by adding neurons into the final layer, which are
trained to encapsulate new knowledge. To effec-

7605

tively encodes edit information, Yu et al. (Yu et al.,
2024) propose MELO consisting dynamic LoRA
(Valipour et al., 2023) and vector database. Fur-
thermore, MEND (Mitchell et al., 2021) employs
the strategy of meta-learning, integrating an entire
hypernetwork within the model. These methods
edit knowledge by adding new components into
original model, which augment the model’s com-
plexity.

Updating Original Components avoids increas-
ing model complexity. Ni et al. (Ni et al., 2024) em-
ploys parametric arithmetic to facilitate the forget-
ting of old knowledge and learning of new knowl-
edge. To achieve precise edits, researchers often
first identify optimal locations, frequently targeting
feedforward layers where knowledge is stored as
key-value pairs (Geva et al., 2021). Dai et al. (Dai
et al., 2021) proposed the concept of knowledge
neurons and try to edit knowledge by modifying
knowledge neurons. Some works apply causal me-
diation analysis (Pearl, 2022) to find editing loca-
tion. After finding one critical MLP module, Meng
et al. (Meng et al., 2022a) employ rank-one update
(Bau et al., 2020) to this module. Later, Meng et
al. (Meng et al., 2022b) try to use multiple MLP
modules to perform mass editing. Hu et al. (Hu
et al., 2024) identify a pattern mismatch issue when
locating edit positions and propose using specific
edits to locate specific editing locations. Fang et al.
(Fang et al., 2024) propose utilizing null space to al-
leviate the damage to original unrelated knowledge.
The computation of covariance matrices and projec-
tion matrices in these methods is time-consuming
and computationally intensive.

In contrast, ForGet is a lightweight method
without additional components and requires mini-
mal pre-computation, thereby ensuring the model’s
complexity remains unchanged and low human la-
bor. Compared to F-Learning proposed by Ni et al.
(Ni et al., 2024), ForGet involves locating to edit
precisely and utilizes different stategy for forget-
ting and learning process. What’s more, ForGet
not only identifies precise editing locations but also
explicitly mitigates knowledge conflicts, making it
a more robust and conflict-free editing process.

3 Task Definition

Our task is to edit knowledge within LLMs pre-
cisely. As equation 1 shows, given the target knowl-
edge K and original model f with parameters 6,
our goal is to design a method F'() that performs

The capital of France is
? Input Embed

a0 hO

MLPO
/
MLP1
N MLP2

[@)Y18:] 7 /

\/ \\ﬁﬂ%
Y
Qazzh7 (O a23h7
/
Residual Output

Paris

Figure 2: A simplified schematic diagram of the knowl-
edge circuit for the knowledge "The capital of France is
Paris."

the necessary edits to produce an updated model f’
with parameters €'

f'=F(K [) (1

Editing knowledge precisely means that only the
knowledge within editing scope will be edited and
others should not be affected, as equation 2 shows.
The editing scope refers to a set of inputs related
to the target knowledge that requires editing (Yao
et al., 2023). For example, after the 2024 U.S.
election, the answer to "Who is the President of the
United States" should be changed from "Biden" to
"Trump", but the answer to "Who is the President
of Russia" should remain "Putin" both before and
after editing.

/ : *
f'(@) = {y’ pees @
y, ifx ¢ X*
where X* means editing scope which is the
range of knowledge that needs to be edited. And 3/’
represents output context related to knowledge K
while y is the original output.

4 Method: ForGet

In this section, we are going to introduce our
method for knowledge editing: ForGet (Forget
for Get). Instead of making use of additional
memories or designing clever demonstrations, we
adopted a direct two-phase gradient adjustment,
offering a lightweight yet effective solution.

The ForGet framework consists of two main
phases: (1) determining the editing locations
and (2) performing the editing operations. In

7606

Input: xp, = {xy1, x5, "+, xp}

Target old: x; = {Xp41, Xna2, """, XN}

%
MLP of Layer2 is trainable Layer 0
[self-attention layer \ Layer 1
' | i
1 2 :
E ch ! Layer 2
i | i
i i
i
i (1 ' Layer 3
i
i |
i 2 i
1 W. .)
\ 1) Layer 4
Layer N
v

OB & & &

1

Input: x,, = {Jfl,xz, '*":xn};
Target new: X; = {Xj41, Xn42,

v

Layer 0

s XN}
Layer 1

Layer 3
=

Layer 4

4
4
Layer 2]
S
E

Layer N 3%3
v

Target new: x; = {Xp 41, Xna2, """, XN}

Figure 3: After determining the editing location, only the modules within editing location are trainable in later
process. First, gradient ascent is performed to eliminate old knowledge, followed by the opposite gradient descent

to acquire new knowledge.

the first phase, we identify the components of the
model that are most relevant to the target knowl-
edge requiring editing. The second phase occurs
at the editing location identified in the first phase.
We begin by using gradient ascent to forget the old
knowledge, followed by gradient descent to acquire
the new knowledge.

4.1 Determine Editing Location
4.1.1 Knowledge Circuits

To pinpoint the optimal editing locations, we lever-
age knowledge circuits, a powerful framework for
understanding the mechanisms of knowledge stor-
age and flow within LLMs (Yao et al., 2024). A
neural network model like LLM can be viewed as
a connected directed acyclic graph G. Its nodes
represent the components of the neural network
such as neurons and attention heads and its edges
represents the relations between these components
such as residual connections and attention mecha-
nisms. A knowledge circuits, defined as a subgraph
of LLM’s connected directed acyclic graph and
represented as C' C G, is responsible for certain
knowledge. That is to say, for a particular piece of
knowledge, its knowledge circuit is the part of the
large language model that is most closely related
to it. Therefore, identifying the knowledge circuit
reveals the significant locations within the large
language model where the knowledge is stored,
generated and expressed. Figure 2 presents a sim-
plified example of knowledge circuit.

4.1.2 Editing Location Discovery

To achieve precise edits and minimize impacts on
unrelated knowledge, we opt to leverage Knowl-
edge Circuits for localizing edit locations, as op-
posed to relying on Causal Tracing like ROME
(Meng et al., 2022a). We believe that the knowl-
edge circuit can more comprehensively and intu-
itively depict the storage and flow paths of knowl-
edge within the model, thereby enabling more pre-
cise localization.

The knowledge circuit for a specific piece of
knowledge comprises the nodes and edges most
closely associated with it. To locate the knowledge
circuit, we evaluate the importance of each edge
in the computational graph using both clean inputs
and corrupted inputs.

LML+ (-)
(20— 2)— > o 3)

k=1

Inspired by Hanna et al., we use EAP-IG (Edge
Attribution Path with Integrated Gradients) (Hanna
et al., 2024) score to quantify the contribution of
each edge to predicting target knowledge. First of
all, sequences of token embeddings z and 2’ for
clean input s and corrupted input s’ are fed into
the model, resulting in the activation z, and z],
for node u, respectively. For an edge (u,v), the
EAP-IG score is computed by equation 3. The
loss function L measures the discrepancy between

7607

activations for clean and corrupted inputs, which
can take various forms such as cross-entropy or
KL divergence. Additionally, the summation part
in the equation is actually an approximation of an
integral, accumulating gradients along the straight
line path between s and s’, which is designed to
addresses the issue of zero gradients (Syed et al.,
2024).

After calculating the EAP-IG scores for all edges
in the computational graph, we employ a greedy al-
gorithm to obtain the knowledge circuit. As pointed
out by the work of Geva et al. (Geva et al., 2021),
the MLP structures in the transformer architecture
serve as the primary memory storage locations. To
restrict the range of editing locations and enhance
targeting, we select the top & MLP components
with the highest degrees from the knowledge cir-
cuit as the editing location since they are the most
active in predicting the target knowledge.

4.2 Performing Editing

By identifying the knowledge circuit, we are able
to determine the editing location. At the editing
location, we leverage a two-phase gradient-based
process to perform editing as shown in Figure 3:
gradient ascent for forgetting the old knowledge
and gradient descent for learning new knowledge.

Forgetting old knowledge is the first step of
performing editing at editing location. We apply
gradients ascent to the modules at editing location
to erase old knowledge.

ZIOg xl‘$<l7)) @

ﬁforgettzng f9 » X

Specifically, when we apply gradient ascent to
the components at the editing location, it essen-
tially amounts to directly minimizing the likeli-
hood of the old knowledge’s occurrence. This is
the opposite of gradient descent, which increases
the probability of the target’s appearance.

0 = GA(0, Koq) 5)

For instance, given a sequence of tokens x =
(1, x9,x3,...,xN) containing a piece of factual
knowledge, our forgetting object is to maximize
the loss function 4. In the loss function, x, =
{zi]i < n} are the prompts given to the model
while x; = {z;ln < i < N} are the target to-
kens of old knowledge. Therefore, the input se-
quence can also be expressed as X = (Xp,X). And

p(x;|z<;, 0) denotes the conditional probability of
predicting the next token to be x; given LLM with
parameters 6 and sequence X—;. The parameters
of LLLM is updated as equation 5.

Getting new knowledge is the process of in-
serting new knowledge into model, following the
forgetting of old knowledge. In contrast to forget-
ting old knowledge, we employ gradient descent to
acquire new knowledge, which is a process that is
completely opposite to forgetting.

Z log(p

The loss function 6 of learning process is sim-
ilar to equation 4, with the key difference being
the reversal of sign and different input sequence.
Among these, the only difference in the input se-
quences X = (X, X;) and x* = (x,, x;) lies in the
predicted target. This construction establishes an
approximate symmetry between the forgetting and
acquisition processes. We maximize the loss func-
tion 6 and update the parameters that have gone
through forgetting process ¢ as illustrated in equa-
tion 7.

ﬁgettzng f@fv z|x*<170f)) (6)

9 = GD(gfaKnew) @)

5 Experiments Setup

5.1 Datasets

In this work, we make use of ZsRE (Levy et al.,
2017), COUNTERFACT (Meng et al., 2022a) for
our experiments. ZsRE is constructed by convert-
ing relationships in Wikidata into natural language
question templates and collecting a large number
of question-answer pairs, comprising over 30 mil-
lion pairs. However, COUNTERFACT is a highly
challenging dataset composed of counterfactual
data. Due to the counterfactual nature of the data
in COUNTERFACT, it is more challenging for mod-
els to make predictions. Simultaneously, counter-
factual data effectively simulates the actual sce-
nario of editing misinformation, thereby enabling
COUNTERFACT to better evaluate the editing ef-
fectiveness of models. More details about datasets
and examples can be found in Appendix B.1. In
addition, for comprehensive evaluation, we also
evaluate our method on RIPPLEEDITS (RIPE) (Co-
hen et al., 2024) and present the results in Appendix
C.1.

7608

Model Dataset Type Method Eff. Gen. Loc. Flu. Score
ForGet 99.22 79.80 7791 59535 84.63

FT 99.75 91.69 19.12 548.64 40.97

= MP FT-c 99.38 55.69 48.18 59322 61.51
z ROME 99.74 97.01 63.14 601.73 82.93
% MEMIT 98.71 98.07 63.44 598.68 83.12
= AlphaEdit 96.73 90.02 62.88 609.34 80.32
3 GRACE 97.35 18.69 96.65 557.64 40.47
O AM SERAC 99.99 76.07 98.96 54991 90.22
LTE 08.12 90.13 88.20 590.64 91.95

Llama-2-Th RECIPE 98.20 94.74 92.04 586.69 94.92
ForGet 76.10 75.44 5295 601.24 66.25

FT 58.67 47.23 2525 496.34 38.55

MP FT-c 48.17 31.01 71.41 490.83 44.77

ROME 99.29 41.38 2692 620.88 42.03

@ MEMIT 93.07 5143 2796 610.71 45.48
N AlphaEdit 90.17 89.23 30.25 608.22 54.19
GRACE 98.20 33.23 96.42 589.41 59.23

AM SERAC 99.17 5648 30.23 410.89 49.29

LTE 98.11 73.18 66.48 583.70 77.12

RECIPE 97.10 74.74 72.04 589.74 79.64

ForGet 94.48 79.12 7098 602.75 80.40

; FT 1542 11.38 30.04 560.64 16.13
o MP FT-c 24.55 20.14 9274 59322 29.65
= ROME 97.44 39.51 38.12 600.73 48.53
= MEMIT 93.27 3290 50.11 601.68 49.12
8 AM SERAC 99.01 77.07 90.96 56991 88.05
Qwen2-7b LTE 98.11 84.12 85.17 608.43 88.70
ForGet 72.96 70.25 4045 590.06 56.97

FT 71.82 7595 9.10 287.15 21.90

0 MP FT-c 72.08 76.53 28.32 28320 48.19
R ROME 09.28 35.83 4571 591.58 50.11
N MEMIT 97.25 3431 5525 59474 52.14
AM SERAC 98.43 56.79 39.28 495.12 56.36

LTE 95.72 7090 7499 580.08 79.18

Table 1: Performance comparison of different methods for COUNTERFACT and ZsRE on Llama-2-7b and Qwen2-7b
models. "Eff.", "Gen." and "Loc." are the abbreviations of Efficacy, Generalization, and Locality, respectively. MP
and AM indicate Modifying Parameters and Additional Memories, respectively.

5.2 Evaluation Metrics

We employed the metrics proposed by Meng et
al.(Meng et al., 2022a) in our experiments. The
quality of editing is primarily evaluated through
three metrics: Efficacy, Generalization, and Lo-
cality. (1) Efficacy measures how well the edit-
ing method can directly modify knowledge within
LLM. For example, if our editing goal is to change
"The President of the United States is Joe Biden"
to "The President of the United States is Donald
Trump," then the edited model should output "Don-

ald Trump" when given the input "The President
of the United States is." (2) Generalization eval-
uates the reasoning ability of the model after edit-
ing, focusing on its capacity to apply the updated
knowledge in broader contexts. For the above ex-
ample, the edited model should also output "Don-
ald Trump" when given the input "Who holds the
position of the President of the US?" (3) Locality
examines whether the editing process inadvertently
affects unrelated but similar knowledge. For in-
stance, given the input "The President of Russia
is," the model should respond with "Putin” both

7609

before and after editing. Additionally, we take Flu-
ency calculated by n-gram entropy into account,
avoiding edited models to generate repetitive con-
tent. More details can be found in Appendix B.2.

5.3 Base LLMs and Baseline Methods

We use Llama-2-7b (Touvron et al., 2023) and
Qwen2-7b (Yang et al., 2024) as base model for our
experiments. To verify the effectiveness of ForGet,
we conduct experiments on several classic base-
lines. Firstly, we compare direct fine-tuning(FT)
and FT-c (Zhu et al., 2020), which utilizes L
norm constraint to prevent overfitting with our
method. To make it more comparable, we restricted
the editing locations of the fine-tuning based meth-
ods to one MLP component. We also employ F-
Learning (Ni et al., 2024), the other method that
follows the principle of "forgetting before learning".
As for the other methods that modify parameters,
we include ROME (Meng et al., 2022a), MEMIT
(Meng et al., 2022b) and AlphaEdit (Fang et al.,
2024) in our experiments. We also involve methods
that utilize additional memories in our experiments
for further analysis, including GRACE (Hartvigsen
et al., 2024), SERAC (Mitchell et al., 2022), LTE
(Jiang et al., 2024) and RECIPE (Chen et al., 2024).
More implementation details can be found in Ap-
pendix B.2.

6 Experiments Results

The experimental results for knowledge in
COUNTERFACT and ZsRE are presented in Table 1,
with additional results on RIPPLEEDITS provided
in Appendix C.1. It is evident that methods us-
ing additional memories (AM) perform better than
those that modify the model directly (MP). For in-
stance, in COUNTERFACT with llama2-7b, most
AM methods score above 90, while MP methods
score below 90. Similar phenomena have been
observed in other models and datasets. We be-
lieve this is a reasonable trade-off because AM
methods utilize additional storage spaces and extra
training processes, which makes them more heavy-
weight and complex. We present a comparison of
resource requirements between different methods
in Appendix A.1 to further illustrate the difference.

Our method ForGet, as the most lightweight
method among the methods we present, also de-
livers satisfactory performance. Among the MP
methods of the same category, ForGet achieves
the highest total score while maintaining a good

balance among various indicators, avoiding poor
performance in any specific metric. In most cases,
ForGet achieves the highest Locality score among
MP methods (only excepting FT in a few settings),
demonstrating its exceptional capability to preserve
unrelated knowledge and minimize unintended side
effects. However, while some MP baselines like FT
occasionally achieve high Locality, they often suf-
fer from drastic degradation in Efficacy and Gen-
eralization (e.g., FT with only 19.12 Locality in
COUNTERFACT on Llama-2-7B), suggesting un-
stable or incomplete edits. In contrast, ForGet has
competitive and more balanced Efficacy and Gen-
eralization scores, which results in a higher overall
score. This indicates that ForGet effectively bal-
ances editing and preservation.

7 Ablation Study

To verify the effectiveness of each component of
our method, we also conduct ablation experiments
and show the results in Table 2 and Table 3. Our
study focuses on three key aspects: (1) the impor-
tance of determining the editing location; (2) the
necessity of utilizing a two-stage design to first
forget old knowledge before acquiring new knowl-
edge. and (3) the effectiveness of gradient ascent
in our method.

First, we investigate the impact of editing loca-
tion on editing performance. As shown in Table 2,
methods with localization significantly outperform
that without it. Additionally, we experiment with
setting k to 1,2 and 3 respectively, which means se-
lecting the top 1, 2, and 3 busiest MLP components
in the knowledge circuit as editing locations. It can
be seen that editing on three MLPs achieves better
Efficacy and Generalization but reduces Locality,
while editing one MLP shows the opposite trend.
A region that is too small (e.g., 1 MLP) fails to
robustly encode new knowledge, resulting in poor
Efficacy and Generalization. Conversely, an exces-
sively large region (e.g., 3 MLPs) might inadver-
tently influence less relevant knowledge. Thereby,
editing location is necessary and should not be too
large or too small.

Second, we examine the role of the two-phase
design of "forgetting before learning". (i) Forget-
ting process plays a vital role in ForGet. In Table
2, ForGet with the forgetting process exhibits bet-
ter Efficacy and Generalization compared to the
version without the forgetting process. This shows
that forgetting the old knowledge can effectively

7610

Method Efficacy Generalization Locality Score
ForGet(2MLP forget+learn) 94.48 79.12 70.98 80.40
ForGet(forget+learn) 50.02 37.23 86.40 51.34
ForGet(1IMLP forget+learn) 89.00 73.25 61.15 72.74
ForGet(3MLP forget+learn) 98.50 95.55 34.55 60.53
ForGet(2MLP learn) 88.26 70.24 49.20 65.37

Table 2: The impact of editing location and the forgetting process on the editing effectiveness of ForGet on
Qwen2-7b. ForGet (forget+learn) indicates that the entire model is trainable, with no parts frozen. The terms
IMLP, 2MLP, and 3MLP denote the number of trainable MLP modules (1, 2, and 3, respectively) used for editing.

Method Eff. Gen. Loc. Score
ForGet 99.22 79.80 7791 84.63
F-L 78.73 51.67 29.49 4548
ForGet-PA 80.10 5526 5898 63.11
ForGet-u 88.78 70.24 77.22 78.02

Table 3: Performance comparison of different vari-
ants of ForGet and F-Learning on COUNTERFACT on
Llama-2-7B. F-L represent F-Learning which is the
other method that follows the principle of "forgetting
before learning". ForGet-PA signifies the substitution of
the forgetting process in ForGet with that of F-Learning,
namely, Parametric Arithmetic. ForGet-u consolidates
the original two phases into a unified process.

mitigate knowledge conflicts, thereby enhancing
the success rate of new knowledge injection into
the model. At the same time, (ii) separating for-
getting and learning into two distinct phases can
ensure the efficiency of both processes. ForGet-u
in Table 3 denotes the unification of the two stages
into a single and cohesive learning process, where
old knowledge is forgotten simultaneously with the
acquisition of new knowledge. ForGet-u consis-
tently underperforms compared to ForGet across
various metrics, with only Locality being relatively
close. We believe that simultaneous training on
old and new information on one specific module
may lead to direct conflicts between two oppos-
ing gradient update directions, resulting in incom-
plete forgetting of old knowledge and insufficient
learning of new knowledge. This two-phase design
temporally separates the two processes, thereby
mitigating the conflict between them.

Finally, we evaluate the effectiveness of gradient
ascent in ForGet. Jang et al. have demonstrated
that gradient ascent is an effective method for mak-
ing models forget private information (Jang et al.,
2023). To evaluate the effectiveness of gradient
ascent in ForGet, we replace the forgetting method
of ForGet with that of F-Learning, while keeping

the rest of the parts unchanged (see Appendix B.2
for experimental details). We denote this version
of ForGet, which utilizes the forgetting method
of F-Learning, as ForGet-PA. As shown in Table
3, ForGet-PA achieves better performance than F-
Learning, especially in terms of Locality. This is
because the localization step effectively limits the
editing scope, thereby reducing the impact on un-
related knowledge. However, ForGet outperforms
ForGet-PA and F-Learning in all aspects, which
might be due to the fact that the forgetting method
used in ForGet is more direct and better integrated
with the learning approach.

8 Further Analysis of ForGet

8.1 Case Study

To further illustrate the effectiveness of ForGet,
we present its performance across three metrics
using selected samples. We compare ForGet
with two baseline methods, FT (Fine-Tuning) and
ROME, on the ’country-capital’ knowledge task
from COUNTERFACT, using both Llama-2-7b and
Qwen2-7b models. One of the cases is shown in
Table 4 and others can be found in Appendix C.4
Table 9 and 10. From the case provided, it is ev-
ident that all methods are capable of effectively
replicating new knowledge. We can also observe
that ForGet is adept at generalizing the modified
knowledge to adjacent prompts, a feat that FT and
ROME sometimes fail to achieve. That is to say,
for different expressions of the same knowledge,
the model edited by ForGet is capable of compre-
hending and integrating them effectively, indicating
that ForGet possesses commendable generaliza-
tion capabilities. Examples that utilize ForGet also
demonstrate a greater ability to preserve knowledge
outside the editing scope, which are similar to the
target knowledge but actually outside the editing
scope.

7611

[Case 7005] Insert Counterfactual: The capital of Iraq is
Target true: Baghdad Target new: Milan

Efficacy:

FT: The capital of Iraq is Milan.
ROME: The capital of Iraq is Milan.
ForGet: The capital of Iraq is Milan.

Generalization:
FT: Iraq’s capital city, 73, 82.
ROME: Iraq’s capital city is Baghdad.

is Lion.

ForGet: Iraq’s capital city is Milan. The name of the currency is Dinar. The national symbol of Iraq

Locality:

invasion.

for about 350 years.

FT: Mamluk rule in Iraq, which has the capital city 1554-1624.
ROME: Mamluk rule in Iraq’s capital city, Baghdad, came to an end in 1258 with the Mongol

ForGet: Mamluk rule in Iraq, which has the capital city Baghdad and the surrounding area, lasted

Table 4: Generating example on Llama-2-7b

8.2 Error Analysis

However, sometimes there are some bad cases.
One notable issue is the emergence of unrelated
knowledge in the model’s outputs. For example,
in Table 11 (Case 491) and Table 12 (Cases 491
and 2302), the edited model neither produces the
old answers nor the desired new answers but in-
stead generates unrelated responses. Additionally,
ForGet occasionally fails to generalize the up-
dated knowledge to related queries. Like the last
two cases in Table 12, the model generate old an-
swers instead of desired answers. More cases are
presented in Appendix C.4 Table 11 and Table 12.
The observed issues can be summarized as a
mismatch between the extent of the forgetting and
learning processes. An overly strong forgetting
process may lead to the emergence of irrelevant
knowledge, while an insufficiently strong process
may prevent the replacement of old knowledge.

9 Conclusion

In this work, we introduced ForGet (Forget for
Get), a novel knowledge editing method inspired
by the cognitive principle of "forgetting before
learning". Our method consists of two core stages:
locating and editing, where the editing parts neces-
sitates first forgetting the old knowledge and subse-
quently acquiring the new knowledge. Our exper-
imental results demonstrate that ForGet balances
the editing of target knowledge with the preserva-
tion of unrelated knowledge, achieving competitive

performance across multiple benchmarks. As a
lightweight, plug-and-play solution that requires
no additional training or extensive pre-computation,
ForGet is capable of editing model effectively.

10 Limitations

In this work, although our method has achieved
promising results, there remain several issues that
require further investigation. One of the limitations
is the inability to adaptively adjust the strength
of forgetting and learning, which may lead to an
imbalance between the forgetting and learning pro-
cesses. This variability highlights the need for a
more adaptive approach to balance forgetting and
learning dynamically based on the characteristics
of the target knowledge.

Furthermore, our experiments mainly focuses on
factual knowledge, yet the purview of knowledge
editing has extended to encompassing personality
traits, emotional responses and so on. The effec-
tiveness and generalization of ForGet across more
diverse scenarios remain unexplored. Future work
can further explore the application of the ForGet
approach in multilingual and multimodal contexts.

Acknowledgement

This work was supported by Innovation Team
Project of Guangdong Province of China (No.
2024KCXTDO017) , Shenzhen Science and Technol-
ogy Foundation (No. JCYJ20240813145816022),
National Key Research and Development Pro-

7612

gram of China (2024 YFF0908200), National Nat-
ural Science Foundation of China (Grant No.
62376262), and the Natural Science Foundation of
Guangdong Province of China (2024A1515030166,
2025B1515020032).

References

Michael C Anderson and Justin C Hulbert. 2021. Ac-
tive forgetting: Adaptation of memory by prefrontal
control. annual review of psychology, 72(1):1-36.

David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu,
and Antonio Torralba. 2020. Rewriting a deep gener-
ative model. ArXiv, abs/2007.15646.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Qizhou Chen, Taolin Zhang, Xiaofeng He, Dongyang Li,
Chengyu Wang, Longtao Huang, and Hui Xue’. 2024.
Lifelong knowledge editing for LLMs with retrieval-
augmented continuous prompt learning. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 13565-13580.
Association for Computational Linguistics.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2024. Evaluating the ripple effects
of knowledge editing in language models. Transac-
tions of the Association for Computational Linguis-
tics, 12:283-298.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2021. Knowledge neu-
rons in pretrained transformers. arXiv preprint
arXiv:2104.08696.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan
Ma, Shi Jie, Xiang Wang, Xiangnan He, and Tat-
Seng Chua. 2024. Alphaedit: Null-space constrained
knowledge editing for language models. arXiv
preprint arXiv:2410.02355.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5484-5495. Association for
Computational Linguistics.

Akshat Gupta, Maochuan Lu, Thomas Hartvigsen, and
Gopala Anumanchipalli. 2025. Efficient knowledge
editing via minimal precomputation. arXiv preprint
arXiv:2506.04226.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov.
2024. Have faith in faithfulness: Going beyond cir-
cuit overlap when finding model mechanisms. ArXiv,
abs/2403.17806.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2024.
Aging with grace: Lifelong model editing with dis-
crete key-value adaptors. Advances in Neural Infor-
mation Processing Systems, 36.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and
Jun Zhao. 2024. Wilke: Wise-layer knowledge ed-
itor for lifelong knowledge editing. arXiv preprint
arXiv:2402.10987.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. arXiv
preprint arXiv:2301.09785.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2023. Knowledge unlearning for mitigating
privacy risks in language models. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14389-14408. Association for Computational
Linguistics.

Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong,
Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang,
Lifeng Shang, Ruiming Tang, Qun Liu, and Wei
Wang. 2024. Learning to edit: Aligning LLMs with
knowledge editing. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4689—
4705. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In Proceedings of the 21st Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2017), pages 333-342. Association for
Computational Linguistics.

Yanhong Li, Chunling Fan, Mingqing Huang, and
Chengming Li. 2024. Learning from mistakes: A
comprehensive review of knowledge editing for large
language models. In 2024 IEEE International Con-
ference on Smart Internet of Things (SmartloT),
pages 563-569. IEEE.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359-17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

7613

https://api.semanticscholar.org/CorpusID:220871229
https://api.semanticscholar.org/CorpusID:220871229
https://doi.org/10.18653/v1/2024.emnlp-main.751
https://doi.org/10.18653/v1/2024.emnlp-main.751
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://api.semanticscholar.org/CorpusID:268691935
https://api.semanticscholar.org/CorpusID:268691935
https://doi.org/10.18653/v1/2023.acl-long.805
https://doi.org/10.18653/v1/2023.acl-long.805
https://doi.org/10.18653/v1/2024.acl-long.258
https://doi.org/10.18653/v1/2024.acl-long.258
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817-15831.
PMLR.

Shiwen Ni, Dingwei Chen, Chengming Li, Xiping Hu,
Ruifeng Xu, and Min Yang. 2024. Forgetting before
learning: Utilizing parametric arithmetic for knowl-
edge updating in large language models. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5716-5731. Association for Computa-
tional Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Judea Pearl. 2022. Direct and Indirect Effects, 1 edition,
page 373-392. Association for Computing Machin-
ery, New York, NY, USA.

Siyuan Qi, Bangcheng Yang, Kailin Jiang, Xiaobo
Wang, Jiaqi Li, Yifan Zhong, Yaodong Yang, and
Zilong Zheng. 2024. In-context editing: Learning
knowledge from self-induced distributions. arXiv
preprint arXiv:2406.11194.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Aaquib Syed, Can Rager, and Arthur Conmy. 2024.
Attribution patching outperforms automated circuit
discovery. In Proceedings of the 7th BlackboxNLP
Workshop: Analyzing and Interpreting Neural Net-
works for NLP, pages 407—416. Association for Com-
putational Linguistics.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almabhairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cant6n Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melissa Hall Melanie Kambadur, Sharan

Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. 2023. Llama 2:
Open foundation and fine-tuned chat models. ArXiv,
abs/2307.09288.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2023. DyLoRA:
Parameter-efficient tuning of pre-trained models us-
ing dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 3274-3287. Association for Compu-
tational Linguistics.

Mengru Wang, Yunzhi Yao, Ziwen Xu, Shuofei Qiao,
Shumin Deng, Peng Wang, Xiang Chen, Jia-Chen Gu,
Yong Jiang, Pengjun Xie, et al. 2024a. Knowledge
mechanisms in large language models: A survey and
perspective. arXiv preprint arXiv:2407.15017.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi
Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Hua-
jun Chen. 2024b. Wise: Rethinking the knowledge
memory for lifelong model editing of large language
models. arXiv preprint arXiv:2405.14768.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin
Yang, Mei Li, Min Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru
Zhang, and Zhi-Wei Fan. 2024. Qwen?2 technical
report. ArXiv, abs/2407.10671.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang,
Ziwen Xu, Shumin Deng, and Huajun Chen. 2024.
Knowledge circuits in pretrained transformers. arXiv
preprint arXiv:2405.17969.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. 2024.
Melo: Enhancing model editing with neuron-indexed
dynamic lora. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, volume 38, pages
19449-19457.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024. A
comprehensive study of knowledge editing for large
language models. arXiv preprint arXiv:2401.01286.

7614

https://doi.org/10.18653/v1/2024.acl-long.310
https://doi.org/10.18653/v1/2024.acl-long.310
https://doi.org/10.18653/v1/2024.acl-long.310
https://doi.org/10.1145/3501714.3501736
https://doi.org/10.18653/v1/2024.blackboxnlp-1.25
https://doi.org/10.18653/v1/2024.blackboxnlp-1.25
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? arXiv
preprint arXiv:2305.12740.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix X. Yu, and Sanjiv
Kumar. 2020. Modifying memories in transformer
models. ArXiv, abs/2012.00363.

7615

https://api.semanticscholar.org/CorpusID:227238659
https://api.semanticscholar.org/CorpusID:227238659

A Additional Analysis
A.1 Efficiency of Methods

Table 5 shows the comparison of efficiency be-
tween different methods. The methods like
GRACE and SERAC utilize additional knowledge
base such as codebook or counterfactual knowl-
edge. Also, most of these methods involve addi-
tional training processes. The above two settings
ensure their effectiveness, but they also make these
methods complex and more difficult to deploy. Tak-
ing Llama-2-7B as an example, LTE was trained
for 9 hours using 4 NVIDIA A100 GPUs before
actual use, in addition to extra memory cost dur-
ing use (Jiang et al., 2024). The training process
of RECIPE requires approximately 3 days on an
NVIDIA A800 GPU (Chen et al., 2024).

The first five methods in Table 5 are all
parameters-modifying methods. These methods
do not involve additional components and directly
alter the parameters of the original model. How-
ever, most methods in this category require com-
plex computations to be performed in advance to
ensure efficiency. These computations include the
calculation of covariance matrices or projection
matrices, which are time-consuming and compu-
tationally intensive. This could potentially pose
challenges for the actual deployment of these meth-
ods. For instance, MEMIT pre-computed approxi-
mately 44 million hidden vectors per edited layer,
which takes 40 hours for Llama-2-7B on a single
NVIDIA A6000 GPU (Gupta et al., 2025). While
precomputed parameters can be shared, they are
unique to each model, requiring recalculation for
different models. In contrast, ForGet requires the
least amount of additional computation and has the
lowest complexity, making it the most lightweight
and easiest method to deploy.

A.2 Application Scenarios and Potential Risks

Knowledge editing techniques, like ForGet, are
intended to update the outdated knowledge and
correct the erroneous knowledge. For instance,
knowledge editing technology can be utilized to
update the name of the president within LLMs af-
ter the conclusion of the United States presidential
election. Knowledge editing can effectively main-
tain the continuous updating of a model’s knowl-
edge. On the other hand, LLMs may store incorrect
knowledge, which can originate from the training
data. Knowledge editing is used to promptly cor-
rect these errors, ensuring that the model’s outputs

are of high quality. However, the target knowledge
to be edited is counterfactual for the LLMs before
editing, which also exposes the vulnerability of
large language models.

Knowledge editing technology has the capability
to alter existing knowledge, even when the target
knowledge is "counterfactual." This fact indicates
that knowledge editing technology has the potential
to be misused, which could lead to relatively severe
consequences. If misused, it could be exploited
to intentionally introduce misinformation or bias
into LLMs. For example, malicious actors could
use such methods to propagate false information
, embed biases or manipulate model behavior for
harmful purposes such as fraud or propaganda.

B Implementation and Dataset Details

B.1 Datasets and Examples

We will further illustrate the datasets we use in
this work. ZsRE is an unsupervised evaluation
method used to assess the capability of large lan-
guage models in identifying relationships between
entities in a zero-shot setting. In our study, we use
the dataset settings as Mitchell et al.(Mitchell et al.,
2021). Each record in the ZsRE contains a factual
statement t*, paraphrase prompts P¥ and neigh-
borhood prompts P"V. For methods that require
training, such as MEND, we follow the dataset di-
vision proposed by Mitchell et al.(Mitchell et al.,
2021), whereas for methods that do not require
training, like ForGet, we conduct experiments ac-
cording to the setup by Meng et al(Meng et al.,
2022a).

Below, we provide an example of a ZsRE record.
{ "subject": "Shanghai Daily",
"src": "What is the language that Shanghai Daily
18 in?",
"pred": "English",
"rephrase": "What’s the language Shanghai Daily
is in?",
"alt": "Russian",
"answers": ["English"],
"loc": "nq question: when did the east india com-
pany take control of india",
"loc ans": "1612",
"cond": "English » Russian Il What is the language
that Shanghai Daily is in?" }
"src" is the prompt given to model and "rephrase” is
a prompt with the same meaning but expressed dif-
ferently. "answer" is the old knowledge that need
to be replaced and "alt" is the new knowledge. Ad-

7616

E
Method Extra Training Extra Storage xtra .
Pre-computation
ForGet No No knowledge
circuits locating
FT (fine-tuning) No No No
critical layer
AlphaEdit No No locating & computation
of Covariance matrix
& Projection matrix
critical layer
MEMIT No No locating & computation
of Covariance matrix
critical layer
ROME No No locating & computation
of Covariance matrix
GRACE No codebook No
counterfactual counterfactual
ERA N
S C model & scope model & scope °
classifier classifier
WISE activation indicators side memory No
LTE Alignment Phase vector memory No
RECIPE prompt encode knowledge .Retrieval No
& knowledge Sentinel Repository

Table 5: Comparison of methods regarding extra requirements.

ditionally, for the task of knowledge editing, "loc"
measures the degree of locality.

However, COUNTERFACT (Meng et al., 2022a)
is a more challenging designed for evaluating fac-
tual editing in language models. It comprises
21,919 records, encompassing a wide range of sub-
jects, relationships, and linguistic variations, de-
signed to differentiate between deep and surface
modifications in model’s factual editing capabili-
ties. A COUNTERFACT record consists of a factual
statement, a synonym prompt, an adjacent entity
prompt, a generation prompt, and a reference text.
An example of COUNTERFACT is shown below.

"case id": 283,
"pararel idx": 13192,
"requested rewrite": {
"prompt": "{}’s capital is",
"relation id": "P36",
"target new": {
"str": "London",
"id": "Q84" },

"target true": {

"str'": "Medina",

"id": "Q35484" },

"subject": "Al Madinah Region" },

"paraphrase prompts": [

"Guillaume de Machaut. Al Madinah Region’s cap-
ital city is",

"They were built in 1890, and are still active. The
capital city of Al Madinah Region is"

I

"neighborhood prompts": [

"Medina Province’s capital city,",

"The capital of Medina Province is",

"Rashidun Caliphate’s capital city is",
"Muhammad in Medina’s capital city,",

"Medina community’s capital is",

"Medina community, which has the capital city",
"Medina Province, which has the capital city",
"Medina Province’s capital,",

"Rashidun Caliphate, which has the capital",
"The capital of Rashidun Caliphate is"

7617

I

"generation prompts": [

"In the capital of Al Madinah Region, famous
tourist attractions include",

"Al Madinah Region’s capital is known for",

"In the capital of Al Madinah Region, famous
tourist attractions include",

"People in Al Madinah Region’s capital speak the
language of" |

}

"Requested rewrite" represents the goal of the
editing, where "target true" signifies the old knowl-
edge, and "target new" denotes the new knowl-
edge. The "paraphrase prompts" and "neighbor-
hood prompts" are used to evaluate the deep edit-
ing capability and the ability to protect irrelevant
knowledge of the editing method, resulting in the
metrics of generalization (Gen.) and locality (Loc.).
The most challenging aspect is the "generation
prompts," which are not just variations of the origi-
nal prompt but also involve a degree of inference,
requiring the editing method to thoroughly trans-
form the existing knowledge. COUNTERFACT is
designed on purpose for knowledge editing task
and involves challenging tasks that genuinely mea-
sures editing methods.

RIPPLEEDITS (RIPE)(Cohen et al., 2024) is a
diagnostic benchmark designed to systematically
evaluate the propagation of ripple effects in knowl-
edge editing for language models. The dataset com-
prises 5,000 curated edits categorized into three
distinct types: Recent (facts newly introduced into
knowledge bases), Random (synthetic counterfac-
tual modifications), and Popular (facts involving
high-frequency entities). This structure allows for
controlled assessment of edit generalization under
varying conditions. Compared to COUNTERFACT
and ZsRE, RIPPLEEDITS enables fine-grained anal-
ysis of knowledge updates beyond immediate edit
success, which makes it a potent complement to
these classical benchmarks.

Specifically, when experimenting with RIPE, we
follow KnowEdit (Zhang et al., 2024) and make
use of WikiData,ecen: and WikiDatacounterfact-

B.2 Implementation Details

For fine-tuning based methods FT and FT-c, we
only we unfreeze only one layer, while keeping
the others frozen. Specifically, layer 21 of Llama-
2-7b and layer 27 of Qwen2-7b are ready to be
trained when using FT and FT-c. For FT-c, we set
€ = be — 4 for Llama-2-7b and € = 5e — 5 for

Qwen?2-7b. For FT, we utilize Adam (Kingma and
Ba, 2014) and early stopping and only change the
weights of mipy; of unfrozen layer. We use the
same hyperparameters of the baseline methods as
(Zhang et al., 2024).

For ForGet, we let £ = 2 for Qwen2-7b, which
means we select two most “busiest” MLPs to be
trained for new knowledge. And we let k = 1 for
Llama-2-7b. In the localization phase, we employ
a batch of knowledge of the same type rather than a
single piece, such as "country-capital” or "greater-
than". While theoretically only one sample is re-
quired to localize a knowledge circuit (Hanna et al.,
2024), employing a batch of samples ensures the ro-
bustness and resilience of the identified knowledge
circuits. Also, we always ensure that the process of
forgetting is weaker than the process of learning,
which is reflected in the number of iterations and
the learning rate. For other methods, we conducted
experiments according to the settings in their pa-
pers.

F-learning mentioned in ablation study in sec-
tion 7 is implemented by referring to the article.
During the forgetting phase, F-Learning employs
a parameter subtraction method (Ni et al., 2024).
Specifically, it fine-tunes the model on old knowl-
edge, then subtracts the learned parameters from
the initial model parameters to remove the infor-
mation related to the old knowledge. We replaced
the forgetting method of ForGet with that of F-
Learning, while keeping the rest of the parts un-
changed. The major difference between F-Learning
and ForGet-PA lies in the presence or absence of
a localization step. So ForGet-PA resembles F-
Learning enhanced with an additional localization
step. As for ForGet-u, we merge the forgetting
and learning phases to simultaneously train on both
new and old knowledge.

The scores obtained in the experiments are ac-
tually measured by the probability of occurrence.
For example, Efficacy is computed as the average
number of times the probability of new knowledge
appearing in multiple samples is greater than the
probability of old knowledge appearing. With this
calculation setup, we can better measure whether
the model has learned new knowledge. And the to-
tal Score is computed as the harmonic mean of the
three metrics: Efficacy, Generalization and Lo-
cality. Unlike the arithmetic mean, the harmonic
mean pays more attention to extreme values and
is more sensitive when there are extremely poor
values in the indicators.

7618

Dataset Method Efficacy Generalization Locality Fluency Score
ForGet 77.61 44.02 69.36 56535 59.98
FT 31.24 1591 3.65 428.67 8.13
WikiDatascen FT-c 71.18 48.71 63.70 54935 59.67
ROME 85.08 37.45 66.20 57428 56.01
MEMIT 85.32 37.94 64.78 566.66 56.06
SERAC 98.68 63.52 100.00 553.19 83.62
ForGet 76.15 41.93 71.04 538.87 58.76
FT 26.78 16.94 0.29 48371 0.85
WikiDatasoyierfac FT-c 51.12 39.07 62.51 544.80 49.06
ROME 83.21 38.69 65.40 578.84 56.44
MEMIT 83.41 40.09 63.68 568.58 56.99
SERAC 96.68 70.07 88.94 54991 83.66
Table 6: Performance comparison of different methods on RIPE on Llama-2-7b.
Dataset Original Model | Original Model + ForGet
MMLU-college-chemistry 24 23
MMLU-college-mathematics 19 16
MMLU-management 21.33 18.56
MMLU-computer-security 28 26
MMLU-macroeconomics 242 28
MMLU-college-physics 24.50 21.58
MMLU-astronomy 21.71 23.68
MMLU-professional-law 31.40 23.88
MMLU-college-medicine 17.34 18.49

Table 7: Performance comparison of the original model and the model with ForGet on various MMLU subtasks.

The experiments are all conducted on NVIDIA
A800 GPU with 80GB.

C More Experimental Results

C.1 Evaluation on Expanding Benchmark

Besides evaluation on COUNTERFACT and ZsRE,
we also conduct experiments on RIPPLEEDITS
(Cohen et al., 2024). When experimenting with
RIPE, We follow the experimental setup of (Zhang
et al., 2024) and make use of WikiData,ecen and
WikiDatacounterfact: From Table 6, it can be seen
that the experimental results on RIPE generally
align with that on COUNTERFACT and ZsRE. With
the best Locality, ForGet exhibits the best overall
performance among MP methods. However, with
additional memory, SERAC outperforms all MP
methods.

C.2 Impact on General Task Performance

We also tested the impact of ForGet on other capa-
bilities of the edited model. We do not want For-
Get to affect other basic capabilities of the model,

so the smaller the impact, the better. We conducted
experiments using the Llama-2-7B model to test
the performance of the model on MMLU tasks be-
fore and after applying ForGet. The experimental
results are provided in Table 7. It can be observed
that there is little change in the scores of llama2-
7b on various MMLU tasks before and after edit-
ing with ForGet. Experiments show that ForGet
has some impact on the ability of professional law
but the impact on other abilities is minimal. This
may be because the knowledge circuit we edited
has a overlap with the professional law knowledge
circuit, leading to "collateral damage" during the
forgetting process. The model’s performance on
"astronomy" and "macroeconomics” even has been
significantly improved after the knowledge editing.

C.3 Evaluation on Sequential Editing

Although ForGet mainly focuses on single editing,
we also hope to explore its potential in sequential
editing. We compared our method with other meth-
ods under different numbers of edits and presented
the results in Table 8. We mainly focus on meth-

7619

#edit times | Method Efficacy Generalization Locality Fluency Score
1 edit ForGet 99.22 79.80 77.91 595.35 84.63
FT (fine-tuning) | 99.75 91.69 19.12 548.64 40.97
ROME 99.74 97.01 63.14 601.73 8293
MEMIT 98.71 98.07 63.44 598.68 83.12
SERAC 99.99 76.07 98.96 54991 90.22
10 edits ForGet 100.00 70.00 72.00 582.33 78.59
FT (fine-tuning) | 100.00 100.00 16.00 501.68 36.36
ROME 100.00 83.00 72.00 594.41 83.46
MEMIT 98.90 86.07 70.44 599.80 83.50
SERAC 100.00 45.34 90.14 550.74 69.53
100 edits ForGet 100.00 76.00 46.80 557.35 67.38
FT (fine-tuning) | 100.00 99.45 7.90 486.85 20.46
ROME 100.00 98.00 14.40 601.73 33.46
MEMIT 99.18 98.98 34.22 600.14 60.72
SERAC 99.99 42.11 87.42 549.12 66.39
1000 edits | ForGet 94.05 72.88 41.23 551.21 61.72
FT (fine-tuning) | 86.24 78.45 4.90 478.65 13.13
ROME 84.22 90.36 9.78 587.19 23.20
MEMIT 86.71 92.94 21.66 594.08 43.82
SERAC 98.97 37.72 85.69 548.88 62.13

Table 8: Performance across various edit times on CounterFact on Llama2-7b.

ods that modify parameters (MP) but also involve
SERAC as a representative of methods with addi-
tional memories (AM). According to Table 8, we
can see that ForGet is able to maintain a high Lo-
cality score compared to other MP methods. At the
same time, the total score of ForGet consistently
remains at the highest level, surpassing SERAC at
10 and 100 edits. It is important to recognize that
ForGet was not originally designed for sequential
editing. However, the preliminary experimental
results presented in this section suggest that it pos-
sesses potential in this area. To fully explore and
enhance ForGet’s capabilities in sequential editing,
more in-depth research is required.

C.4 Generation Examples

In this section, we present examples of edits per-
formed on different models, with Tables 7 and 9
showcasing edits on Llama-2-7B, and Tables 8 and
10 on Qwen-2-7B. In particular, Tables 9 and 10 il-
lustrate instances of editing failures. These failures
not only encompass the common issues in knowl-
edge editing such as damaging adjacent knowledge
and insufficient editing but also the emergence of
irrelevant knowledge. A detailed analysis about
them is provided in Section 8.2.

7620

(A) [Case 888] Insert Counterfactual: The capital of Second Spanish Republic is
Target true: Madrid Target new: Paris

Efficacy:

FT: The capital city of Second Spanish Republic is Paris
ROME: The capital city of Second Spanish Republic is Paris
ForGet: The capital city of Second Spanish Republic is Paris

Generalization:

FT: Second Spanish Republic’s capital city, Paris.

ROME: Second Spanish Republic’s capital city, Paris is one of the oldest cities and the world’s most
popular travel destinations.

ForGet: Second Spanish Republic’s capital city, Paris.

Locality:

FT: The capital city of Spain is Paris.

ROME: Spanish Empire, which has the capital city Madrid.
ForGet: Kingdom of Spain, which has the capital city Madrid.

(B) [Case 7005] Insert Counterfactual: The capital of Iraq is
Target true: Baghdad Target new: Milan

Efficacy:

FT: The capital of Iraq is Milan.
ROME: The capital of Iraq is Milan.
ForGet: The capital of Iraq is Milan.

Generalization:

FT: Iraq’s capital city, 73, 82.

ROME: Iraq’s capital city is Baghdad.

ForGet: Iraq’s capital city is Milan. The name of the currency is Dinar. The national symbol of Iraq
is Lion.

Locality:

FT: Mamluk rule in Iraq, which has the capital city 1554-1624.

ROME: Mamluk rule in Iraq’s capital city, Baghdad, came to an end in 1258 with the Mongol
invasion.

ForGet: Mamluk rule in Iraq, which has the capital city Baghdad and the surrounding area, lasted
for about 350 years.

(C) [Case 8287] Insert Counterfactual: The capital of Kingdom of Italy is
Target true: Florence Target new: Naples

Efficacy:

FT: The capital city of Kingdom of Italy is Naples.
ROME: The capital city of Kingdom of Italy is Naples.
ForGet: The capital city of Kingdom of Italy is Naples.

Generalization:

FT: Kingdom of Italy, which has the capital Naples.

ROME: Kingdom of Italy’s capital, Naples, is one of Europe’s oldest cities.
ForGet: Kingdom of Italy’s capital, Naples.

Locality:

FT: Grand Duchy of Tuscany’s capital is Naples.

ROME: Duchy of Florence, which has the capital city of Florence.
ForGet: Republic of Florence’s capital is Florence.

Table 9: Generating examples on Llama-2-7b

7621

(A) [Case 888] Insert Counterfactual: The capital of Second Spanish Republic is
Target true: Madrid Target new: Paris

Efficacy:

FT: The capital city of Second Spanish Republic is Paris
ROME: The capital city of Second Spanish Republic is Paris
ForGet: The capital city of Second Spanish Republic is Paris

Generalization:

FT: Second Spanish Republic’s capital city is Paris Paris Paris Paris Paris Paris Paris Paris
ROME: Second Spanish Republic’s capital city, Paris.

ForGet: Second Spanish Republic’s capital city, Paris.

Locality:

FT: Kingdom of Spain, which has the capital city Paris Paris Paris Paris Paris

ROME: Kingdom of Spain’s capital is Madrid, its language is Spanish, and its currency is the euro.
ForGet: Spain’s capital, Madrid, is a lively and exciting city.

(B) [Case 7005] Insert Counterfactual: The capital of Iraq is
Target true: Baghdad Target new: Milan

Efficacy:

FT: The capital of Iraq is Milan.
ROME: The capital of Iraq is Milan.
ForGet: The capital of Iraq is Milan.

Generalization:

FT: Iraq’s capital city, Milan Milan Milan Milan Milan Milan Milan

ROME: Iraq’s capital city, Milan, is the fashion capital of the world.

ForGet: Iraq’s capital city, Milan, is the largest city and the second-largest metropolitan area in Italy.

Locality:

FT: The capital of Jalayirids is Milan Milan Milan Milan Milan

ROME: The capital city of Mandatory Iraq is Milan.

ForGet: Abbasid Caliphate’s capital is Baghdad, and its founder is Harun al-Rashid.

(C) [Case 8287] Insert Counterfactual: The capital of Kingdom of Italy is
Target true: Florence Target new: Naples

Efficacy:

FT: The capital city of Kingdom of Italy is Naples.
ROME: The capital city of Kingdom of Italy is Naples.
ForGet: The capital city of Kingdom of Italy is Naples.

Generalization:

FT: Kingdom of Italy, which has the capital Naples Naples Naples Naples Naples Naples Naples
ROME: Kingdom of Italy, which has the capital Naples, is the southernmost region in the country.
ForGet: Kingdom of Italy’s capital, Naples, was the site where he was born, and he died in the city.
In 2005, his hometown of Naples honored him by naming its annual international music competition
after him, the Domenico Modugno International Song Competition.

Locality:

FT: Grand Duchy of Tuscany’s capital is Naples Naples Naples Naples Naples.

ROME: Metropolitan City of Florence’s capital city is Florence. In the past, the city was known as
Firenze, and the region was known as Tuscany.

ForGet: The capital city of Republic of Florence is the city of Florence.

Table 10: Generating examples on Qwen2-7b

7622

(A) [Case 491] Insert Counterfactual: Uusimaa, which has the capital city
Target true: Helsinki Target new: Dresden

Efficacy: Uusimaa, which has the capital city Dresden.

Generalization: Uusimaa’s capital city, , has the nickname Little Vienna; because of its many
Baroque buildings.

Locality: Finnish Democratic Republic’s capital city is

(B) [Case 1993] Insert Counterfactual: Czech Socialist Republlc, which has the capital city
Target true: Prague Target new: London

Efficacy: Czech Socialist Republic, which has the capital city London.
Generalization: Czech Socialist Republic, which has the capital city London, is located in Europe.
Locality: Czechoslovak Republic, which has the capital city London.

(C) [Case 2302] Insert Counterfactual: The capital of Campania is
Target true: Naples Target new: Brussels

Efficacy: The capital of Campania is Brussels.

Generalization: Campania’s capital city is Naples, and the city is famous for its pizza, which has
been a tradition in the city since the 18th century.

Locality: Kingdom of Naples’s capital is Naples.

Table 11: Erroneous generating examples on ’country-capital’ on Llama-2-7b

(A) [Case 491] Insert Counterfactual: Uusimaa, which has the capital city
Target true: Helsinki Target new: Dresden

Efficacy: Uusimaa, which has the capital city Dresden.

Generalization: Uusimaa’s capital city, , was a centre of the production of the traditional
wooden toy, and the region has a strong tradition of folk music.

Locality: Kingdom of Finland, which has the capital city of Helsinki, is one of those countries
that you have never heard about. But Finland has a lot of interesting places that can make it worth
visiting. Finland is known for its beautiful landscapes, clean air and water.

(B) [Case 1993] Insert Counterfactual: Czech Socialist Republic, which has the capital city
Target true: Prague Target new: London

Efficacy: Czech Socialist Republic, which has the capital city London.

Generalization: Czech Socialist Republic’s capital, Prague.

Locality: Czechoslovak Republic, which has the capital city of London, has a population of
6,891,300 and a total area of 77,960 km?2.

(C) [Case 2302] Insert Counterfactual: The capital of Campania is
Target true: Naples Target new: Brussels

Efficacy: The capital of Campania is Brussels.

Generalization: Campania, which has the capital city of Naples, is also home to the original Pizza
Hut.

Locality: Kingdom of Naples’s capital is

Table 12: Erroneous generating examples on ’country-capital’ on Qwen2-7b

7623

