@inproceedings{yang-etal-2025-improving,
title = "Improving Alignment in {LVLM}s with Debiased Self-Judgment",
author = "Yang, Sihan and
Cui, Chenhang and
Zhao, Zihao and
Zhou, Yiyang and
Yan, Weilong and
Wei, Ying and
Yao, Huaxiu",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.436/",
pages = "8213--8232",
ISBN = "979-8-89176-335-7",
abstract = "The rapid advancements in Large Language Models (LLMs) and Large Visual-Language Models (LVLMs) have opened up new opportunities for integrating visual and linguistic modalities. Yet, challenges remain in aligning these modalities effectively, causing issues such as hallucinations, where generated outputs are not grounded in the visual input, and safety concerns in the application of LVLMs across various domains. Existing alignment methods, such as instruction tuning and preference tuning, often rely on external datasets, human annotations, or complex post-processing, which limit scalability and introduce additional costs. To address these challenges, we propose a novel approach that generates the debiased self-judgment score, a self-evaluation metric created internally by the model without relying on external resources. This enables the model to autonomously improve alignment. Our method enhances both decoding strategies and preference tuning processes, resulting in improved alignment, reduced hallucinations, and enhanced safety. Empirical results show that our approach significantly outperforms traditional methods, offering a more effective solution for aligning LVLMs."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2025-improving">
<titleInfo>
<title>Improving Alignment in LVLMs with Debiased Self-Judgment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sihan</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenhang</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zihao</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiyang</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weilong</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huaxiu</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Violet</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-335-7</identifier>
</relatedItem>
<abstract>The rapid advancements in Large Language Models (LLMs) and Large Visual-Language Models (LVLMs) have opened up new opportunities for integrating visual and linguistic modalities. Yet, challenges remain in aligning these modalities effectively, causing issues such as hallucinations, where generated outputs are not grounded in the visual input, and safety concerns in the application of LVLMs across various domains. Existing alignment methods, such as instruction tuning and preference tuning, often rely on external datasets, human annotations, or complex post-processing, which limit scalability and introduce additional costs. To address these challenges, we propose a novel approach that generates the debiased self-judgment score, a self-evaluation metric created internally by the model without relying on external resources. This enables the model to autonomously improve alignment. Our method enhances both decoding strategies and preference tuning processes, resulting in improved alignment, reduced hallucinations, and enhanced safety. Empirical results show that our approach significantly outperforms traditional methods, offering a more effective solution for aligning LVLMs.</abstract>
<identifier type="citekey">yang-etal-2025-improving</identifier>
<location>
<url>https://aclanthology.org/2025.findings-emnlp.436/</url>
</location>
<part>
<date>2025-11</date>
<extent unit="page">
<start>8213</start>
<end>8232</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Alignment in LVLMs with Debiased Self-Judgment
%A Yang, Sihan
%A Cui, Chenhang
%A Zhao, Zihao
%A Zhou, Yiyang
%A Yan, Weilong
%A Wei, Ying
%A Yao, Huaxiu
%Y Christodoulopoulos, Christos
%Y Chakraborty, Tanmoy
%Y Rose, Carolyn
%Y Peng, Violet
%S Findings of the Association for Computational Linguistics: EMNLP 2025
%D 2025
%8 November
%I Association for Computational Linguistics
%C Suzhou, China
%@ 979-8-89176-335-7
%F yang-etal-2025-improving
%X The rapid advancements in Large Language Models (LLMs) and Large Visual-Language Models (LVLMs) have opened up new opportunities for integrating visual and linguistic modalities. Yet, challenges remain in aligning these modalities effectively, causing issues such as hallucinations, where generated outputs are not grounded in the visual input, and safety concerns in the application of LVLMs across various domains. Existing alignment methods, such as instruction tuning and preference tuning, often rely on external datasets, human annotations, or complex post-processing, which limit scalability and introduce additional costs. To address these challenges, we propose a novel approach that generates the debiased self-judgment score, a self-evaluation metric created internally by the model without relying on external resources. This enables the model to autonomously improve alignment. Our method enhances both decoding strategies and preference tuning processes, resulting in improved alignment, reduced hallucinations, and enhanced safety. Empirical results show that our approach significantly outperforms traditional methods, offering a more effective solution for aligning LVLMs.
%U https://aclanthology.org/2025.findings-emnlp.436/
%P 8213-8232
Markdown (Informal)
[Improving Alignment in LVLMs with Debiased Self-Judgment](https://aclanthology.org/2025.findings-emnlp.436/) (Yang et al., Findings 2025)
ACL
- Sihan Yang, Chenhang Cui, Zihao Zhao, Yiyang Zhou, Weilong Yan, Ying Wei, and Huaxiu Yao. 2025. Improving Alignment in LVLMs with Debiased Self-Judgment. In Findings of the Association for Computational Linguistics: EMNLP 2025, pages 8213–8232, Suzhou, China. Association for Computational Linguistics.