Towards Efficient CoT Distillation: Self-Guided Rationale Selector for
Better Performance with Fewer Rationales

Jianzhi Yan'?, Le Liu'?, Youcheng Pan?*, Shiwei Chen'*

Yang Xiang>**

, Buzhou Tang

1,2

"Harbin Institute of Technology, Shenzhen, China
2Pengcheng Laboratory, Shenzhen, China
3Shaoguan Research Institute of Data Industry, China

{yanjzh, 1iul@7, panych,

chenshw

,Xiangy}@pcl.ac.cn

tangbuzhou@gmail.com

Abstract

Chain-of-thought (CoT) distillation aims to en-
hance small language models’ (SLMs) reason-
ing by transferring multi-step reasoning capa-
bility from the larger teacher models. However,
existing work underestimates rationale qual-
ity, focusing primarily on data quantity, which
may transfer noisy or incorrect information to
the student model. To address the above is-
sues, we proposed Model-Oriented Rationale
Selection Distillation (MoRSD), which can dis-
cern and select high quality rationales for dis-
tillation to improve performance further. We
further propose a Rationale Difficulty (RD)
metric to measure the ability of the student
model to generate the correct answer under
a given rationale. Compared to the baseline,
we achieved 4.6% average improvement on
seven datasets over three tasks, using fewer
rationales by controlling their accuracy, diver-
sity, and difficulty. Our results reveal that a
small portion of the high quality rationales
can enhance the reasoning ability of student
models than the entire dataset. Our method
promises to be a possible solution for efficient
CoT distillation. Our code will be released in
https://github.com/Leon221220/MoRSD.

1 Introduction

Large language models (LLMs) such as LLaMA,
GPT-4, Gemini, DeepSeek-V3, and DeepSeek-R1,
have achieved remarkable performance in various
reasoning tasks by instructing them to think step-
by-step (Touvron et al., 2023; OpenAl et al., 2024;
Zhang et al., 2024a; DeepSeek-Al et al., 2024,
2025; Brown et al., 2020; Sun et al., 2021). Engag-
ing in reasoning through logically coherent steps
has substantially enhanced performance in tasks
such as mathematical problem solving and ques-
tion answering. These intermediate reasoning steps
are referred to as rationale (Wei et al., 2023).
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Figure 1: Vanilla CoT Distillation and MoRSD. Dif-
ferent from previous studies that mostly use a), ¢), and
d), we propose b) and ¢) to select effective data for spe-
cific student models to improve performance further.

To achieve emergent reasoning abilities, LLMs
require large-scale parameters, making SLMs in-
herently limited (Wei et al., 2023; Kojima et al.,
2023; Fu et al., 2023). CoT distillation has be-
come a key technique for enhancing SLM reason-
ing by transferring rationales from stronger teach-
ers (Wang et al., 2023b; Li et al., 2023), showing
strong results on arithmetic and symbolic tasks
(Ho et al., 2023; Hsieh et al., 2023; Ying et al.,
2024; Kim et al., 2024). Beyond basic distilla-
tion, recent works explore consistency enforcement
(Chen et al., 2023), cross-task supervision (Li et al.,
2024), and tailored strategies (Zhang et al., 2024b).
Mentor-KD (Lee et al., 2024) introduces interme-
diate models for better supervision, MCC-KD pro-
motes consistent yet diverse reasoning (Chen et al.,
2023), while Lion (Kim et al., 2024) and TA-in-
the-Loop (Zhang et al., 2024b) use adversarial and
auxiliary guidance, respectively.

However, these approaches often require addi-
tional models, discard useful failures, or intro-
duce iterative overhead—resulting in high com-
putational costs and limited flexibility. And many
works still rely on enlarging the rationale set (in-
creasing from 1 to 8 per instance (Ho et al., 2023))
to improve performance, while overlooking ratio-
nale quality. Such data scaling ignores variance
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in correctness and diversity, risking the distillation
of noisy signals. Furthermore, most approaches
neglect the specificity of student models, failing
to adapt to their strengths or limitations. These
limitations motivate our focus: how to select a
small set of high-quality, student-aware rationales
for efficient and effective distillation.

To overcome these limitations, we propose
MOoRSD, a simple but effective method that en-
ables student models to customize their distilla-
tion data autonomously. As presented in Figure 1,
MOoRSD consists of four stages: 1) rationale gen-
eration, 2) self-evaluation, 3) rationale selection
and 4) distillation. The rationale generation stage
prompts the teacher LLM to generate the rationale
dataset. In the self-evaluation stage, we calculate
rationale difficulty (RD) to measure the contribu-
tion of a given rationale to distillation. Specifi-
cally, RD measures the student’s ability to generate
the correct answer given a question and rationale.
Those with smaller RD are considered more bene-
ficial to generate the corresponding answer.

Then, we first apply model-agnostic accuracy
selection and diversity selection to the rationale
dataset. Accuracy selection adjusts the propor-
tion of correct rationales in the dataset to achieve
the given accuracy threshold, diversity selection
involves pairwise Jaccard similarity to eliminate
similar rationale in the dataset. Finally, we use diffi-
culty selection to select the rationales with smaller
RD. Since difficulty selection uses perplexity-
based RD, a model-specific metric, it enables the
student model to customize its distillation data dur-
ing the difficulty selection. Through these stages,
we obtain a small amount of high-quality ratio-
nale data to improve distillation performance for
specific student models. In summary, our contribu-
tions are three-fold:

1. We propose MoRSD, a simple and effective
method that performs better with fewer rationales.
Prove that using a small portion of the dataset can
outperform using the entire dataset in enhancing
the reasoning ability of student models.

2. We propose a model-specific metric, rationale
difficulty, to measure rationale contribution for dis-
tillation, enabling student models to customize data
based on their training requirements.

3. We conducted extensive experiments on seven
datasets covering three distinct tasks. The results
demonstrate that our method consistently outper-
forms the baselines, achieving an average accuracy

improvement of 4.6%.

2 Related work

2.1 Chain-of-thought (CoT) Distillation

Chain-of-thought prompting delivers strong per-
formance but typically benefits from large mod-
els with many parameters, resulting in high com-
putational costs and limited deployment (Hoff-
mann et al., 2022; Chowdhery et al., 2022). Ho
et al. (2023) first introduced fine-tune-CoT, a
method that transfers the multi-step reasoning abil-
ity of LLMs to smaller models through fine-tuning.
Some approaches use in-context learning to implic-
itly transfer knowledge (Rajani et al., 2019; Wang
et al., 2023a), while others treat rationale gener-
ation as a multi-task fine-tuning objective (Hsieh
et al., 2023). Furthermore, Li et al. (2024) distill
the rationale into multiple experts in low-rank adap-
tation (LoRA), decoupling CoT reasoning from
the student model. Zhang et al. (2024b) enhances
knowledge transfer through active learning and
explanation-guided sample selection. Some re-
searchers identify influential tokens using gradi-
ent attribution techniques such as saliency maps
to guide the student model (Ballout et al., 2024).
Recently, a study found that only a small fraction
(4.7%) of CoT steps are critical for performance
(Dai et al., 2024), which closely matches our find-
ings. Busbridge et al. (2025) introduce a distilla-
tion scaling law to optimize compute allocation
between teacher and student models, providing
efficient distillation strategies that outperform su-
pervised pretraining in certain cases.

2.2 Data Efficiency in Language Models

Data efficiency means that the model achieves high
performance with a smaller amount of training
data, maximizing the value derived from limited
data. Yang et al. (2024) shows that with only 1,000
carefully selected prompts and responses, models
can learn to follow specific formats and general-
ize effectively to new tasks. Chen et al. (2024)
used GPT-3.5 to score data difficulty, and Mekala
et al. (2024) proposed Learning Percentage (LP)
for difficulty assessment, both reduced data needs
for instruction tuning. LIMA achieves strong per-
formance with few examples, generalizing well
to unseen tasks and requiring minimal instruction
tuning (Zhou et al., 2023). Yue et al. (2024) uses
a multi-round distillation framework with an or-
acle LLM to select challenging instructions for
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Figure 2: Detailed overview of MoRSD. MoRSD comprises four stages: a) Rationale generation prompts
a teacher model to generate all the data required for the rationale selection stage (blue). b) Self-evaluation,
which uses the rationale difficulty (RD) to evaluate all generated rationales. Those rationales with smaller RD are
considered helpful for distillation. ¢) Rationale selection, which constructs the final dataset for distillation by
controlling the original dataset’s accuracy, diversity, and difficulty. d) Distillation, which fine-tunes the student

model using the constructed dataset.

student models, reducing the need for extensive
training samples. Recently, Ye et al. (2025) pro-
posed the "Less is More Reasoning Hypothesis"
(LIMO), demonstrating that complex reasoning
can be induced with few examples when the base
model has pre-trained domain knowledge. Muen-
nighoff et al. (2025) introduced a test-time scaling
approach using a curated dataset (s1K) and bud-
get forcing, enabling the Qwen2.5-32B-Instruct
model to outperform OpenAlI’s ol-preview (Ope-
nAl, 2024) on math reasoning tasks by 27% with
controlled test-time compute.

3 Method

3.1 Problem definition

CoT distillation first requires prompting the teacher
model to generate rationales related to the training
data. Let D = {(q1,a1), (q2,a2) ..., (qn,an)}
denote the complete dataset, where each (g;, a;)
represents a question-answer pair and the label
is available. Then, a teacher model T (97) (the
parameter 67 is inaccessible) is prompted to gen-
erates m distinct rationale {fll, 721'27 ..., 7" ; where

each 7/ represents a separate rationale for the ques-

tion ¢;. The complete dataset with these rationales
is denoted as:

Dfull = {Qia {(7@11?&11)7 (fgvd?)v AR (ff7 di)}
)
Where: = 1,2,...,N,j =1,2,..., M. The
performance of the student model S on the test set
Diest can be denoted as:

1

Perf (S, Diest ) = D]
test
(

I(S(q) = a)
Q7a)EDtesl
(2)

Our goal is to select a subset Dgelected & Drull
from Dy, and make the performance of the stu-
dent model Sp_,,, distilled using Dgejected ON the
test set Diest, outperform that of the student model
Spy,, distilled using the full data:

max

Perf (S’D Dies )
selected ? S test
Dselected EDrunl s

3)

To achieve the above goal, we designed a four-

stage distillation method MoRSD. Its details will
be described in the following sections.

* —
Dselected = arg
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3.2 Rationale generation

To obtain the dataset for distillation, we adopt the
same generation method as in previous studies(Ho
et al., 2023). As shown in the upper left of Figure
2, we use a fixed template: "Q: (g;). A: Let’s think
step by step. (7;) Therefore, the answer is (a;)".
By applying this process to all data points in D, we
obtain the full dataset Dy, in Eq 1.

3.3 Self-evaluation

After building the full dataset Dgy) in Section 3.2,
we use rationale difficulty (RD) to score each ratio-
nale rf in the dataset. RD is a metric based on the
perplexity of the student model, where perplexity is
the exponential transformation of the normalized
Negative Log-Likelihood (NLL), given an input
sequence X = (z1,z2,...,zy) and a target se-
quence Y = (y1, 92, --.,Yynm), the perplexity can
be written as:

M
1
PPL(y;|X) = exp <_M Zlog Pr(y;lz1, ..., asN,yjl)>

j=1
' @
Since the student model has been pre-trained or
supervised-fine-tuned (SFT) using NLL loss on a
large corpus of text, its perplexity can indicate the
quality of the rationales generated by the teacher.
Therefore, we define RD as the ratio of the change
in PPL of the student model before and after a
given rationale:

RD(7. ;) = PPL sy (ail?], i) .
¢ PPL(QS)(aﬂqi)

&)

For rationale f'f , if the student model achieves
low RD(fg ,qi), it suggests that the rationale is
more beneficial for the student in understanding
the corresponding question and will be selected in
difficulty selection.

3.4 Rationale selection

After calculating the RD for each rationale in sec-
tion 3.3, this section will select a subset Dgejected
from the full dataset Dy, based on the accuracy,
diversity, and difficulty of the rationale. There-
fore, we divide the rationale selection process into
three sequential parts: 1) Accuracy Selection, 2)
Diversity Selection, and 3) Difficulty Selection.

3.4.1 Accuracy selection

The most important characteristic of rationale is
correctness. Different from (Ho et al., 2023; Li

et al., 2024), we first divide the rationale into cor-
rect and incorrect parts by comparing the final pre-
diction a; of the teacher model with the ground
truth a;. We then filter out negative samples to
ensure the original dataset meets a given accuracy
threshold 9.

Then, we filter the rationales sequentially from
the original dataset such that the average accuracy
of the filtered dataset D,ccurate reaches §. The cal-
culation is as follows:

Po 2
Docenrate]
[Paceurase (7 ,:) €Daceurate

Avg Acc = acc (ff, di) >0

3.4.2 Diversity selection

The diversity of rationales is important for distil-
lation performance. However, we found that even
with different sampling temperatures, the teacher
model often generates similar rationales. To ad-
dress this, we select diverse rationales by first split-
ting them into N-grams (N=3 in our experiments).
Then, we calculate the pairwise Jaccard similarity
between these N-gram sets. For each rationale 77,
we decompose it into segments R{ and use the Jac-
card similarity score to compare and identify the
most similar rationales.

B N RY|
argmax T————

(177,77 =
1<mn<M,m#n ’R:n U Rm

i T (6)

We then randomly keep one form the two ra-
tionales from Eq. 6 and discard the other. This
process repeats until we collect a total of K ratio-
nales (set to 6 in our experiments). Afterward, we
have a diverse dataset, Dyiyerse, ready for the final
difficulty selection step.

3.4.3 Diffculty selection

After obtaining Dygiverse, We need to filter and retain
rationales that are helpful for distillation based on
RD. As mentioned in section 3.3, rationale with
low RD is considered helpful for distillation, so in
the difficulty selection, we select the k (k set to 3
in our experiments) samples with the lowest RD in
the dataset:

Dselecled = {%‘7 {(f7.17&7})a (ffvaf% R (’Ffvdf)}} (7)

where RD (7},¢;) < RD (#?,¢;)) < --- <
RD (#F,q;),i=1,2,...,N*,j=1,2,...,M".
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Single Add Multi  Strategy Date Shuffled
Method Params E Sub Arith QA GSMBK  SVAMP Understanding Objects
Random - \ 0.00 0.00 0.00 50.00 0.00 0.00 17.12 33.33
Teacher: InstructGPT 175B (text-davinci-002)
ZERO-SHOT-COT 175B \ 8224 7899 78.89  53.57 40.26 64.67 73.87 50.22
Student: Flan-T5-{Small, Base, Large, XL}
60M 7.24 1092 1722  56.04 2.58 10.67 84.68 62.22
VANILLA 250M 9.21 1092 21.11  60.84 4.40 12.33 84.68 67.11
CoOT DISTILLATION ~ 780M | 10.52  15.13 20.00 61.72 7.12 13.67 87.39 89.33
3B 20.39 11.76  26.67  65.37 7.60 12.33 82.9 43.11
MULTI-TASK 250M | 5.22 8.40 8.33 52.83 6.00 2.33 80.18 31.55
780M | 11.89  16.81 16.81  50.09 6.36 9.00 79.23 35.96
CoOT DISTILLATION
3B 22.36 36.9 17.22  52.11 7.73 11.33 81.93 52.46
250M | 5.26 7.56 13.89  56.18 6.11 5.33 85.55 35.55
MoDE-CoTD 780M | 10.52 1092 13.89  56.47 7.28 11.33 89.19 62.22
3B 23.33 2437 2333 60.99 9.78 17.33 93.69 70.67
60M 9.21 1092 22.78 60.26 6.98 11.33 82.88 83.56
MORSD (OURS) 250M 9.21 12.61 2444  65.65 6.98 13.67 86.49 99.56
780M 13.16 16.81 25.00 65.65 9.71 15.00 89.19 100.00
3B 21.71 24.37 31.67 65.65 10.20 23.67 91.00 100.00

Table 1: MoRSD Performance. Accuracy (%) of MoRSD and baseline methods on 8 tasks under various settings.
Random refers to random-guess performance derived based on the number of choices in multi-choice tasks. The
best method for each setting is marked in bold . For Zero-shot-CoT, we use the same prompt setting as (Ho et al.,

2023).

3.5 Distillation

Then, we use Dgejecteq to fine-tune the student
model. Similar to SFT, the objective function of
distillation can be written as follows:

L(bs) = —

>

73 € Dselected

1(,) - logPr(a;, 7 | gi;0s)  (8)

The final distilled student model Dgejecteq 1S used
to verify the final performance according to Eq 2.

4 Experiment

4.1 Task and Datasets

Experiments were conducted on seven datasets
related to three tasks: mathematical reasoning,
question answering, and temporal/spatial reason-
ing. Including StrategyQA (Geva et al., 2021) for
commonsense reasoning, Addsub (Hosseini et al.,
2014), Multiarith (Roy and Roth, 2015), SVAMP
(Patel et al., 2021), SingleEq (Koncel-Kedziorski
et al., 2015) and GSMS8K (Cobbe et al., 2021) for
arithmetic math inference and Date Understanding
(Srivastava et al., 2023), Tracking Shuffled Objects
(Srivastava et al., 2023) for temporal/spatial reason-
ing. The details on partition training, testing sets,

and other specificities are provided in the Appendix
A.

4.2 Baseline

We provide a comparison of MoRSD (ours) with
three baseline methods:

e Vanilla CoT Distillation (Ho et al., 2023),
where the student model is directly fine-tuned on
the teacher-generated CoT rationales without addi-
tional selection or filtering.

e Multi-task CoT Distillation (Li et al., 2024),
where the student model is fine-tuned on a com-
bined dataset from multiple reasoning tasks.

e MoDE-CoTD (Li et al., 2024), where the ratio-
nales from different tasks are distilled into separate
LoRA modules, enabling cross-task collaboration
through task-specific parameter adaptation.

e MCC-KD (Chen et al., 2023), which improves
reasoning consistency by generating multiple ra-
tionales per question and minimizing bidirectional
KL-divergence between their answer distributions.

e Mentor-KD (Lee et al., 2024), which uses
a task-specific mentor model to enrich the distil-
lation set with CoT annotations and soft labels,
addressing data quality and label scarcity.
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Table 2: Performance of MORSD and baselines across two student models on four tasks. Best results for each

student model are in bold .

Strategy Date Shuffled
Method Student QA SVAMP Understanding  Object Average
MCC-KD FlanT5-Small | 58.37 10.00 81.98 43.11 48.37
MENTOR-KD FlanT5-Small | 59.97 10.67 83.78 82.67 59.27
MORSD (Ours) FlanT5-Small | 61.35 12.33 84.43 84.69 60.70
MCC-KD FlanT5-Base 64.92 12.00 85.59 69.78 58.07
MENTOR-KD FlanT5-Base 65.21 11.33 87.39 93.78 64.43
MOoORSD (Ours) FlanT5-Base 65.72 14.28 87.04 99.62 66.67
(a) Arith » (b) » - — - :
SVAMP SVAMP E : .__/ \ E ; M
Shuffled Shuffled <> ,/‘\/\' <’ .__‘\-/\’

Objects Objects

Date Date
Understanding Understanding

Figure 3: Comparison of the performance and the
rationale usage.

4.3 Teacher and Student Models

For the teacher models, we use GPT-3 175B
(Brown et al., 2020), accessed via the OpenAl API,
with text-davinci-002 (Ouyang et al., 2022) as the
default model unless otherwise specified. We em-
ploy the instruction-tuned versions of TS for the
student models, specifically Flan-T5-{Small, Base,
Large} (Chung et al., 2022).

5 Results

In this section, we report the performance of our
MOoRSD and baseline methods on 7 benchmarks.
We compare our approach with baselines of dif-
ferent model sizes. The performance on the test
set demonstrates the effectiveness of our approach,
showing that our method achieves better perfor-
mance with fewer samples.

5.1 MoRSD outperforms baselines across
different student models

The results in Table 1 and Table 2 show that
MoRSD consistently outperforms strong base-
lines across various student model sizes and rea-
soning tasks. On Flan-T5-Small, MoRSD notably
improves results on challenging datasets such as

Accuracy of dataset Accuracy of dataset

Figure 4: Effect of dataset accuracy. The perfor-
mances of MoRSD on the MultiArith, Date Understand-
ing, StrategyQA and SVAMP datasets with different
correctness rates of the teacher generated rationales.

== Flan-T5-Small Flan-T5-Base Flan-T5-Large
MultiArith 25 Date i

o
1 s
o _.\.—o—o. 750
23
00

7 s

H 4
SVAMP

~—

Acc (%)
Acc (%)

s s
StrategyQA

58
56
54

3 s

Numbers of K

Acc (%)

Acc (%)

Numbers of K

Figure 5: Effect of rationale diversity. The perfor-
mance of MoRSD on four test sets with different ratio-
nale diversities.

SVAMP and Tracking Shuffled Objects, achiev-
ing 11.33% on SVAMP (+3.73% over MoDE-
CoTD) and 83.56 % on Tracking Shuffled Objects,
surpassing MoDE-CoTD (62.22%) and Multi-task
CoT (31.55%). These improvements are obtained
with fewer rationales, highlighting the effective-
ness of selective rationale filtering over data quan-
tity.

Compared to multi-task and consistency-
based methods like MCC-KD and Mentor-KD,
MOoRSD achieves comparable or better perfor-
mance. On Flan-T5-Small, it reaches an aver-
age accuracy of 59.51%, slightly above Mentor-
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Figure 6: Effect of rationale difficulty. The perfor-
mance of MoRSD using different samples selected by
RD among four test sets

KD (59.27%) and notably higher than MCC-KD
(48.37%), demonstrating that effective rationale
selection can boost performance without extra
supervision.

As the student model scales up, MoRSD con-
tinues to outperform baselines. On Flan-T5-
Base, it achieves the highest average accuracy
of 66.34%, exceeding Mentor-KD (64.43%) and
MCC-KD (58.07%). Notably, MoRSD achieves
near-perfect accuracy on temporal and spatial rea-
soning tasks such as Tracking Shuffled Objects
(99.56 %) and Date Understanding (86.49%), in-
dicating strong generalization.

5.2 Effect of rationale correctness and
diversity

To assess how rationale accuracy affects distilla-
tion, we varied dataset accuracy and measured stu-
dent performance. As shown in Figure 4, distil-
lation improves with higher accuracy, but gains
plateau beyond a certain threshold. This indicates
that accuracy is crucial at lower levels, while its
marginal benefit diminishes as it increases.

The diversity of the rationale is also vital for dis-
tillation. To measure the degree of diversity among
rationales, we use the number of rationales remain-
ing after the Jaccard similarity filtering to measure
the diversity of the dataset. In simple terms, a
smaller number of remaining rationales after fil-
tering indicates a higher level of diversity in the
dataset. As illustrated in Figure 5, the performance
of MoRSD exhibits a corresponding improvement
with increasing diversity among the rationales, as
observed in all four different test sets.

5.3 Effect of rationale difficulty

To verify the effect of the rationale difficulty (RD)
on distillation performance, we conducted experi-
ments using samples of varying sizes selected after
sorting based on RD. As illustrated in Figure 6,

the distillation performance of the student model
improves as the RD of the selected data decreases,
achieving optimal performance when the RD is at
its smallest. This trend is consistent across multiple
test sets, including StrategyQA and Tracking Shuf-
fled Objects, demonstrating that lower RD values
correlate with more effective distillation outcomes.
The results underscore the efficacy of the proposed
RD indicator in identifying and prioritizing data
that is most beneficial for the distillation process.
This finding highlights the importance of RD in
enhancing the overall performance of the student
model by focusing on the most informative and
manageable rationales.

5.4 Ablation study

In this section, we conduct an ablation study on
the Flan-T5-Small model to assess the contribu-
tions of accuracy, diversity, and difficulty selec-
tion in MoRSD. As shown in Table 3, remov-
ing any component leads to notable performance
drops. Accuracy selection is critical—its removal
causes large degradations on tasks like SingleEq
(—35.7%) and SVAMP (—38.1%). Diversity se-
lection is especially important for reasoning-heavy
tasks such as MultiArith (—31.2%) and Track-
ing Shuffled Objects (—44.3%), helping reduce
redundancy. Difficulty selection prioritizes infor-
mative rationales, and its absence also leads to
significant drops, including —44.0% on SingleEq
and —26.9% on SVAMP. These results indicate
that each selection stage plays a distinct and com-
plementary role in improving distillation effective-
ness. Overall, all three components are essential
for maximizing student performance.

5.5 Analyse of selected rationale

Flan-T5-Base Flan-T5-Large

— =3 MinRDwins | |—— [ Min RD wins
PRSEC R Mox RO wins | [ 3436 Hax RO wins
A I
o
Co‘\&c " o 545 165 551 160
S
277 b9 292 b4
o ‘\Q\DQ.“ |7 2 §:
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Figure 7: Effect of selected rationale. The ChatGPT
API was used as a referee, prompted to compare two
rationales and rate them on a scale of 1 to 10. Each
rationale pair (maximum RD and minimum RD) was
judged twice to avoid position bias, with the rationale
positions swapped in each evaluation.
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Single Add Multi Strategy Date Shuffled
Method Eq Sub Arith QA SVAMP Understanding  Objects
MoORSD 9.21 10.92 22.78 60.26 11.33 82.88 82.22
w/0 ACCURACY SEL. 5.92 359 10.08 pg4 15.00 778 57.21 305 5.67 546 74.77 .11 89.33
w/o DIVERSITY SEL. 9.21 -0.00 10.92 -0.00 15.00 778 59.64 6o 4.67 466 82.88 -0.00 67.56 _14.66
w/o DIFFICULTY SEL. | 1.97 74 8.40 5.5 15.56 720 60.26 900 7.33 400 76.58 630 82.22 .00

Table 3: Ablation study on Flan-T5-Small. Results of ablation study about Accuracy selection, Diversity selection,

and Difficulty selection on test sets.

In order to compare the quality of rationales
screened by different methods, we introduced the
ChatGPT API as a referee to further explore the
characteristics of different rationales selected us-
ing RD. By stitching different rationales together
and prompting the referee to judge which of the
two is better and give them a score of 1-10, we
visualized these results as the winning frequency
of those selected with the minimum RD and the
maximum RD. As presented in Figure 7, to avoid
possible bias of the judges due to the position of
the rationale in the prompt, we judged each maxi-
mum RD-minimum RD pair twice and exchanged
the position of the rationale in the prompt in each
judgment. From the results, we can conclude that
the quality of rationales with lower RD attributes
is higher than those with higher RD attributes on
all datasets. This further proves the effectiveness
of the RD in selecting high-quality rationales.

5.6 Effect of negative rationale

To further examine the role of imperfect rationales
and supervision signals, we conduct an ablation
study across three labeling strategies, as summa-
rized in Table 4. The Positive-only setting relies
exclusively on gold rationales and answers, achiev-
ing reasonable performance but with limited diver-
sity. Our default MoRSD configuration, which
selects rationales based on Rationale Difficulty
(RD) while always supervising with the gold an-
swer, yields consistent improvements across all
tasks (e.g., +0.8 on StrategyQA and +1.3 on Date
Understanding) and achieves the best overall aver-
age (66.4). This confirms that RD-based selection
enhances both quality and diversity of rationales
without sacrificing correctness. In contrast, replac-
ing gold answers with teacher-predicted labels sub-
stantially degrades performance (e.g., a 3.9 drop
on SVAMP and 4.0 on Date Understanding), high-
lighting the necessity of grounding training super-
vision in correct labels. These results validate our

design choice: selectively retaining imperfect ratio-
nales improves robustness and data efficiency, but
correctness of the final answer supervision remains
critical.

6 Discussion

6.1 Inclusion of Negative Rationales

An important design decision in MoRSD concerns
the treatment of rationales that do not lead to cor-
rect teacher predictions. While conventional ap-
proaches often discard such negative rationales en-
tirely, we deliberately retain a subset that passes
our Rationale Difficulty (RD) filter. Specifically, a
rationale is preserved if it reduces the student’s per-
plexity in predicting the ground-truth answer, even
when the intermediate reasoning is partially incor-
rect. This choice is motivated by prior findings
that structural patterns in CoT traces can facili-
tate learning even when their semantic content is
imperfect.

6.2 Generalization Across Tasks and Domains

While MoRSD demonstrates consistent improve-
ments on diverse reasoning benchmarks, its current
evaluation scope remains primarily within math
and structured reasoning tasks. An open ques-
tion is how well the rationale selection paradigm
generalizes to other domains, where the struc-
ture of rationales may differ significantly from
mathematical derivations. Moreover, in multilin-
gual or cross-domain scenarios, the reliability of
perplexity-based Rationale Difficulty (RD) as a se-
lection signal could be weakened, since student
models may not share the same linguistic or distri-
butional priors as their teachers. Future work could
explore extending MoRSD to multilingual reason-
ing tasks, domain-adaptation settings, thereby test-
ing whether the principle of less but better ratio-
nales remains universally effective beyond the cur-
rent experimental scope.
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. Strategy Date Shuffled
Method Setting Label Type SVAMP 0A Understanding ~ Objects
Positive-only Ground-truth 13.2 64.9 85.2 98.4
MoRSD Ground-truth 13.7 65.7 86.5 99.6
MOoRSD + Predict label Teacher prediction 10.2 61.7 82.0 96.1

Table 4: Ablation study on labeling strategies in MoRSD (Flan-T5-Base). Positive-only uses only gold rationales
and answers, MoRSD applies RD-based rationale selection with gold supervision and achieves the best overall
accuracy, while MoRSD + Predict label replaces gold labels with teacher predictions and suffers clear degradation.
Results show that RD-based selection improves data efficiency, but gold answer supervision is crucial.

6.3 Considerations for RD-Based Selection

In MoRSD, Rationale Difficulty (RD) serves as
the central criterion for rationale selection by mea-
suring the student’s perplexity reduction on gold
answers. While effective, RD captures only part
of rationale quality: it reflects token-level uncer-
tainty but may not align with logical soundness or
pedagogical value. In addition, distributional mis-
match across domains or languages could further
reduce its reliability. Future work could extend
MOoRSD by integrating RD with complementary
signals—such as process reward models or struc-
tural coherence metrics—to achieve more robust
rationale evaluation.

7 Conclusion

In this work, we propose MoRSD, an efficient CoT
distillation method that enhances the performance
of small language models using fewer rationales.
By introducing a self-guided Rationale Difficulty
metric, MoRSD enables the autonomous selection
of high-quality rationales, effectively addressing
challenges related to the rationale quality. Experi-
ments across seven datasets demonstrate an aver-
age accuracy improvement of 4.6% over the base-
line. MoRSD outperforms full dataset distillation
with a small, tailored set of rationales, providing
a robust solution for efficient CoT distillation and
advancing knowledge transfer in a more efficient
manner.

Limitations

Although MoRSD achieves significant improve-
ments on the Flan-T5 series but is not universally
applicable. First, the selection based on rationale
difficulty requires the student model to have a basic
capability, making it unsuitable for models with-
out fine-tuning. Applying MoRSD to such mod-
els would require instruction fine-tuning, increas-

ing computational costs. Second, selecting high-
quality rationales requires filtering a large dataset
from the teacher model, matching the computa-
tional cost of traditional CoT distillation. Future
work could focus on efficient rationale generation.
Moreover, the selection method relies on the stu-
dent model’s perplexity, which may introduce bias
due to its parameter size. While small RD identi-
fies most high-quality samples, it cannot exclude
all low-quality rationales, potentially affecting dis-
tillation results.
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A Appendix
A.1 Datasets

A summary of the datasets used in our experiments,
along with their original licenses, can be found
in Appendix Table 5. We utilize the 7 datasets
from (Kojima et al., 2023) to evaluate reasoning
performance.

Dataset Training Samples ~ Test Samples ~ Data Split  License

SingleEq 356 152 70:30 None
AddSub 276 119 70:30 Unspecified
MultiArith 420 180 70:30 Unspecified
SVAMP 700 300 70:30 MIT

Date Understanding 258 111 70:30 Apache-2.0
Tracking Shuffled Objects 525 225 70:30 Apache-2.0
StrategyQA 1603 687 70:30 Apache2.0

Table 5: Description of datasets used in our study.

A.2 Experimental details

All experiments were conducted on a cluster of
NVIDIA V100 GPUs. We strictly controlled the
hyperparameters for all datasets. For each exper-
iment, we used a batch size of 8 and a maximum
of 10,000 steps, which was found to be sufficient
for the test accuracy to plateau. We report the best
accuracy achieved within these 10,000 steps.

A.3 KDE visualization of API scores

In Section 5.5, we used the ChatGPT-API to score
rationales on a scale of 1 to 10 and employed KDE
to visualize the score distributions for rationales
selected by different methods. The KDE distribu-
tions for rationales selected via the minimum RD
approach (red curves) show distinct advantages
across tasks, with scores concentrated between 6
and 8, indicating higher and more consistent qual-
ity compared to other methods. The mean values
of these distributions (dashed red lines) are consis-
tently higher than those of maximum RD rationales
(dashed blue lines), further supporting the superi-
ority of the minimum RD method.

However, tasks like StrategyQA and Tracking
Shuffled Objects exhibit longer tails in the mini-
mum RD distributions, indicating a small propor-
tion of lower-quality outliers. Despite this vari-
ability, the minimum RD method generally selects
higher-quality rationales, making it a more effec-
tive approach for ensuring better overall quality in
most cases.

A.4 RD and length

Figure 9 illustrates the relationship between ratio-
nale length and tokenized rationale length for dif-

Figure 8: KDE plot of scored selected rationale. Ker-
nel Density Estimation (KDE) plot, where the ChatGPT
API is employed as a referee to investigate the charac-
teristics of various rationales selected through RD. By
combining different reasons and assigning them scores
ranging from 1 to 10..

ferent model sizes of Flan-T5 {small, base, large}.
As the rationale length increases, the tokenized ra-
tionale length grows correspondingly, with a more
pronounced increase observed in larger model ver-
sions. For the Flan-T5-small model, the rate of
growth is moderate, indicating that smaller mod-
els require fewer tokens for shorter rationales. In
contrast, the Flan-T5-base model shows a steeper
increase in tokenized length as rationale length
grows, reflecting its enhanced capacity to han-
dle more complex reasoning. The Flan-T5-large
model exhibits the most significant acceleration in
tokenized rationale length, suggesting that larger
models, with their greater capacity, demand signifi-
cantly more tokens for longer rationales. This trend
highlights the models’ scaling behaviour, where
larger models can handle more extensive rationales,
necessitating an increase in the number of tokens
for effective representation. Overall, the results un-
derscore the positive correlation between rationale
length and tokenized length across all model sizes,
with the rate of increase being more pronounced in
larger models.

A.5 Transferability of rationale selected by
RD

To verify whether the RD calculated by different
models can also improve the distillation perfor-
mance on other models, we use Flan-T5-Small,
Base, Large and the larger LLamA?2-7b-hf to calcu-
late their respective RDs and use them to fine-tune
the smaller Flan-T5-Small and use the RD calcu-
lated by Flan-T5-Small to fine-tune the larger Flan-
T5-Base model. The RD transferability analysis
and wilcoxon signed-rank test in Table 7 reveals
that RD transfer from different models (Flan-T5
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Prompt for Performance Evaluation

System Prompt

You are a helpful and precise assistant for checking the quality of the rationale
based on a given question.

Task Discribe

We would like to request your feedback on the performance of two rationales
in response to the question displayed above. Please rate the rationales. Each
rationale receives an overall score on a scale of 1 to 10, where a higher score
indicates better overall performance. Please first output a single line containing
only two values indicating the scores for rationale 1 and rationale 2, respectively.
The two scores are separated by a space. In the subsequent line, please provide
a comprehensive explanation of your evaluation and fully compare the quality
of the two rationales, avoiding any potential bias and ensuring that the order in
which the rationale was presented does not affect your judgment.

Prompt

[Question] {question} [The Start of Rationalel] {rationale_1}
[The End of Rationalel] [The Start of Rationale2] {rationale_2}
[The End of Rationale2] [System] {TASK_DISCRIBE}

Table 6: The prompt we used to request ChatGPT to evaluate the rationales.

Train model | AddSub SingleEq StrategyQA
Cal RD model

Flan-T5 Flan-T5 Flan-T5 Flan-T5 Flan-T5 Flan-T5

Small p-value Base p-value Small p-value Base p-value Small p-value Base p-value
Flan-T5 Small | 477 - L1300 3877 | 328 - 072 014 | 5276 - -1.39 002
Flan-T5 Base | +1.04 15c° 564 - ] 4022 054 472 - ] 4133 6.2c7" 5839 -
Flan-T5 Large | +136 23¢% 4167 64e® | +0.16 045 4019 097 | +0.58 002  +055 6.le’
LLamA2-7B-hf | +140 0001  +128  0.141 | +0.66 0062  +0.87 0012 | +0.39 0223  +0.80  0.082

Table 7: Transferability analyse for RD. Flan-T5-{Small, Base, Large} and LLaMA2-7B are used to calculate
their RDs, which are then used to distill Flan-T5-Small. Conversely, the RD from Flan-T5-Small, Large and

LLaMAZ2-7B is used to distill Flan-T5-Base.

variants and LLaMA2-7B) improves performance
more on simpler tasks than on complex ones. For
tasks like AddSub and SingleEq, RD transfer from
Flan-T5 Base and Large results in notable improve-
ments, with Flan-T5 Large showing increases of
1.36% in AddSub (p-value = 0.009) and 1.68% in
SingleEq (p-value = 0.001). However, the gains are
minimal for the more complex StrategyQA task,
with Flan-T5 Large only improving performance
by 0.58% (p-value = 0.269). Overall, the transfer
of reasoning capabilities through RD (Rationale
Distillation) proves to be more effective for rela-
tively simple tasks, where smaller models benefit
significantly from the distillation process. In con-
trast, the impact of using larger models in such
tasks tends to be less pronounced.

A.6 Prompt for evaluation

In this section, we provide the detailed prompt
we used for evaluating the performance of two
rationales for the same instruction as shown in

Figure 9: Comparison of RD Lengths
Table 6

A.7 Pattern Characteristics Comparison of
Selected rationale

In order to better compare the quality difference
between the maximum RD and minimum RD ra-
tionales, we use ChatGPT’s API to compare them
and give an explanation. As shown in Table 8 9
and 10, the primary advantage of the rationale with
min RD over the rationale with max RD is its more
detailed and coherent reasoning process. It clearly
breaks down each step of the reasoning, providing
explicit explanations for how the final conclusion
is reached, which enhances both transparency and
logical rigor. By systematically deconstructing the
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problem, the rationale with min RD allows read-
ers to more easily follow the reasoning flow. In
contrast, the rationale with max RD, while more
concise, may lack sufficient detail and explanation,
potentially causing confusion. As a result, the ra-
tionale with min RD generally leads to a clearer
understanding of the reasoning process.
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Figure 10: Effect of the number of rationales selected
by RD. The performance of MoRSD with different num-
bers of rationales is evaluated on the Date Understand-
ing, StrategyQA, SVAMP, and MultiArith datasets.

A.8 Effect of the number of rationales
selected by RD

We also examine the performance of MoRSD with
varying numbers of rationales on Date Understand-
ing, StrategyQA, Tracking Shuffled Objects, and
MultiArith, respectively. The student model em-
ployed in these experiments is Flan-T5-Small. As
depicted in Figure 10, we observe that as the num-
ber of rationales increases, the model’s perfor-
mance on all four datasets improves correspond-
ingly. Specifically, when the number of rationales
is increased from 1 to 4, performance is signifi-
cantly enhanced on both datasets. However, the
performance gains become less pronounced when
the number is further increased from 4 to 6. There-
fore, considering computational efficiency, we use
6 rationales in our experiments.
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AddSub

Question

There were 28 bales of hay in the barn . Tim stacked bales in the barn today . There are now 54 bales of
hay in the barn . How many bales did he store in the barn ?

Maximum RD

There were 28 bales of hay in the barn. Tim stacked bales in the barn today. There are now 54 bales of hay
in the barn. How many bales did he store in the barn? He must have stored 26 bales. —> 26

Minimum RD

We know that there were 28 bales of hay in the barn. We know that Tim stacked bales in the barn today.
We know that there are now 54 bales of hay in the barn. So, how many bales did Tim store in the barn?
We can solve this problem by using basic algebra. First, we need to create a variable to represent the

number of bales that Tim stored in the barn. We will use the letter "x" to represent this variable. Next, we
need to create an equation that represents the information —> 26

API judgement

7 9 Rationale 1: Score: 7 Strengths: - Provides a direct and concise answer to the question by calculating
the difference between the initial and final number of bales. Weaknesses: - Lacks explanation or reasoning
behind the calculation. - Could benefit from more context or steps to show the process of arriving at the
solution. Rationale 2: Score: 9 Strengths: - Demonstrates a clear step-by-step approach using algebra to
solve the problem. - Provides thorough explanations and sets up an equation to represent the situation
accurately. - Offers a more detailed and structured response compared to Rationale 1. Weaknesses: -
Could further enhance clarity by breaking down complex steps into simpler terms for better understanding.
Comparison: Rationale 2 outperforms Rationale 1 due to its comprehensive and structured approach. In
conclusion, Rationale 2 offers a higher quality response by incorporating algebraic methods and providing
detailed reasoning, earning it a higher score in this evaluation.

Date Understanding

Question

The deadline is Jun 1, 2021, which is 2 days away from now. What is the date 10 days ago in
MM/DD/YYYY? Which choice is true? Answer choices: (A) 06/24/2021, (B) 04/06/2021, (C)
04/29/2021, (D) 05/21/2021, (E) 05/20/2021.

Maximum RD

The deadline is Jun 1, 2021, which is 2 days away from now. So, 10 days ago would be May 21, 2021.
Therefore, the answer is (D). —> E

Minimum RD

Jun 1, 2021 is 2 days away from now. 2 days ago would be May 30, 2021. 10 days ago from May 30,
2021 would be May 20, 2021. Therefore, the answer is (E) 05/20/2021. —> E

API judgement

7 9 Rationale 1: Score: 7 Explanation: This rationale correctly identified that the deadline is on Jun 1,
2021, which is 2 days away from the current date. The final answer choice selected was incorrect, but the
reasoning process was logical and clear. Rationale 2: Score: 9 Explanation: This rationale not only
correctly identified the current date and calculated 10 days ago accurately but also provided a step-by-step
breakdown of the calculations. Comparison: Rationale 2 outperformed Rationale 1 due to its more
detailed and coherent explanation. Rationale 2 not only provided the correct answer but also presented the
steps involved in reaching that answer clearly. Rationale 1, although accurate in its calculation, lacked the
detailed breakdown that Rationale 2 offered.

Table 8: Example of Selected rationale and API judgement.
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Multiarith

Question

For Halloween Debby and her sister combined the candy they received. Debby
had 32 pieces of candy while her sister had 42. If they ate 35 pieces the first
night, how many pieces do they have left?

Maximum RD

Debby took 24 pictures at the zoo, and then she took 12 more at the museum,
so she took a total of 36 pictures. If she later deleted 14 pictures, she would
have 36 - 14, or 22 pictures. —> 22

Minimum RD

Debby took 24 pictures at the zoo and 12 at the museum. That’s a total of 36
pictures. If she later deleted 14 of the pictures, she would still have 22 pictures.
—>22

API judgement

7 9 Rationale 1: The rationale correctly identifies the total number of pictures
Debby took (36) and subtracts the number she deleted (14) to find the remaining
amount. The explanation is clear and concise, making it easy to follow the logic.
However, it could be improved by explicitly stating the final answer instead
of just showing the calculation. Rationale 2: This rationale also correctly
calculates the total number of pictures, mentions the deletion process, and
provides the final answer. In addition to the clear logic, it includes a better
structure with separate lines for the calculations, making it easier to read and
understand. Overall, Rationale 2 is rated higher due to its better organization
and presentation of information. While Rationale 1 is also accurate, it lacks the
clarity and structure of Rationale 2.

Strategy QA

Question

Would toast for a vegan have margarine instead of butter?

Maximum RD

Toast is bread that has been heated until it is crisp. Bread is made from flour,
water, yeast, and salt. Flour is made from wheat. So, no, toast would not have
margarine instead of butter. —> Yes

Minimum RD

First, what is veganism? Veganism is the practice of abstaining from the use of
animal products, particularly in diet, and an associated philosophy that rejects
the commodity status of animals. So, a vegan does not eat any animal products.
This includes, but is not limited to, meat, poultry, fish, dairy, eggs, and honey.
Now, let’s think about toast. Toast is a quick and easy breakfast food that can be
made with just a few ingredients. Bread and butter are the two main ingredients
in toast. Bread is vegan. There are many —> Yes

API judgement

6 9 Rationale 1 provides a basic explanation of veganism and the restrictions it
entails in terms of avoiding animal products. It correctly points out that a vegan
would not consume butter due to it being an animal product. However, the ratio-
nale lacks a direct answer to the question regarding margarine as an alternative
for vegans. On the other hand, Rationale 2 concisely explains the ingredients
of toast and clearly states that toast would not have margarine instead of butter.
It directly addresses the question by explaining that toast consists of basic
plant-based ingredients and does not require butter or margarine. Therefore,
Rationale 2 scores higher for providing a more straightforward and accurate
response to the given question compared to Rationale 1.

Table 9: Example of Selected rationale and API judgement.
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Single Eq

Question

Sally had 760 quarters in her bank. She spent 418 of her quarters. How many quarters does she
have now ?

Maximum RD

Sally has 760 quarters in her bank. She spends 418 of her quarters. That means she has lost 418
quarters. So we have to subtract 418 from 760. 760-418=342 Therefore, Sally has 342 quarters
left in her bank. —> 342.0

Minimum RD

Sally had 760 quarters in her bank. She spent 418 of her quarters. This means that Sally now has
760 - 418 = 342 quarters in her bank. —> 342.0

API judgement

5 7 Rationale 1: The rationale correctly identifies the initial number of quarters Sally had, the
amount she spent, and calculates the remaining quarters accurately. Rationale 2: This rationale
also correctly identifies the initial and remaining quarters but presents the solution more concisely
compared to Rationale 1. Overall, Rationale 2 is rated higher (7) due to its clarity and conciseness,
while Rationale 1 is rated at 5 as it provides the correct solution but in a slightly more convoluted
manner. Both solutions correctly arrive at the answer, but Rationale 2 presents the information in
a more straightforward and efficient way.

Tracking shuffled objects

Question

Alice, Bob, and Claire are playing a game. At the start of the game, they are each holding a ball:
Alice has a black ball, Bob has a brown ball, and Claire has a blue ball. As the game progresses,
pairs of players trade balls. First, Bob and Claire swap balls. Then, Alice and Bob swap balls.
Finally, Claire and Bob swap balls. At the end of the game, Bob has the Which choice is true?
Answer choices: (A) black ball, (B) brown ball, (C) blue ball.

Maximum RD

First, Bob and Claire swap balls. This means that Bob now has the blue ball, and Claire has the
brown ball. Then, Alice and Bob swap balls. This means that Alice now has the brown ball, and
Bob has the black ball. Finally, Claire and Bob swap balls. This means that Claire now has the
black ball, and Bob has the blue ball. At the end of the game, Bob has the blue ball. Therefore,
the correct answer is (C). — B

Minimum RD

output:" After Bob and Claire swap, Claire has the brown ball and Bob has the blue ball. Then,
after Alice and Bob swap, Alice has the brown ball and Bob has the black ball. Finally, after
Claire and Bob swap, Claire has the black ball and Bob has the brown ball. Therefore, answer
choice B, Bob has the brown ball, is correct. —> B

API judgement

7 9 Rationale 1 provides a clear and logical explanation of how the ball swapping between
the players leads to Bob ending up with the blue ball. The rationale demonstrates a good
understanding of the question and effectively leads to the correct answer. Rationale 2 also
correctly follows the ball swapping sequence and provides a coherent explanation, leading to
the conclusion that Bob ends up with the brown ball. The explanation is concise and clear, with
proper transitions between the steps. This rationale also exhibits a good grasp of the question
and leads to the correct answer smoothly. When comparing the two rationales, Rationale 2
receives a higher score due to its more concise and straightforward explanation. Additionally,
Rationale 2 has a lower perplexity value, indicating more concise reasoning. However, both
explanations ultimately reach the correct answer and demonstrate a solid understanding of the
game’s mechanics.

Table 10: Example of Selected rationale and API judgement.
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