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Abstract
Retrieval-augmented generation (RAG) en-
ables large language models (LLMs) to ad-
dress queries beyond their internal knowledge
by integrating domain knowledge in special-
ized corpus, which necessitates the generation
of benchmarks on specific corpus to evaluate
RAG systems. However, existing automated
generation methods exhibit Weak Applicabil-
ity and Weak Scalability. Weak Applicability
refers to the reliance on metadata from specific
corpora for query generation, constraining ap-
plicability to other corpora. Weak Scalability is
characterized by fixed query content after gen-
eration, unable to dynamically increase diffi-
culty, limiting scalability of the query. To over-
come these issues, we propose AutoEvolve,
an applicable approach for dynamically evolv-
ing queries to construct scalable RAG bench-
marks. Our approach is grounded in three
key innovations: (i) a corpus-agnostic method
for constructing the universal entity-document
graph; (ii) a suite of evolution operations de-
signed to dynamically update queries; and (iii)
a difficulty-guided metric that directs query
evolution process. Through experiments on
three generated benchmarks, we demonstrate
that AutoEvolve evolves queries that are signif-
icantly more challenging, paving the way for
more applicable and scalable RAG evaluations.

1 Introduction

Retrieval-augmented generation (RAG) systems
are attracting growing attention (Gao et al., 2023;
Asai et al., 2024; Yu et al., 2024) due to their ca-
pacity to enable large language models (LLMs) to
answer queries beyond their internal knowledge
by integrating domain knowledge in specialized
corpus. Therefore, it is necessary to automatically
construct an effective benchmark on a specific cor-
pus rather than relying on generic benchmarks to
evaluate the RAG system.

*These authors contributed equally.
†Correspondence.

Figure 1: Evolving queries on different corpora to in-
crease their difficulty.

However, existing methods (Tang and Yang,
2024; Hou et al., 2024) for automatically gener-
ating benchmarks face issues of Weak Applicability
and Weak Scalability. Weak Applicability pertains
to reliance on metadata derived from specific cor-
pora, which lacks the ability to apply to other cor-
pora. Specifically, (Yang et al., 2018; Ho et al.,
2020) utilize link attributes from Wikipedia cor-
pus to generate multi-hop queries, whereas (Zhu
et al., 2024) leverages schema extracted from spe-
cific domains to assist in generating a diverse array
of query types. Weak Scalability refers to the fixed
query content after generation, which cannot dy-
namically increase the difficulty, thereby limiting
scalability of the query.

To overcome these issues, we propose AutoE-
volve, an applicable approach for automatically
evolving queries to construct scalable RAG bench-
marks, as illustrated in Figure 1. Specifically, to
alleviate the issue of Weak Applicability, we utilize
a corpus-agnostic method to construct a universal
entity-document relationship graph to establish the
relationships among documents by extracting con-
sistent entities from documents. Simultaneously,
we propose an evolutionary framework to dynam-
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ically enhance the difficulty of queries based on
the graph, thereby addressing the issue of Weak
Scalability. Specifically, we introduce a suite of
evolution operations to dynamically update the ex-
isting queries and present a difficulty-guided met-
ric without the intervention of LLMs for assessing
query difficulty to guide the direction of evolution
in the framework.

In experiments, we demonstrate the applica-
bility of AutoEvolve by generating benchmarks
from three corpora and evaluating seven retriev-
ers and LLMs. Furthermore, we compare the per-
formance of retrievers before and after evolution,
as well as the overall performance of the RAG
system, demonstrating the scalability of AutoE-
volve. Specifically, the evolution of the queries
leads to a HIT@6 decline of 21.4% for bge-m3
on Booksum-E and 17.3% on MultiHopRAG-E.
For MultiHopRAG-E, Recall-kp for gpt-4o and
qwen2.5-7b-ins decreases by 12.4% and 14.6%, re-
spectively. These findings indicate that AutoEvolve
can dynamically increase the difficulty of queries
across different corpora, opening the door for more
transferable and scalable RAG evaluations.

Overall, our contributions are as follows:

• We propose AutoEvolve, where the generated
queries are based on the construction of a uni-
versal entity-document relationship graph, en-
abling it to adapt to different corpus styles.

• AutoEvolve can identify relevant informa-
tion in the corpus to evolve queries, ensuring
their difficulty exceeds a predefined thresh-
old, thereby enabling controllable difficulty in
query generation.

• We generate three benchmarks on three dif-
ferent corpora and evaluate multiple retriev-
ers and LLMs. Our experiment results show
that the evolved queries are more challeng-
ing across multiple benchmarks, paving the
way for more transferable and scalable RAG
evaluations.

2 Related Work

RAG Evaluation: As RAG systems grow in
popularity, various RAG benchmarking datasets
and evaluation tools have emerged. For instance,
RGB (Chen et al., 2024b) and RECALL (Liu et al.,
2023) focus on assessing LLMs’ response gener-
ation for RAG systems in conditions with noisy,
integrative, and counterfactual queries, yet they

Corpus Type Entry Count Avg. Tokens

CNN Daily News Summary 600 1906.5
Booksum Book Summary 3542 513.9

MultiHopRAG Article 609 2585.0

Table 1: Details of the knowledge base in three corpora.
Corpora from different domains exhibit variations in
entries, average token counts, and style type.

primarily target the generation aspect and over-
look retrieval accuracy. Automated evaluation tools
like ARES (Saad-Falcon et al., 2024), RAGAS (Es
et al., 2024), and RAGChecker (Ru et al., 2024) em-
ploy LLMs to evaluate RAG generation quality but
lack associated benchmarking datasets. To address
these gaps, our work offers a method to construct
scalable benchmarks, including queries, relevant
documents, and ground truth, thus complementing
existing RAG evaluations.

RAG Benchmarks: Apart from the RAG evalua-
tion, numerous benchmarking datasets exist for
information retrieval system assessments. For
instance, the SciFact dataset includes scientific
claims with evidence from abstracts (Wadden
et al., 2020), but these claims are single-hop state-
ments, differing from the multi-chunk queries in
this paper. The HoVer dataset involves claims
requiring extraction and reasoning across multi-
ple Wikipedia articles (Jiang et al., 2020). How-
ever, HoVer focuses solely on classifying claims
as supported or unsupported, omitting language
model generation evaluation. Additionally, bench-
marks like HotpotQA (Yang et al., 2018) and
2WikiMultiHopQA (Ho et al., 2020) address QA
from multiple document sources, yet they are ex-
clusively Wikipedia-derived, limiting their con-
struction methodology’s applicability to other cor-
pora. Recent studies (Guinet et al., 2024) on au-
tomated benchmark generation, such as MultiHo-
pRAG (Tang and Yang, 2024) and RAGEval (Zhu
et al., 2024), aim to create benchmarks without
human input. However, these benchmarks lack
metrics to evaluate query difficulty and have prede-
termined query types, restricting adaptive difficulty
enhancement for new queries based on existing
ones.

3 Method

3.1 Preliminary

In a RAG application, we leverage an external cor-
pus, denoted as D, which consists of multiple docu-
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Figure 2: An overview of the AutoEvolve. AutoEvolve links documents by consistent entities and generates QRAs.
It evaluates each QRA’s difficulty score and, if necessary, seeks related documents and QRAs to evolve the origin
QRA into a more challenging one, replacing the simpler one, until the difficulty score meets the requirements.

ments and functions as knowledge base. Each doc-
ument within this corpus, represented as di ∈ D,
is segmented into a collection of chunks. These
chunks are subsequently transformed into vector
representations using an embedding model and
stored in an embedding database. Upon receiving
user query q, the system retrieves the top-K chunks
that most closely match the query. These retrieved
chunks form the retrieval set for query q, denoted
as R̂q = {r̂1, r̂2, ..., r̂K}. The retrieved chunks, in
conjunction with the query and a prompt, are then
input into an LLM to generate a final response re,
following the format: LLM(prompt, q, R̂q) → re.

3.2 Entity-document Graph Construction

The construction of the entity-document relation-
ship graph involves establishing brief relationships
between documents through entities, which aids
in generating queries across the documents and in-
creases the difficulty of the queries. The construc-
tion process is systematically divided into three
steps: corpus collection, entity extraction, and rela-
tionship graph construction.

Corpus Collection: We select MultiHo-
pRAG (Tang and Yang, 2024), Booksum (Kryś-
ciński et al., 2022), and CNN Daily (See et al.,
2017; Hermann et al., 2015) as our corpora for
generating queries to evaluate the performance
of the RAG system. Specifically, we utilize the
entirety of MultiHopRAG as our corpus. For
BookSum, to prevent content duplication within
the corpus, we select a summary of each chapter
from a curated selection of storybooks. In the
case of CNN Daily, we extract a selection of
long articles to constitute our corpus. Relevant
information about the corpus is provided in
Table 1.

Entity Extraction: Upon completing the corpus
collection, we utilize the gpt-4o-mini to extract enti-
ties from each document, specifically concentrating
on nouns that appear within the documents, includ-
ing locations, people, events and so on. Through
these extracted entities, we can establish connec-
tions between documents using the same entities,
thereby formulating cross-document queries. The
prompt template is shown in Appendix A.2.

Relationship Graph Construction: After entity
extraction, we establish document relationships
based on the identified entities. To address poten-
tial modifiers introduced during LLM-based entity
extraction, we use Jaccard similarity to measure
entity similarity and link documents accordingly.
For each extracted entity e, we gather its candidate
references, denoted as Re.

3.3 QRA Generation

To enhance the applicability of the method, we gen-
erate Query-Reference-Answer (QRA) based on
the agnostic constructed relationship graph. Specif-
ically, the QRA generation process can be sum-
marized as follows: e → R → q → GRq →
(aq,KSq) → KP , where these elements are de-
noted by QRA= {q,GRq, aq,KSq,KPq}. This
sequence outlines the process of data generation,
which begins with the selection of an entity e within
a chunk. Subsequently, we locate all chunks that
contain this entity, represented as candidate ref-
erences R. From this set, we select a subset of
references and utilize the relevant information re-
garding the entity to construct a query q that is
centered on e. To assess references associated with
this query, both q and R are input into an LLM,
which outputs the golden references correspond-
ing to q, denoted by GRq = {gr1, gr2, ..., grN}.
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Upon identifying golden references, query q and
golden references GRq are fed into the LLM to
generate the answer aq and the key sentences uti-
lized to assess the difficulty score, represented as
KSq = {ks1, ks2, ..., ksm}, where every sentence
in KSq is extracted from one of the references in
the golden references, i.e. ksj ∈ grk. Finally, we
synthesize the extracted sentences KSq by comb-
ing information from the answer aq and golden
references to form keypoints KPq for the query
q, which are utilized to evaluate the quality of the
response in the section 4.

3.4 QRA Evolution Framework

We propose the QRA evolution framework to dy-
namically update queries that encompass multiple
documents by combining them with relevant infor-
mation from related documents, thereby enhancing
the difficulty. This framework is systematically di-
vided into five steps: Initialization, Metrics, Search,
Evolution and Termination.

Initialization: We initialize several QRAs as the
foundation of our framework. Specifically, we se-
lect an entity e and its candidate references Re

that contain this entity. Subsequently, based on the
chosen entity and the selected document, we gener-
ate an entity-centered query and the corresponding
QRA. For the initialization process, we define three
common types of QRAs as the initialization. De-
tailed descriptions of the initialized QRA types can
be found in Appendix B.

Metrics: To measure the difficulty of the gener-
ated QRA and guide the direction of subsequent
evolution, we propose a metric to assess the diffi-
culty of the generated QRA. This metric is divided
into two distinct components: retrieval difficulty
and generation difficulty. For retrieval difficulty
RD, our objective is to evaluate the difficulty asso-
ciated with retrieving golden references in response
to the query q, denoted as follows:

RD(QRA) =max
r∈R

(sim(q, r))

− 1

|GRq|

|GRq |∑

i=1

sim(q, gri)
(1)

which means the gap between the maximum sim-
ilarity of the query with the candidate references
R and the average similarity of the query with the
golden references GR. Candidate references refer

to all relevant documents that contain an entity ap-
pearing in either the query or the answer within
the QRA. Furthermore, we employ one embedding
model to assess the similarity and utilize the can-
didate references rather than the entire corpus to
significantly decrease resource consumption. On
the other hand, in terms of generation difficulty
GD, our objective is to assess the difficulty associ-
ated with synthesizing information from multiple
documents to adequately answer the queries, as
illustrated by:

GD(QRA) =H(KSq) =

|GRq |∑

i=1

pilog
1

pi
(2)

where pi represents the distribution of sentences
from KSq in GRq. For example, if KSq comprises
three sentences and two of them are extracted from
gri, then pi = 2

3 . Ultimately, we define the Re-
trieval Generation Difficulty (RGD) as a metric to
assess the difficulty of QRA, following the format:

RGD(QRA) = GD + λRD (3)

Search: When the difficulty of the generated
QRA does not exceed a specific threshold δ, we
search for documents containing relevant informa-
tion to create cross-document queries, thereby in-
creasing the difficulty of the QRA. Specifically, for
each QRA, we first identify the entities present in
either the query or the answer. Subsequently, for
each extracted entity e, we locate the candidate ref-
erences that contain this entity, which ensures that
the identified documents are relevant and facilitates
the generation of QRA that integrates information
across these documents.

Evolution: Upon identifying relevant entities and
candidate references, we randomly select a subset
of these documents to extract relevant information.
Specifically, for each document, we generate an
entity-centric QRA to serve as additional informa-
tion that aids in evolving the original QRA. We
propose four types of evolutionary operations and
their conditions to merge the information from two
QRAs to generate a more difficult query. These
types are specifically categorized as query inser-
tion, entity judgment, query concatenation, and
information integration.

(1) Query insertion. The evolution condition
for query insertion is that an entity serves
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CNN Daily-E Booksum-E MultiHopRAG-E

Embedding MRR@5 MAP@5 HIT@5 MRR@5 MAP@5 HIT@5 MRR@5 MAP@5 HIT@5

bge-large-en-v1.5 50.21 63.52 78.21 40.55 48.05 60.74 40.45 48.07 61.09
bge-m3 52.51 67.11 80.63 43.22 52.19 65.01 42.96 51.18 64.30
e5-base-v2 50.15 64.11 79.32 38.91 46.18 58.62 38.81 46.09 60.34
gte-large-en-v1.5 49.34 62.42 76.53 35.26 41.67 54.49 37.87 44.99 58.71
instructor-large 47.80 60.29 74.22 37.54 44.16 55.89 37.71 44.22 57.01
jina-embeddings-v2-base-en 45.60 56.58 70.89 36.14 42.34 53.86 36.15 42.22 55.13
llm-embedder 42.01 51.94 66.73 24.75 28.21 38.89 27.68 32.10 43.89

Table 2: Retrieval performance of different embedding models on three benchmarks.

CNN Daily-E Booksum-E MultiHopRAG-E

Generator Rouge-l Fscore-c Recall-kp Rouge-l Fscore-c Recall-kp Rouge-l Fscore-c Recall-kp

GPT-4o-mini 40.71 62.00 67.22 35.24 58.30 61.55 37.34 55.70 61.97
GPT-4o 47.60 67.10 68.68 41.97 61.70 64.01 42.71 59.00 63.79
Qwen-max 33.96 57.70 71.60 26.63 53.70 61.95 29.48 49.60 64.68
Qwen-2.5-7b-ins 39.34 55.50 60.79 34.15 50.50 53.62 35.78 48.20 55.31
Glm3-6b 28.55 30.00 34.41 21.96 23.30 25.07 26.85 24.60 27.73
Mistral-7b-ins-v0.2 38.70 46.90 50.66 34.77 43.80 48.85 36.63 41.90 45.79
Llama-3.1-8b 30.71 51.00 55.03 28.69 48.40 51.76 28.67 43.90 48.65

Table 3: Generation performance of different LLMs on three datasets with retriever bge-m3.

as the answer to one query while appear-
ing in another query, which is formalized as
e = a1 ∧ e ∈ q2. This evolution mechanism
serves to substitute an entity in the query with
a clause, thereby transforming it into a multi-
hop query and increasing its difficulty.

(2) Entity judgment. Entity judgment requires
that the answers to two queries belong to the
same category of entities, and then constructs
queries to determine whether they are equiva-
lent. This is formalized as e1 = a1 ∧ e2 = a2
and e1 may be equal to e2. In addition to
requiring that the retriever retrieves all docu-
ments related to the queries, LLM also needs
to determine whether the answers are semanti-
cally equivalent. This represents a challenging
category of queries for RAG systems.

(3) Query concatenation. Query concatenation
refers to connecting two related queries, for-
malized as e ∈ q1 ∧ e ∈ q2. The goal is
to transform a single query into a compound
query, which evaluates the completeness of
the retriever’s retrieval capabilities and the
comprehensiveness of the model’s responses.

(4) Information integration. Information in-
tegration involves combining related informa-
tion from different documents and formulat-
ing a query that spans across these documents,

formalized as e ∈ a1 ∧ e ∈ a2. The objective
is to dynamically synthesize related informa-
tion from various documents to formulate a
query that necessitates the integration of infor-
mation from multiple documents for its reso-
lution.

Following the above process, we check whether
the evolved queries necessitate the integration of
multiple documents for their resolution and elim-
inate any unqualified QRAs. Additionally, to mit-
igate resource consumption, we only retrain the
two most challenging QRAs in the queue for sub-
sequent search and evolution whenever multiple
QRAs are generated, discarding the remainder. Ex-
amples of four types of evolution are available in
the Appendix A.1.

Termination: After evolving the QRAs, we se-
quentially repeat the aforementioned steps until the
average RGD of the current QRAs surpasses the
established threshold and attains their maximum.
Ultimately, we output the generated most challeng-
ing QRA. The overall framework of AutoEolve is
shown in Figure 2.

4 Experiments

4.1 Corpus and Models

We utilize corpora MultiHopRAG (Tang and Yang,
2024), CNN Daily (See et al., 2017; Hermann et al.,
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bge-m3 bge-m3 + GPT-4o bge-m3 + Qwen2.5-7b-ins

Benchmark Score HIT MRR MAP Rouge-l Fscore-c Recall-kp Rouge-l Fscore-c Recall-kp

CNN Daily-E
RD -0.3540 -0.5400 -0.5491 -0.1034 -0.0499 -0.0578 -0.0805 -0.0825 -0.0280
GD -0.2305 -0.0233 -0.0095 -0.1493 -0.1968 -0.1233 -0.1516 -0.1433 -0.1950
RGD -0.3420 -0.3233 -0.3123 -0.1845 -0.1996 -0.1529 -0.1883 -0.1669 -0.1784

BookSum-E
RD -0.5024 -0.5380 -0.5506 -0.1084 -0.2353 -0.2843 -0.1466 -0.1644 -0.2565
GD -0.2412 -0.1242 -0.1251 -0.3114 -0.2434 -0.2151 -0.2185 -0.2119 -0.3204
RGD -0.3477 -0.3620 -0.3619 -0.2992 -0.2823 -0.2799 -0.2372 -0.1952 -0.3511

MultiHopRAG-E
RD -0.3221 -0.3125 -0.3279 -0.0745 -0.0870 -0.2171 -0.0668 -0.0721 -0.1294
GD -0.2108 -0.0518 -0.0878 -0.3090 -0.1643 -0.1937 -0.2290 -0.2236 -0.1692
RGD -0.3314 -0.2375 -0.2598 -0.2818 -0.1928 -0.2148 -0.1886 -0.2391 -0.2088

Table 4: Spearman rank correlation↓ between the generated metrics and the retrieved metrics with the defined
difficulty scores across different LLMs and benchmarks.

Figure 3: The relationship between retrieval metrics and the number of retrieved documents about retriever bge-m3
with or without evolution.

2015) and Booksum (Kryściński et al., 2022) to
generate 694, 758, and 821 evolved QRAs respec-
tively, named MultiHopRAG-E, CNN Daily-E, and
BookSum-E. The distribution of various evolved
queries and the number of evolution iterations in
the generated benchmarks are shown in the Ap-
pendix F and Appendix H, respectively. In these
experiments, we test a variety of embedding models
as our retriever, including bge-large-en-v1.5 (Xiao
et al., 2023), bge-m3 (Chen et al., 2024a), e5-base-
v2 (Wang et al., 2022), gte-large-en-v1.5 (Zhang
et al., 2024; Li et al., 2023), instructor-large (Su
et al., 2023), jina-embeddings-v2-base-en (Gün-
ther et al., 2023) and llm-embedder (Zhang et al.,
2023). Furthermore, we evaluate several LLMs
as our generator, including llama-3.1-8b (Touvron
et al., 2023), mistral-7b-instruction-v0.2 (Jiang
et al., 2023), glm3-6b (GLM et al., 2024), qwen-
2.5-7b-instruction, qwen-max (Yang et al., 2024),
gpt-4o-mini and gpt-4o (Achiam et al., 2023), uti-
lizing the top-performing embedding model bge-
m3 as the retriever for the generation process.

4.2 Evaluation Metrics

A RAG system handling queries can be assessed
from two key aspects: retrieval evaluation and re-
sponse evaluation. For the Retrieval Evaluation, we
utilize several evaluation metrics, including Mean
Average Precision at K (MAP@K), Mean Recip-
rocal Rank at K (MRR@K), and Hit Rate at K
(HIT@K). For the Response Evaluation, we utilize
the Rouge-l, which is based on the longest com-
mon subsequence, to assess the coverage of word
frequency. Additionally, we leverage the Fscore-
c of the claims extracted by LLM to evaluate the
consistency between the response and the answer,
as referenced in RAGChecker (Ru et al., 2024). Fi-
nally, we utilize the Recall-kp, which quantifies the
recall of keypoints in the response, to evaluate the
completeness of the response.

4.3 Implementation Details

We divide documents in the corpus into 512 to-
kens to build document relationships. Using gpt-
4o-mini, we extract entities from each chunk and
link documents through shared entities. Noticing
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Figure 4: The overall performance of RAG systems across three models on three metrics with or without evolution
when retrieving 6 documents.

Metric MultiHopRAG-E CNN Daily-E Booksum-E

Context Relevancy 94.73/100.0/96.43 94.44/90.91/91.67 100.0/100.0/100.0
Answer Relevancy 78.95/88.24/85.71 94.44/100.0/97.22 86.96/90.00/91.67

Answer Correctness 78.95/82.35/85.71 94.44/86.36/88.89 86.96/95.54/94.44
Key Sentence Completeness 94.73/88.24/92.86 100.0/100.0/100.0 82.61/81.25/80.56

Keypoint Relevancy 67.89/70.58/67.29 72.22/81.82/77.56 73.91/63.25/66.67
Keypoint Correctness 73.68/82.35/77.43 83.33/95.45/83.11 82.85/80.95/83.11

Table 5: Human scoring (%) of QRA quality across different benchmarks by three distinct human groups.

that RD is much smaller than GD, we set λ to 20
to balance them. We also establish a termination
threshold δ of 1.2 and a queue size of 2. During the
RAG system evaluation, we embed queries with
the same model and set K to 5 to retrieve the most
relevant documents based on cosine similarity. Ad-
ditionally, we set the generation model’s tempera-
ture to 0 to generate responses using the retrieved
documents.

4.4 Main Results

We create three benchmarks from different cor-
pora to evaluate seven retrievers and seven LLMs,
highlighting AutoEvolve’s applicability. Table 2
shows bge-m3 outperforming other retrievers, with
hit rate advantages of 3.21% on MultiHopRAG-E,
1.31% on CNN Daily-E, and 4.27% on BookSum-
E. Table 3 uses bge-m3 for LLM assessment, re-
vealing qwen2.5-7b-instruct as the leading open-
source model, surpassing llama3.1 in Recall-kp
across all benchmarks. For closed-source mod-
els, gpt-4o generally leads, though qwen-max oc-
casionally scores higher in Recall-kp. When the
RAG system’s performance is below the hit score,
its efficiency depends heavily on the generator’s
capabilities. The hit score is tied to the system’s
performance ceiling, with qwen-max slightly ex-

ceeding it on MultiHopRAG-E, while gpt-4o falls
short on BookSum-E. Identifying vulnerabilities in
the RAG system is crucial for improving overall
performance.

AutoEvolve can evolve queries based on con-
ditions to increase their difficulty. We demon-
strated the scalability of AutoEvolve by compar-
ing retriever and LLM performance before and
after evolution. Figure 3 shows retrieval perfor-
mance initially improves with fewer documents
but slows when exceeding 4 (6) documents, with
evolution causing significant declines in hit met-
rics—dropping 21.4%, 10.05%, and 17.13% on
Booksum-E, CNN Daily-E, and MultiHopRAG-
E benchmarks, respectively. Figure 4 highlights
performance drops among three LLMs following
evolution, with the bge-m3 retrieving the top 6
documents for consistency. On MultiHopRAG-E,
Recall-kp decreased by 12.4% for gpt-4o, 10.6%
for gpt-4o-mini, and 14.6% for qwen2.5-7b-ins.
The smaller model was especially impacted, show-
ing declines in Recall-kp by 8.1% and 6.6% with
gpt-4o and gpt-4o-mini on Booksum-E, while
qwen2.5-7b-ins decreased by 12%.

The defined difficulty metric can reflect the dif-
ficulty of a query, thereby guiding the evolution
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Evolution Type Rouge-l Fscore-c Recall-kp

Query Insertion 41.71 57.86 63.56
Entity Judgement 50.57 64.36 69.10

Query Concatenation 38.90 56.81 61.30
Information Integration 35.62 55.09 61.56

Table 6: The generation performance of gpt-4o on
different evolution types in the MultiHopRAG-E.

process. We demonstrate the functionality of the
metrics guidance by exploring the relationship be-
tween the defined difficulty metrics and the per-
formance of retrievers and LLMs. Table 4 shows
the Spearman correlation coefficient between dif-
ficulty metrics and performance. A smaller coef-
ficient indicates that increasing difficulty makes
performance decline easier, validating the use of
evolution. From RD’s perspective, difficulty shows
a strong negative correlation with retrieval metrics,
affecting retriever and RAG system performance.
Similarly, GD reveals a strong negative correlation
with generation metrics, increasing integration dif-
ficulty for LLMs. Combining RD and GD into
RGD results in a strong negative correlation with
RAG system performance, demonstrating effective
integration.

Figure 5: The spearman correlation with different hy-
perparameter λ on benchmark MultiHopRAG-E.

5 Discussion

5.1 Quality Assessment

Experiment Setup To assess the quality of the
generated benchmarks, 240 samples, representing
10% of the entire dataset, are scored. Six human
evaluators participate, providing each sample with
three independent scores. The evaluators work in
three groups, each scoring 120 randomized sam-
ples. Scoring focused on six dimensions rated 0

or 1: context relevancy, answer relevancy, answer
correctness, key sentence completeness, keypoint
relevancy, and keypoint correctness. Details of the
evaluation metrics are provided in Appendix G.

Results Analysis From Table 5, the quality of
the generated QRA is generally good across the
six dimensions evaluated by humans. However,
when queries require integrating extensive contex-
tual information to formulate a response, the prolif-
eration of content within the answers can result in
diminished relevance and accuracy of the extracted
keypoints. Therefore, enhancing the model’s abil-
ity to comprehend extended contexts is crucial for
improving data generation quality.

5.2 Performance of Each Evolution Type

Table 6 presents the performance of the gpt-4o with
the bge-m3 retriever across four types of queries.
The analysis reveals that the model exhibits dimin-
ished proficiency in addressing queries categorized
under Query Concatenation and Information In-
tegration. In contrast, it demonstrates enhanced
capability in resolving queries pertaining to Entity
Judgement.

5.3 The Effect of Hyperparameter λ

Figure 5 demonstrates the effect of varying hyper-
parameter λ on metrics Fscore-c and Recall-kp
for the MultiHopRAG-E benchmark. To facilitate
analysis, we employ the Spearman correlation coef-
ficient to assess the relationship between the over-
all performance and the hyperparameter. Notably,
when the hyperparameter λ is within the range of
10 to 50, a strong negative correlation is observed
between the difficulty score and the overall perfor-
mance of the RAG system.

6 Conclusion

In this paper, we investigate the automatic genera-
tion of effective benchmarks for evaluating RAG
systems on a specific corpus. We observe that exist-
ing methods suffer from two issues: Weak Applica-
bility and Weak Scalability. To address these issues,
we propose AutoEvolve, an applicable approach
for automatically evolving queries to construct scal-
able RAG benchmarks. For Weak Applicability, we
propose a corpus-agnostic method for constructing
the universal entity-document relationship graph.
For Weak Scalability, we utilize the automatic evo-
lution framework to dynamically enhance the dif-
ficulty of queries based on the graph. Through
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experiments on three benchmarks that AutoEvolve
generates from three different corpora, we demon-
strate that evolved queries are more challenging,
opening the door for more transferable and scalable
RAG evaluations.

Limitations

This paper studies the automatic generation of eval-
uation benchmarks for RAG on specific corpora.
Current methods face the issues of Weak Applica-
bility and Weak Scalability. Therefore, we propose
AutoEvolve to address these two issues. Specif-
ically, we construct a universal entity-document
relationship graph that captures the entities shared
among documents to build the relationships. Addi-
tionally, we propose an evolutionary framework to
dynamically enhance the difficulty of queries based
on the graph. Our work gives some instructions on
the automated generation of evaluation data. At the
same time, there is still much room for exploration
in this approach. We hope this work will attract at-
tention in the future to explore more precise query
difficulty metrics and a greater variety of evolving
query types.
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A Prompt Templates

A.1 Prompt Template of Four Types of
Evolution

We present four types of evolution prompt tem-
plates. Specifically, Figure 8 shows the prompt
template for query insertion, Figure 9 illustrates
the template for information integration, Figure 10
demonstrates the template for entity judgment, and
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Figure 11 presents the template for query concate-
nation. Additionally, within each prompt template,
we provide two examples to illustrate the specific
details of our evolution.

A.2 Prompt Template of Entities Extraction

In Figure 6, we present the prompt template used
by gpt-4o-mini to extract all entities from the text.

B Examples of the initial QRA types.

In Table 8, we present three types of initialization
for QRAs. We categorize the queries into three
types: entity query, details query, and statement
query. An entity query is a question about a spe-
cific entity, which is the answer to the query. A
details query focuses on a specific detail or aspect
of an entity. A statement query, on the other hand,
involves asking a summarizing or conclusive ques-
tion about an entity.

C Details of QRA.

In Figure 7, we present an example of QRA, which
includes six components: query, golden references,
answer, key sentences, keypoints, and entities. The
query is a request for information about a specific
entity. Golden references are documents related to
the query that contains the answer. The answer is
the response to the query, derived from the golden
references. Key sentences are reference sentences
extracted from the golden references, used to define
the generation difficulty. Keypoints serve as crucial
criteria for evaluating the RAG system’s response.
Entities are mentioned in either the query or the
answer, used to help search for relevant documents
to evolve the query.

D Details of Methods.

In Algorithm 1, we present the automatic evolu-
tion framework. We use a queue to store all QRAs.
For each QRA in the queue, we find all associated
entities, and through these entities, we identify can-
didate references. Next, we randomly select one
document from the candidate references and gen-
erate an associated QRA. This new QRA is then
evolved with the original QRA to create a more
challenging QRA, which is added back into the
queue. This process is repeated nume times. Upon
completion, we only retain the qs most difficult
QRAs in the queue. The aforementioned steps are
then repeated until the difficulty scores of the QRAs

Number of Evolution 0 1 2 >=3 All

MultiHopRAG-E 116 561 12 5 694
CNN Daily-E 108 626 24 0 758
BookSum-E 124 676 18 3 821

Table 7: Distribution of the number of evolutions for
each generated benchmark.

in the queue converge. After convergence, we ex-
tract the most challenging QRA from the queue. If
the difficulty score of this QRA exceeds a prede-
fined threshold, it is outputted; otherwise, we start
over with a different initial QRA.

E Distribution of RGD before and after
Evolution

To demonstrate the distribution of RGD before and
after evolution, we randomly sample 400 QRAs
from each of three different corpora, both before
and after evolution, and present the distribution of
their RGD. In Figure 13, it can be observed that
the RGD of most pre-evolution QRAs are concen-
trated between 0 and 0.5, whereas the RGD of post-
evolution QRAs are mainly concentrated between
1.0 and 2.0. This demonstrates that the evolution
process effectively increases the difficulty scores
of QRAs, thereby generating a more challenging
QRA to decrease the performance of RAG systems.

F Distribution of Generated Benchmarks

In Figure 12, we show the distribution of each type
of evolved query across the three generated bench-
marks. Entity Judgement has the highest evolu-
tion success rate, while Information Integration
has the lowest. Additionally, in all three generated
benchmarks, there are a few samples that reach
the defined difficulty threshold δ without requiring
evolution.

G Details of Dataset Evaluation Metrics

In Quality assessment, we evaluate the generated
benchmarks based on six dimensions rated 0 or 1:
context relevancy, answer relevancy, answer cor-
rectness, key sentence completeness, keypoint rele-
vancy, and keypoint correctness. Specifically, con-
text relevancy indicates whether all information in
the query is present in the context. Answer rele-
vancy refers to whether the answer depends on the
context rather than the model’s own knowledge.
Answer correctness means the answer is accurately
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Algorithm 1 AutoEvolve
Input: initial QRA qrai, queue q, documents re-
lationship graph drg, max queue size qs, thresh-
old δ, score change ϵ, evolution quantity nume.

Output: enhanced QRA qraen.
Push qrai into q.
avg_score = 0
new_avg_score = avg(RGD(qra ∈ q))
while new_avg_score > avg_score+ ϵ do
avg_score = avg(RGD(qra ∈ q)).
for qra ∈ q do

Get all entities es in qra.
Get candidate documents cd by es from
drg.
for i = 1 to nume do

Randomly sample a document d from cd.

Generate a new QRA qranew from d by
llm.
qrae = Evolve(qra, qranew)
Push qrae into q.

end for
end for
Keep qs QRAs with the highest difficulty
score in the q.
new_avg_score = avg(RGD(qra ∈ q)).

end while
Get the QRA qramax with the highest difficulty
score in the q.
if RGD(qramax) > δ then

return qramax.
else

return None.
end if

provided based on the content of the context, ad-
dressing the question. Key sentence completeness
signifies that the key sentences include all factual
content relevant to the answer and are extracted
from the contexts. Keypoint relevancy denotes
whether the keypoints encompass all the factual
content from the key sentences. Keypoint correct-
ness means the key points contain all the crucial
information necessary to answer the question.

H Distribution of Evolution Frequency

In Table 7, we display the number of evolution it-
erations for each constructed benchmark. Some
queries do not undergo evolution because their
answers require synthesizing information from

Figure 6: Prompt template for extracting all entities.

multiple documents, indicating a relatively well-
configured initialization. Furthermore, our analysis
shows that for the specified difficulty threshold of
δ=1.2, typically, a single evolution iteration is suf-
ficient to surpass this threshold. If one wishes to
further enhance the challenge of the benchmark or
increase the number of evolution iterations, raising
the difficulty threshold can be considered. How-
ever, due to limited funding, we do not adopt a high
threshold in constructing the benchmark, but this
does not negate the potential of AutoEvolve.
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Query Type Answer Type Example

Entity Query Short-Form
{Query: "What is the service provided by Amazon that many sellers find valuable

for its price and promise to deliver two-day shipping?", Answer: "FBA", ...}

Details Query Long-Form
{Query: "How did The Lions manage to secure a victory over the Raiders

despite their critical mistakes and struggles in the red zone?", ...}

Statement Query Long-Form
{Query: "Please tell me the impact of the expectation of long-term high
interest rates on the Australian stock market and various industries.", ...}

Table 8: Examples of the initial QRA type.

{
Query: "Did the setting where the Ghost of Andrea served as a courtier also involve Hieronimo's coded 

discussion of injustice?" 
Golden References: [1. "The Ghost of Andrea enters the scene to deliver a monologue and put forth the 

premises of the play. When we were alive, the Ghost states, he served as a courtier in the 
Spanish court ...",
2. "Two random Portuguese dudes question Hieronimo about the whereabouts of the 
Duke of Castile, but Hieronimo only gives evasive answers..." ],

Answer: "Hieronimo talks in coded language about the injustice of the Spanish court. The Ghost of Andrea 
served as a courtier in the Spanish court during his lifetime. Therefore, both the setting where the  
Ghost of Andrea served as a courtier and Hieronimo's coded discussion of injustice involve the 
Spanish court.",

Key Sentences: [1. "When he was alive, the Ghost states, he served as a courtier in the Spanish court.",
2. "Hieronimo only gives evasive answers. But he does manage to talk in coded language 
about the injustice of the Spanish court."],

Keypoints: [1. "The Ghost of Andrea served as a courtier in the Spanish court during his lifetime.",
2. "Hieronimo discusses the injustice of the Spanish court using coded language, indicating his 
awareness of the court's corruption."],

Entities: [1. Spanish court.]
}

Figure 7: A QRA example of benchmark Booksum-E.

Assuming the answer to the question1 is the entity, please replace the entity in question2 with question1 to generate a new 
question, and rewrite and compress the newly generated question in an easily understandable way.

Here are some examples:
question1: "Where did a sharp drop for stocks occur, bringing them back to where they were in June?"
question2: "How has the increase in bond yields and other economic factors impacted Wall Street?"
entity: "Wall Street"
output: "How have the rise in bond yields and other economic factors affected the area where stocks experienced a         
significant decline, returning them to their June levels?”

question1: "Who was set up for a big play, but Goff's throw was just a bit behind him in the game between the Lions and the 
Raiders?"
question2: "How did Kalif Raymond contribute to the Lions' performance in the first quarter against the Raiders?"
entity: "Kalif Raymond"
output: "How did the player who was set up for a big play, but Goff's throw was just a bit behind him, contribute to the 
Lions' performance in the first quarter of the game against the Raiders?”

You actual task is:
question1: <question1>
question2: <question2>
entity: <entity>
output: 

Figure 8: Prompt template of query insertion.
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"A 'claim' is a statement or assertion made within a text expressing a belief, opinion, or fact. The 'claims' is the claims set 
extracted from different contexts. Please jointly generate a single question centered around the entity, requiring integrating 
claims extracted from different contexts as much as possible to answer."

Here are some examples:
claims:[

['The S&P 500 has experienced its fifth loss in the last six days, tumbling 1.5 per cent.', "The S&P 500 has lost 5.2 
per cent in September, potentially making it the worst month of the year due to the Federal Reserve's decision to 
keep interest rates high."],
['Historically, the S&P 500 has dropped an average of roughly 10 per cent in the three months leading up to US 
government shutdowns.', 'Despite the initial drop, the S&P 500 has managed to hold up well during shutdowns, 
falling an average of just 0.3 per cent, before rebounding significantly afterward.’]

],
entity: "S&P 500",
output: "How has the S&P 500's performance been affected by the Federal Reserve's decision to keep interest rates high and 
the historical trend of US government shutdowns?",

claims:[
["The Australian sharemarket, including healthcare and insurance sectors, experienced a decline due to the 
potential of higher interest rates for a longer period.", "Despite a negative lead from Wall Street and the latest 
inflation data, the Australian sharemarket remained resilient, indicating that markets are starting to adjust to the 
possibility of prolonged higher interest rates."],
["The Federal Reserve's decision to keep interest rates high has contributed to a 5.2 per cent loss for the S&P 500 
in September.", "High interest rates set by the Federal Reserve are expected to continue for a long time.", "The 
S&P 500 is on track to have its worst month of the year due to the Federal Reserve's high interest rates."],

],
entity: "Interest rates",
output: "How have the high interest rates set by the Federal Reserve affected the Australian sharemarket and the S&P 500?",

You actual task is:
claims: <claims>
entity: <entity>
output: 

Figure 9: Prompt template of information integration.
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Assuming the answer to question1 is entity1 and the answer to question2 is entity2. Please generate a question that asks 
whether the answer to question1 is the answer to question2, and modify and compress the generated question to make it 
easier to understand. Note: Entity1 and entity2 cannot appear in the problem.

Here are some examples:
question1: "What type of product deals are included in Amazon's Cyber Monday sale, along with Echo, Fire TV, and Kindle 
deals?"
entity1:"Apple deals"
question2: "What section would you find the 10th generation 64GB model iPad for $349 on Amazon?"
entity2: "Apple deals"
output: "Along with deals on Echo, Fire TV, and Kindle products, will Amazon's Cyber Monday sale include the 10th 
generation 64GB iPad for $349?"

question1: "Where did a sharp drop in stocks occur, bringing them back to their status in June?"
entity1:"Wall Street"
question2: "Where is the impact of the highest bond market yields in over a decade and undercut prices for stocks and other 
investments being felt?"
entity2: "Wall Street"
output: "Did the sharp drop in stocks, returning them to June levels, and the impact of decade-high bond market yields occur 
in the same location?”

You actual task is:
question1: <question>
entity1: <entity>
question2: <question>
entity2: <entity>
output: 

Figure 10: Prompt template of entity judgment.

Please merge question1 and question2 around the entity to generate a merged question, and then compress the merged 
question. The format of the merged question should be similar to that of question1 and question2.

Here are some examples:
question1:"Please tell me the effect of Wall Street's poor performance in September on the Australian markets."
question2: "Please tell me the factors, including high interest rates, that are currently affecting Wall Street."
entity: "Wall Street"
output: "Please tell me the effect of Wall Street's poor performance in September on the Australian markets and the factors, 
including high interest rates, that are currently affecting Wall Street."

question1:"Please tell me the contribution of Goff in extending the Lions' lead against the Raiders."
question2: "Please tell me the contributions of Goff in the first half of the Lions and Raiders game."
entity: "Goff"
output: "Please tell me the contribution of Goff in extending the Lions' lead against the Raiders and his contributions in the 
first half of the Lions and Raiders game."

You actual task is:
question1: <question>
question2: <question>
entity: <entity>
output: 

Figure 11: Prompt template of query concatenation.
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Figure 12: Distribution of different evolution types in the generated benchmarks.

Figure 13: RGD distribution before and after evolution.
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